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Aims International guidelines mandate the use of fractional flow reserve (FFR) and/or non-hyperaemic pressure ratios to

assess the physiological significance of moderate coronary artery lesions to guide revascularization decisions.

However, they remain underused such that visual estimation of lesion severity continues to be the predominant

decision-making tool. It would be pragmatic to have an improved understanding of the relationship between lesion

morphology and haemodynamics. The aim of this study was to compute virtual FFR (vFFR) in idealized coronary ar-

tery geometries with a variety of stenosis and vessel characteristics.
...................................................................................................................................................................................................

Methods

and results

Coronary artery geometries were modelled, based upon physiologically realistic branched arteries. Common sten-

osis characteristics were studied, including % narrowing, length, eccentricity, shape, number, position relative to

branch, and distal (myocardial) resistance. Computational fluid dynamics modelling was used to calculate vFFRs

using the VIRTUheartTM system. Percentage lesion severity had the greatest effect upon FFR. Any >_80% diameter

stenosis in two views (i.e. concentric) was physiologically significant (FFR<_ 0.80), irrespective of length, shape, or

vessel diameter. Almost all eccentric stenoses and all 50% concentric stenoses were physiologically non-significant,

whilst 70% uniform concentric stenoses about 10 mm long straddled the ischaemic threshold (FFR 0.80). A low

microvascular resistance (MVR) reduced FFR on average by 0.05, and a high MVR increased it by 0.03.
...................................................................................................................................................................................................

Conclusion Using computational modelling, we have produced an analysis of vFFR that relates stenosis characteristics to

haemodynamic significance. The strongest predictor of a positive vFFR was a concentric, >_80% diameter stenosis.

The importance of MVR was quantified. Other lesion characteristics have a limited impact.
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Introduction

Invasive coronary angiography remains the most commonly used

tool to assess patients and guide coronary revascularization. Visually

assessing the impact of a stenosis upon blood flow however, is diffi-

cult.1,2 Fractional flow reserve (FFR) and related physiological indices

can accurately identify ischaemia-inducing stenoses,3,4 and can im-

prove outcomes when treatment is based upon selecting lesions with

FFR <_0.80 compared with angiography alone.5,6 FFR is, however,

under-used.7,8 ‘Virtual’ FFR (vFFR) is computed from medical images,

such as computed tomography or, in this case, the invasive angio-

gram, by reconstructing a series of coronary artery images taken

from orthogonal planes in virtual space into a 3D geometry, which

the rules of computational fluid dynamics (CFD) can be applied to in

order calculate blood flow.9,10 In a clinical context models of vFFR

predict physiological lesion significance with a sensitivity of 89% and

specificity of 90% as reported in a large meta-analysis of vFFR which

included the VIRTUheart model of coronary physiology used in this

study.11 This technology has been used to predict the physiological

response to percutaneous coronary intervention and can be readily

adapted to construct any number or type of idealized stenoses and

their corresponding vFFRs.12,13

Our aim was to analyse vFFR in commonly encountered patterns

of coronary artery disease and anatomy, to provide improved

understanding of coronary anatomy and physiology when viewing an

angiogram.

Methods

Study design and setting
This study was carried out using simple, idealized, 3D tubular geometries,

based upon patterns of disease and physiological measurements informed

by clinical data encountered in real-world practice. The study was per-

formed in silico at the University of Sheffield.

Geometries
Tubular geometries were generated using ANSYS 18.2

DesignModelerTM. We were able to define the characteristics of each

stenosis and vessel generated to 100% accuracy, without any ambiguity,

thereby removing any degree of inter-observer variability. They con-

tained stenoses of various shapes, severity, number and length, within a

basic vessel template, comprising a main vessel which was a rigid, straight

tube, 50–100 mm long, 3.5 mm in diameter. Selected important clinical

variants of the basic model were constructed and analysed. To maximize

clinical relevance and limit the number of permutations, we confined our

models to those that would produce vFFRs which straddled the 0.80

treatment threshold. Therefore, no diameter stenoses (DS) >90% and

<50% were studied, because early experimentation with permutations of

Graphical Abstract

2 R.T.F. Newcombe et al.
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these stenoses revealed they all have FFR <0.70 and >0.80, respectively

(see Supplementary material online, Table S1).

