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Abstract—Deep neural networks (DNNs) have become very
popular recently and have proven their potential especially
for image classification. However, their performance depends
significantly on the network structure and data quality. This
paper investigates the performance of DNNs and especially of
faster region based convolutional neural networks (R-CNNs),
called faster R-CNN when the network testing data differ
significantly from the training data. This paper proposes a
framework for monitoring the neuron patterns within a faster R-
CNN by representing distributions of neuron activation patterns
and by calculating corresponding distances between them, with
the Kullback-Leibler divergence. The patterns of the activation
states of ‘neurons’ within the network can therefore be observed
if the faster R-CNN is ‘outside the comfort zone’, mostly when
it works with noisy data and data that are significantly different
from those used in the training stage. The validation is performed
on publicly available datasets: MNIST [1] and PASCAL [2] and
demonstrates that the proposed framework can be used for real-
time monitoring of supervised classifiers.

Index Terms—Activation Pattern, Run-time Monitoring, Faster
R-CNN, Reliability, Decision Making, Uncertainty Quantification

I. INTRODUCTION

Deep Neural Networks (DNNs) have attracted increasing

attention [3–5] both in academia and industry during the

past decades. They have been intensively investigated in the

fields such as robotics [6, 7], autonomous driving [8] and

manufacturing [9] which require high levels of safety due to

involvements of human. Especially the performance of deep

learning methods for image classification under uncertainties

has been investigated. The [10, 11] summarise the recent

state-of-the-art and how different uncertainties impact DNN

methods. The quantification of uncertainties can be performed

by propagating a tensor normal distribution as a prior of a

Convolutional Neural Network (CNN) [12]. The mean and

variance of the Gaussian distribution are propagated within

a CNN framework called PremiUm-CNN developed in [12].

The variance is especially informative and a small variance

means accurate classification results. Another approach uses

the Hamming distance [13] which characterises well the

difference and similarity between binary strings.

Although there is a number of approaches that are able

to quantify uncertainties in CNNs, such as [14–17], there is

a necessity of expanding these studies with different types

of uncertainties - in the data: gradual and abrupt, due to

environmental changes, including lighting and meteorological

conditions, camera motion and other factors. Other effects can

be intentionally introduced, such as adversarial attacks and are

aimed to cause CNNs to make mistakes. It is important to iden-

tify when a trained CNN model performs inference correctly

in order to provide a trustworthy result [18–20]. Ideally, CNN

models have highly reliable performance with those inputs

that have features similar to their training data sets. However,

calculating similarity between inputs and training sets directly

is of high computational complexity due to the reason that

samples may have very high dimension.

This paper develops a faster R-CNN supervised classifica-

tion framework able to quantify the impact of data on the

performance of the classifier. The network has testing data

that are not the same as the training data, hence the network

is put outside its ‘comfort zone’, i.e. a wrong decision could be

made by the network. This may results in potential hazards to

human especially in those scenarios with human involvements.

Hence, inspired by ideas from [21], this work presents an

improved runtime activation pattern monitoring algorithm for

monitoring the R-CNN features representations for different

image inputs. The patterns of the ‘neurons’ inside the faster R-

CNN are monitored with different data. The approach uses the

Hamming distance to characterise the difference and similarity

between binary strings and the this is combined with the

Kullback-Leibler divergence.

The main contributions of this work consist in the following:

1) distributions of the neuron activation patterns are calculated

using the Hamming distance between the current activation

pattern and the central activation pattern. Next, the closeness of

these distributions is characterised based on Kullback-Leibler

divergence; 2) Monitoring zones are constructed based on

decision making, by taking the patterns with the correspond-

ing probability values and the changes in the patterns are

visualised; 3) The efficiency of the monitoring framework is

demonstrated over MNIST and PASCAL datasets.

The remainder of this paper is organised as follows. Section

II provides the related work. The methodology proposed is

elaborated in Section III. Section IV provides the experimental

results and analysis, and the paper is concluded in Section V.