We studied a total of 174 simulations incorporating 130 geometries.

These were all variants of a basic pattern of a rigid 3.5 mm diameter tube

of up to 100mm length containing one ormore stenoses with the charac-

teristics defined below. Larger and smaller parent vessels were not

studied, on the assumption that the physiology would be the same, if the

anatomical proportions of the model were the same.

Cross-sectional shape
We studied 50%, 70%, and 80% DS, in both concentric (narrowed in

both orthogonal planes) and eccentric (narrowed in one plane) configu-

rations (Table 1).

Lesion length
The basic stenosis was 5 mm long with a rounded profile in longitudinal

projection. Lesions were also created in lengths of 10, 20, and 30 mm, by

either inserting straight segments (‘uniform’ stenosis, Figure 1D), or using

a curve which reached maximum DS at mid-point (‘focal’ stenosis,

Figure 1C).

Longitudinal lesion morphology
We studied 5 mm stenoses that were rectangular in longitudinal section

(Figure 1G) as well ones which were rounded, whilst maintaining the same

spread of vessel sizes, eccentricity or concentricity, and % stenosis. For

these lesions, we also studied ‘uniform’ or ‘focal’ stenoses (see above;

Figure 1A and B).

Serial stenoses
We studied two and three serial stenoses (Figure 1H), 10 mm apart,

whilst maintaining the same spread of characteristics of vessel sizes, ec-

centricity or concentricity, uniformity and % stenosis.

Branches
We studied branched geometries at 45� , with combinations of commonly

encountered diameters of the proximal main branch (PMB) and distal

main branch (DMB). The side branch (SB) diameter was then calculated

using each of three commonly accepted bifurcation laws (Murray’s,

Finet’s, and Huo-Kassab) that outline the relationship between the diame-

ters of the main and daughter branches.14–16 This enabled comparison

between otherwise equivalent geometries to study the effect of the three

laws on the vFFR. The CFD simulation assumed continuity of static pres-

sure and flow at the bifurcation points but, because of the discontinuity at

the branch point, local flow disturbances, and momentum effects may

have been underrepresented in more tangential branches. However,

these effects are second order and this has previously been shown to re-

produce accurate vFFR results and better characterize bifurcation

haemodynamics relative to 1D and 2D model representations (unpub-

lished data).17

Table 1 Definitions of % DS and their corresponding CSAs

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

% Diameter Stenosis (DS) % Cross-sectional area (CSA) 

stenosis

Concentric Eccentric 

50% 

Concentric = 50% DS in x and y 

Eccentric = 50% in y direction 

only
75% CSA 50% CSA

70%

Concentric = 70% in x and y 

Eccentric = 70% in y direction 

only
91% CSA 75% CSA

80%

Concentric = 80% in x and y 

Eccentric = 80% in y direction 

only
96% CSA 86% CSA

CSA, cross sectional area; DS, diameter stenosis

CSA, cross-sectional area; DS, diameter stenosis.

The relationship between coronary stenosis morphology and vFFR 3
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Virtual fractional flow reserve
Geometries were processed using the Sheffield VIRTUheartTMworkflow,

which incorporated segmentation, mesh formation, CFD simulation using

ANSYS CFXTM, and portrayal of vFFR in colour, from green (FFR 1.00,

no flow limitation), through yellow/orange (FFR 0.80, borderline) to red

(FFR 0.60, severe flow limitation). The FFR value quoted was at the outlet

of each model. A ‘lower’ or ‘reduced’ vFFR was taken throughout to refer

to a lower numerical value (e.g., 0.76 is ‘lower’ than 0.86). A ‘positive’ FFR

refers to a physiologically significant FFR value equal to, or below the is-

chaemic threshold (<_0.80).

Microvascular resistance
We used a standard value of microvascular resistance (MVR) as the distal

boundary condition. This was a generic average (8.721Eþ 9 Pa.s.m-3)

obtained from a previously studied patient cohort.9 However,

because MVR is variable between individuals, we decided to select

geometries containing 70% DS to vary MVR by ± 2E9 Pa.s.m-3. This rep-

resents a variation in MVR of 20–25% (23%) which is representative of

values we had from the aforementioned patient cohort, as it aligned ap-

proximately with the upper and lower quartiles and was thought to be of

sufficient magnitude to capture the impact of MVR on FFR in our geome-

tries. MVR (and flow) were assumed to vary proportionately with the

diameter of the vessel, so results were given for 3.5 mm diameter vessels

only.

Results

Effect of lesion severity, eccentricity, and
shape
For a single, short (5 mm long), rounded, focal, 70%, concentric sten-

osis, the vFFRwas 0.90; and for an equivalent 80% concentric stenosis

it was 0.68 (Table 2). No eccentric stenoses up to, and including, 80%

produced a positive vFFR. All concentric lesions with an abrupt

(‘rectangular’) profile produced lower vFFR values than their

rounded equivalents. This effect becamemore marked with lesion se-

verity; the 70% concentric rectangular lesion producing a vFFR 0.80,

and the equivalent 80% lesion 0.50. A rectangular shape had a negli-

gible effect upon the vFFRs of eccentric stenoses.

Figure 1 Examples of geometry variants used for simulations. Examples of variations upon the standard artery geometry viewed longitudinally. All

% stenoses quoted are diameter stenoses (DS). (A) A 50%, concentric, rounded, 5 mm long focal stenosis; (B) a 50%, concentric, rounded, 5 mm long

uniform stenosis; (C) a 50%, concentric, rounded, 10 mm long focal stenosis; (D) a 50%, concentric, rounded, 10 mm long uniform stenosis; (E) a 50%,

eccentric, rounded 5 mm focal stenosis (F) a 50% eccentric, rounded, 5 mm long uniform stenosis; (G) a 50%, eccentric, rectangular longitudinal sec-

tion 5 mm long stenosis; (H) two serial, concentric, rounded, 5 mm long focal, 50% stenoses.

4 R.T.F. Newcombe et al.
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Effect of lesion length
For a single, 10 mm long, rounded, 70%, concentric, focal stenosis,

the vFFR was 0.89, and with a uniform (rather than focal) narrowing,

the vFFR was 0.77 (Table 3). For the focal shape, 20 and 30 mm long

70% DS stenoses remained in the physiologically non-significant

range, whereas the uniform stenoses were also positive at 20 and 30

mm. All 80% concentric stenoses produced positive vFFRs. The only

significant eccentric lesions were those that were 20 and 30 mm long,

uniform and had an 80% DS (0.75 and 0.69).

Effect of serial lesions
For two, short (5 mm long), rounded, focal, 70%, concentric sten-

oses, the vFFR was 0.82; and for three stenoses of this pattern, it was

0.77 (Table 4). Two similar lesions, but of uniform narrowing, pro-

duced a vFFR 0.70, and three 0.63. All 80% concentric lesions pro-

duced a positive vFFR. The only 5 mm eccentric lesions producing a

positive FFR were two and three serial uniform lesions, 80% DS

(vFFR 0.78 and 0.70, respectively). On average, increasing lesion num-

ber from one to two had the greatest vFFR lowering effect. The add-

ition of a third lesion had less of an effect on reducing vFFR (0.06 vs.

0.04).

Effect of the microvascular resistance
For a single, short (5 mm long), rounded, focal, 70%, concentric sten-

osis, the vFFR with our standard value of resistance (8.721Eþ 9

Pa.s.m-3) was 0.90 (Table 5). Using our low MVR value (6.721Eþ 9

Pa.s.m-3) the vFFR was 0.85; and with our high MVR value

(10.721Eþ 9 Pa.s.m-3) it was 0.92. For two serial 5 mm long focal

stenoses, the equivalent high and low values were 0.76 and 0.86, re-

spectively (the standard MVR generating a value of 0.82). In general,

the low MVR reduced the vFFR by an average of 0.05, and the high

MVR increased it by an average of 0.03.

Effect of branches
For corresponding branched geometries containing different configu-

rations of 5 mm rounded 70% concentric and eccentric focal sten-

oses, vFFR changed by at most 0.03 when varying the designated

branch diameter law and the set DMB diameter (Table 6). None of

the changes in vFFR resulted in a value <0.80 and there was no vFFR

difference at all between corresponding geometries containing ec-

centric stenoses. Furthermore, the vFFR difference between compar-

able straight and branched geometries was also minimal. For

example, the difference in vFFR between any straight vessel contain-

ing two ‘standard’ lesions and any branched geometry containing two

identical ‘standard’ lesions in succession (one each in the PMB and SB,

with the comparable vFFR recorded at SB outlet) was 0.02 at most.