Fig. 1. Overview of real-time activation pattern monitoring

II. RELATED WORK

Uncertainty in DNNs is of significant importance when it is

applied to safety critical tasks. DNNs are unexpectedly sensi-

tive to small changes in the input data, including adversarial

attacks, unseen objects and occlusions. These changes could

lead to failures of correct and reliable decision making.

Many approaches have been developed such as Bayesian

approaches [22–24] which address decision making by finding

the most likely in terms of probability. Uncertainty is quan-

tified by generating the ensemble or performing dropout in

operation. Such methods overcome the difficulties of executing

Bayesian inference directly but still are of high computational

cost resulting in poor real-time performance. Consequently, it

is unrealistic to apply Bayesian approaches in some scenarios

where fast response is required, e.g. autonomous driving and

real-time tracking.

Other works focus on verification problems of neural

networks [25]. Runtime verification algorithms monitor the

violation of correctness properties. A series of methods about

monitoring activation patterns of neural networks have been

proposed [19–21, 26]. Cheng proposed a boolean abstraction

method for monitoring DNNs where they only considered

about activation patterns of the final layers with respect to

ReLU activation function. They achieved an efficient monitor

based on operations on boolean logic with a binary decision

diagram (BDD) which is of low computation in the MNIST

dataset. The key of runtime monitoring activation patterns

is that Cheng created the γ-comfort zone to collect enough

activation patterns with correct predictions as the ground-truth.

Nevertheless, when the number of patterns and monitored neu-

rons as well as the abstraction parameter γ increase, it raises

the challenge in storing patterns and monitoring computational

costs especially in object detection. In this work, we focus on

dealing with monitoring in the view of distribution of patterns.

Different from Cheng’s abstracting patterns by Hamming

distance, we apply the Hamming distance directly as a distance

metric to avoid the storage and reduce the computational

complexity of large ground-truth activation patterns.

III. METHODOLOGY

A. Activation Pattern Representation

A DNN model is defined as y = F(θ,x) with parameter θ

where y is the output of the model and x is the input of the

model. The model can classify {c1, . . . , cl} ∈ C classes and

consequently, y ∈ C.

The common activation function applied in the activation

layers of DNN models in this paper is the ReLU function that

is in the form of

σ(a) = max{a, 0}. (1)

In this paper, we consider a neuron in the activation layer is

activated when its output is greater than zero. Let’s denote

the output of the last activation layer in a DNN model as

{v1, . . . , vd}, with d the dimension of the last activation layer.

The architecture of the proposed activation pattern monitoring

approach is shown on Figure 1. We can then define the binary

activation pattern as follows:

Definition 1 (Binary Activation Pattern): Given the output

of the last activation layer {v1, . . . , vd}, the activation pattern

of a certain class c is defined as

P c =
(
p(v1), . . . , p(vd)

)
, (2)

where p(·) defined in (3) is a function that maps a real number

v ∈ R into binary numbers.

p(v) =

{
1 v > 0,
0 otherwise.

(3)

For datasets such as MNIST and PASCAL, there are more

than one class to be detected and classified. For clarity, let T
denote the training dataset, and Tc ⊆ T denote images in the



training dataset contain objects with label c. The activation

patterns of Tc can then be organised as

Pc =
{
P c
0 , . . . , P

c
i , · · · , P

c
n

}
, (4)

where n indicates the number of patterns of class c. Activation

patterns of the whole training dataset can be defined similarly

and denoted as P , with Pc ⊆ P stands. Figure 2 show

examples of different activation patterns from different layers

of Number 1 in MNIST dataset [1].

Fig. 2. Visualisation of activation layers (first row) and the corresponding
activation patterns (second row) of Number 1 in MNIST dataset [1]. The
activation pattern becomes more abstract from left to right as the layer in
DNNs gets deeper.

B. Central Activation Patterns

Given a class c, we can expect similar activation patterns

for objects contained in various input images. This enables us

to accumulate activation patterns of class c during the training

process and hence find a central activation pattern that can

represent class c for further applications.

We define the central activation pattern P̃ c of class c as

P̃ c , argmax
P

∑n

i=0
H (P, P c

i ) , P
c
i ∈ Pc, (5)

where H(·, ·) indicates the Hamming distance between two

binary patterns P and P c
i .