Discussion

Summary
Using idealized vessel geometries and CFD simulation we have cre-

ated a ‘library’ of virtual (computed) FFRs of commonly encountered

patterns of coronary artery disease straddling the treatment thresh-

old of <_0.80. We found that no 50% lesions were significant. A uni-

form concentric 70% lesion 5 mm long has an FFR at about the

ischaemic threshold. All concentric 80% lesions analyses were

Table 2 Effect of lesion severity, eccentricity, and shape upon vFFR

Diameter 
Stenosis 
(DS) in x 
direction 

(%) 

Diameter 
Stenosis 
(DS) in y 
direction 

(%)

Profile 
shape 

Concentri
c or 

Eccentric

Focal 
or 

Uniform

Appearance and vFFR (at outlet)

50 50 Rounded Concentric Focal 0.98

70 70 Rounded Concentric Focal 0.90

80 80 Rounded Concentric Focal 0.68

50 50 Rounded Concentric Uniform 0.97

70 70 Rounded Concentric Uniform 0.81

80 80 Rounded Concentric Uniform 0.51

0 50 Rounded Eccentric Focal 0.99

0 70 Rounded Eccentric Focal 0.97

0 80 Rounded Eccentric Focal 0.93

0 50 Rounded Eccentric Uniform 0.99

0 70 Rounded Eccentric Uniform 0.96

0 80 Rounded Eccentric Uniform 0.87

50 50 Rectangular Concentric — 0.97

70 70 Rectangular Concentric — 0.80

80 80 Rectangular Concentric — 0.50

0 50 Rectangular Eccentric — 0.99

0 70 Rectangular Eccentric — 0.95

0 80 Rectangular Eccentric — 0.87

DS, diameter stenosis; vFFR, virtual fractional flow reserve.

For a single, short (5 mm) lesion, this table displays the effects of diameter stenosis (DS) concentricity (narrowed in X and Y) or eccentricity (narrowed in Y only), uniformity

and shape (rounded or rectangular) upon vFFR. The vessels are 3.5 mm diameter, 50 mm long, and the microvascular resistance is set to 8.721Eþ 9 Pa.s.m-3.
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Table 3 Effect of lesion length upon vFFR

Lesion 
Length 
(mm)

Diameter 
Stenosis 
(DS) in x 
direction 

(%)

Diameter 
Stenosis 
(DS) in y 
direction 

(%)

Focal or 
Uniform

Appearance and vFFR (at outlet)

10mm 70 70 Focal 0.89

10mm 80 80 Focal 0.67

10mm 70 70 Uniform 0.77

10mm 80 80 Uniform 0.43

20mm 70 70 Focal 0.87

20mm 80 80 Focal 0.65

20mm 70 70 Uniform 0.69

20mm 80 80 Uniform 0.34

30mm 70 70 Focal 0.86

30mm 80 80 Focal 0.62

30mm 70 70 Uniform 0.63

30mm 80 80 Uniform 0.28

DS, diameter stenosis; vFFR, virtual fractional flow reserve.

For a single, long lesion, this table displays the effect of varying length, severity, and uniformity upon vFFR. All lesions shown are concentric. The vessels are 3.5 mm diameter

and 100 mm long to accommodate the long lesions and to allow for flow stabilization, and the microvascular resistance is the standard previously quoted.

Table 4 Effect of serial lesions upon vFFR

Lesion 
number

Diameter 
Stenosis 
(DS) in x 
direction 

(%)

Diameter 
Stenosis 

in y 
direction 

(%)

Concentri
c or 

Eccentric 

Focal 
or 

Unifor
m

Appearance and vFFR (at outlet) 

2 50 50 Concentric Focal 0.97

2 70 70 Concentric Focal 0.82

2 80 80 Concentric Focal 0.55

2 50 50 Concentric Uniform 0.94

2 70 70 Concentric Uniform 0.70

2 80 80 Concentric Uniform 0.40

2 0 50 Eccentric Focal 0.98

2 0 70 Eccentric Focal 0.95

2 0 80 Eccentric Focal 0.87

2 0 50 Eccentric Uniform 0.97

2 0 70 Eccentric Uniform 0.92

2 0 80 Eccentric Uniform 0.78

3 50 50 Concentric Focal 0.96

3 70 70 Concentric Focal 0.77

3 80 80 Concentric Focal 0.51

3 50 50 Concentric Uniform 0.92

3 70 70 Concentric Uniform 0.63

3 80 80 Concentric Uniform 0.32

3 0 50 Eccentric Focal 0.98

3 0 70 Eccentric Focal 0.94

3 0 80 Eccentric Focal 0.83

3 0 50 Eccentric Uniform 0.97

3 0 70 Eccentric Uniform 0.89

3 0 80 Eccentric Uniform 0.70

DS, diameter stenosis; vFFR, virtual fractional flow reserve.

For serial 5 mm stenoses, this table displays the effect of varying lesion number, severity, eccentricity, or concentricity and uniformity upon vFFR. The lesions are separated by

10 mm, vessels are 3.5 mm diameter and 100 mm long, and the microvascular resistance is the standard previously quoted.
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Table 6 Effect of branches and diameter law upon vFFR

Lesion
Number

Concentric 
or 

Eccentric

Lesion 
in 

PMB

Lesion 
in 

DMB

Lesion 
in SB

Diameter 
Law

DMB 
Diameter 

(mm)

SB 
Diameter

(mm)

Appearance vFFR 
(at specified 

outlet)

2 Concentric Yes No Yes Huo-
Kassab

2.7 2.5 DMB - 0.90

SB - 0.81

2 Concentric Yes No Yes Murray 2.7 2.85 DMB - 0.90

SB - 0.83

2 Concentric Yes No Yes Finet 2.7 2.46 DMB - 0.90

SB - 0.80

2 Concentric Yes No Yes Huo-
Kassab

2.8 2.38 DMB - 0.89

SB - 0.81

2 Concentric Yes No Yes Murray 2.8 2.76 DMB - 0.89

SB - 0.83

2 Concentric Yes No Yes Finet 2.8 2.36 DMB - 0.90

SB - 0.80

2 Concentric Yes No Yes Huo-
Kassab

2.9 2.25 DMB - 0.89

SB - 0.80

2 Concentric Yes No Yes Murray 2.9 2.64 DMB - 0.89

SB - 0.82

2 Concentric Yes No Yes Finet 2.9 2.26 DMB - 0.89

SB – 0.80

DMB, distal main branch; PMB, proximal main branch; SB, side branch; vFFR, virtual fractional flow reserve.

A selection of branched geometries containing 5 mm 70% focal concentric stenosis in the proximal main branch (PMB) and the side branch (SB). To limit numbers displayed,

we only included corresponding examples where vFFR is changed in response to alterations in distal main branch (DMB) and SB diameter. PMB diameter was fixed at 3.5 mm

and DMB diameter values were varied from 2.9 to 2.8 to 2.7. Huo-Kassab’s, Murray’s and Finet’s law were then used to calculate the diameter of the SB. The vFFR values are

given at the outlet of the SB and DMB and thus factor in the effect of any lesion in the PMB.

Table 5 Effect of alterations to MVR upon vFFR

Lesion 
Length 
(mm)

Lesion 
Number

Concentri
c or 

Eccentric

Focal 
or 

Unifor
m

Resistan
ce

Profile 
Shape

Appearance vFFR
(at 

outlet)

5 1 Concentric Focal Low Rounded 0.85

5 1 Concentric Focal High Rounded 0.92

5 1 Concentric Uniform Low Rounded 0.75

5 1 Concentric Uniform High Rounded 0.85

5 1 Eccentric Uniform Low Rounded 0.94

5 1 Concentric - Low Rectangular 0.74

5 1 Concentric - High Rectangular 0.85

10 1 Concentric Uniform Low Rounded 0.68

10 1 Concentric Uniform High Rounded 0.81

30 1 Concentric Focal Low Rounded 0.81

30 1 Concentric Focal High Rounded 0.89

5 2 Concentric Focal Low Rounded 0.76

5 2 Concentric Focal High Rounded 0.86

5 3 Concentric Focal Low Rounded 0.70

5 3 Concentric Focal High Rounded 0.82

5 3 Eccentric Uniform Low Rounded 0.85

5 3 Eccentric Uniform High Rounded 0.91

vFFR, virtual fractional flow reserve.

For vessels containing lesions of 70% DS, this table displays the effect upon vFFR of low (6.72E9 Pa.s.m-3) and high (10.72E9 Pa.s.m-3) distal (microvascular) resistance [the values

in previous tables use the population average value (8.72Eþ 9Pa.s.m-3)]. To limit numbers displayed, we only include examples of each morphology that lie close to or either

side of the 0.80 vFFR threshold. More severe (tighter, longer) lesions can be assumed to have a lower vFFR than those illustrated, and less severe, a higher vFFR.
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significant. Truly eccentric lesions are typically non-significant. The

impact of other lesion characteristics, such as an abrupt outline and

greater lesion length, are only important for borderline lesions. Serial

lesions have a progressively smaller cumulative impact upon FFR.

Microvascular resistance can have a large impact upon FFR. Lesions

around (not at) a bifurcation have similar FFRs to equivalent lesions in

unbranched vessels.

Visual assessment
Lesions are often classified as mild, moderate or severe, but these

terms lack precision. Whilst the human eye can identify a critically se-

vere stenosis or a near normal artery, even expert assessments differ

in between.2,3 There is a tendency for visual assessment to over-

estimate more severe stenoses, and under-estimate mild ones.18 To

try and resolve this ambiguity, clinicians quote lesion severity as per-

centage diameter stenosis. However, even this is subjective, and is

also limited by a lack of specificity about whether the stenosis is seen

in one or two planes. It is rare that a stenosis is truly entirely eccen-

tric, but our work shows that an eccentric lesion, even if 80% nar-

rowed in one view, is extremely unlikely to be physiologically

significant, whereas if it is present in two orthogonal views, it is ex-

tremely likely. The quality of the angiogram, in terms of clarity, opaci-

fication and provision of truly orthogonal views, is also key.

Nevertheless, even in study settings, the relationship between a visual

assessment of the stenosis and measured FFR is poor; notably in the

zone where decision-making is most important (i.e. about 50–90%

DS).19 Quantitative angiography can be used to assist visual assess-

ment but due to the difficulties of accurate edge detection is hardly

an improvement20,21 and is not used in everyday practice.

Importance of lesion shape, length,
number, and branches
For a similar percent DS, an abrupt stepped ‘edge’ (idealized as rect-

angular here) is associated with a lower vFFR than a rounded one

(see Table 2 for a suitable example: a focal 70% concentric, rounded

stenosis has FFR 0.90; whereas when there is an abrupt reduction in

diameter and ‘squared off’ it is 0.80). This is because a sharper sten-

osis produces a tighter vena contracta, which is the minimum function-

al diameter that is smaller than the anatomical diameter of the

stenosis itself, where velocity is at its maximum. Fluid must pass

through this functional central flow region before once again read-

justing to the anatomical boundary. Within a lesion, a uniform nar-

rowing throughout gives rise to a lower FFR than a more focal

stenosis (albeit highly simplified as a gentle curvature with the tightest

segment at mid-lesion) (see Table 3 for a suitable example: a 30 mm

long, 70%, concentric, uniform stenosis has FFR 0.63; whereas when

it is ‘focal’ (or gently tapered) it is 0.86). This is because the pressure

losses due to viscous friction (Poiseuille effects) become amplified in

a conduit with small radius. The presence of serial lesions does have

an effect upon vFFR but this effect is incrementally less as each lesion

is added (see Table 4 for a suitable example: one concentric 5 mm

focal 70% lesion has a vFFR of 0.90; two lesions in series produce a

vFFR of 0.82 and three 0.77). This is because the definition of FFR is,

Qstenosis=Qnormal

or alternatively

Rmicrovascular=ðRmicrovascular þ RstenosisÞ

This is non-linear, thus increasing the number of lesions, each of

the same resistance, has incrementally less effect on FFR, even if the

resistances themselves are linear. The presence of isolated lesions in

branches (but not, in this paper, at the bifurcation point itself) can be

regarded as individual or serial lesions (as described above) and a le-

sion in one daughter branch does not affect the FFR in another

daughter branch (see Table 6). This phenomenon can be explained

by the fact that presence of branches affects absolute flow but not the

ratio of pressures across a lesion.22

Importance of MVR
MVR is variable between patients and susceptible to factors such as

microvascular disease, myocardial infarction, embolization and left

ventricular hypertrophy.23,24 In a formal sensitivity analysis of vFFR,

MVR contributed 70% of the variation of vFFR itself, i.e. it was the

major determinant of vFFR, even above stenosis severity.10 If a direct,

invasive measurement of distal pressure is known, the FFR (which

measures the contribution of the epicardial lesion to flow limitation)

is accurate, but in the absence of such a measurement, all models of

coronary blood flow are susceptible to inaccuracy if the individual’s

MVR deviates from the assumed or average level. Some models as-

sume flow velocity, but this is also determined by MVR and thus sus-

ceptible to the same problems.25 This is of particular importance if

the value of the vFFR of the lesion is close to the ischaemic threshold.

A number of approaches to this problem have been taken, including

trying to ‘tune’ the vFFR by using the vessel diameter (as used here in

the experiment on branched geometries) or by using a flow param-

eter, such as the velocity of the contrast wave front.26 For the pur-

poses of this work, such individual personalization was not necessary.

More recent work has demonstrated that MVR can be quantified in

absolute terms using similar CFD techniques, but this requires inva-

sive measurement of distal pressure.27

Limitations
First, the geometries modelled were relatively simple, consisting of a

straight, rigid tube with regular idealized stenoses and were exagger-

ated for simplicity (a rectangular longitudinal section; a smooth curve;

a completely eccentric lesion). Whilst this was necessary to demon-

strate the haemodynamic relationships between anatomy and physi-

ology, it is not directly applicable to real-world lesions. Further work

is required in this area. Second, flow was modelled as steady and not

pulsatile. However, previous work has established that this is unim-

portant in similar simulations with results being near identical to

those with pulsatility.27 Third, only a limited number of permutations

and combinations of the variables could be studied for reasons of

time. Fourth, the MVR value was not personalized, and a population

average was applied, although two limited variations (high and low

MVR) were studied. Fifth, our absolute vFFR values, for the above

reasons, may not reflect the exact value for an individual, but all the

comparisons shown here (one value relative to another with a single

parameter changed) are valid. Sixth, we did not study a lesion posi-

tioned exactly at a bifurcation, even though that is a common site, be-

cause the morphology is so variable. Lastly, when constructing

branched geometries an angle of 45� was chosen purely for model-

ling simplicity because currently the workflow does not factor the

8 R.T.F. Newcombe et al.
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angle of bifurcation into its calculations and instead relies on the

assumptions mentioned in our methods above. However, this should

not detract from the vFFR data generated because this is not meant

to be a comprehensive study of branches. Our focus was purely on

how varying the diameter of our daughter branches affects vFFR,

through its impact on the distribution of MVR, and how this com-

pares with straight vessels.

Future direction
Ultimately, the work in this project may develop into a reduced order

model (ROM) of CFD-derived vFFR. ROM development would ex-

tend the work of the current study, by increasing the number of var-

iations, combinations and simulations by several thousand-fold to

generate a more sophisticated and comprehensive ‘atlas’ of vFFR cap-

able of interpolating and predicting vFFR instantaneously without the

requirement for any case-specific CFD simulation. ROMmodels have

demonstrated usefulness in a wide range of applications and are ideal-

ly suited to vFFR because they generate instant results apposite for

clinical decision-making.

Conclusion

We have used computational modelling to generate FFRs in a range

of idealized geometries, intended to imitate commonly encountered

patterns of coronary artery disease. By using computer modelling

and idealized geometries, we were able to carefully control and vary

commonly occurring anatomical features in order to investigate the

strength of association between these features and their impact on

FFR. Although invasive assessment with FFR or non-hyperaemic pres-

sure ratios remains the gold standard for guiding coronary interven-

tion these data help quantify the physiological effects of some specific

simplified lesion and vessel combinations, challenge some assump-

tions and may add precision to regular visual angiographic

assessment.
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