In this paper, the Dynamic Programming (DP) algo-

rithm [27] is exploited to solve (5). Following we summarise

how DP is applied in our case.

Here we denote the minimum sum of Hamming distances:

τ c[j] = min
∑

H (P [: j], P c
i [: j]) , (6)

where [: j] represents neurons from first to j-th in activation

patterns and there are d neurons in total. Since the neurons

in the activation patterns are independent on each other, the

iterative update rule of τ c[j] is,

τ c[j] = τ c[j − 1] + min
∑

H
(
qcj , p

c
i (vj)

)
, (7)

where qcj ∈ {0, 1} is the j-th neuron and pi(vj) is j-th neuron

of activation pattern P c
i . By inferring qcj from 1 to d where d

is also the dimension of activation patterns, that is

P̃ c[j] , argmin
qc
j

∑
H

(
qcj , p

c
i (vj)

)
, (8)

we finally obtain the central activation pattern of class c:
P̃ c = (qc1, . . . , q

c
d).

C. Activation Pattern Distance Distribution

So far we have the central activation pattern P̃ c and a set

of other activation patters. They share the same class. First we

calculate the Hamming distance between the central activation

pattern and every other activation patterns from the considered

set. Then we will have a set of results for the Hamming

distance. Then we use the Hamming distance to calculate sub-

intervals.

While the central activation pattern P̃ c is representative

for a certain class c, the extraction of activation patterns

and comparison with P̃ c remains a challenge for real time

activation pattern monitoring. The situation gets worse when

the dimension of the activation pattern increases. To cope with

the challenge, this paper further propose the activation pattern

distribution, which aims at distinguishing difference classes

efficiently.

Given Pc and P̃ c, the Hamming distances between P c
i ∈ Pc

and P̃ c, with i = 0, · · · , n are first calculated, which are de-

noted as Dc = {D
c
0, · · · , D

c
i , · · · , D

c
n}. We then partition the

interval [min(Dc),max(Dc)] into m sub-intervals evenly and

calculate the number of distances falling into each sub-interval.

Let’s denote the results as N c = {N c
0 , · · · , N

c
j , · · · , N

c
m},

then the activation pattern distribution α is defined as follows

α = N c/n =
{
N c

0/n, · · · , N
c
j /n, · · · , N

c
m/n

}
. (9)

With (9), we can calculate the distribution of each class. To

distinguish different classes, we employ the Kullback-Leibler

(KL) divergence as a metric, which is defined as

KL(α||β) =
∑

j

α(j) log
(α(j)
β(j)

)
, (10)

where β represents a distribution where the classes between

the central activation pattern P̃ c and the activation pattern set

Pc⋆ are different between c and c⋆. In α the Pc and P̃ c share

the same class c.

D. Choice of Thresholds and Monitoring Zones

In this paper, we are interested in two types of distance

distributions of the patterns of neurons compared with central

activation patterns. The first type is denoted as ‘Same’, which

indicates that the activation patterns and the central patterns

are from the same object class. On the contrary, ‘Different’ is

used to indicate that the activation patterns are from objects

of different class compared to that of the central patterns. To

distinguish the two pattern distance distributions, we define

two thresholds S0 and S0.05 to build three monitoring zones:

(0, S0), (S0, S0.05) and (S0.05, +∞).



The threshold S0 characterises the shortest distance between

the central activation pattern and activation patterns with

different object class from the central activation patterns, i.e.,

the very first recorded distance from 0 in ‘Different’ seen in

Figure 3 and Figure 4.

The S0.05 threshold represents the distance where the accu-

mulative probability from 0 of ‘Different’ distribution is 5%,

i.e.,
∫ +∞

0
Dist‘Different′(x

′)dx′ = 0.05, and S0.05 = x′.

Therefore, the interval (0, S0) can be defined as a comfort

zone which means the predicted result is trusted. When

distances between prediction activation patterns and central

activation patterns are in (S0, S0.05), it will be considered as

a ‘warning signal’ which requires extra attention (manual) to

aid decision-making of neural networks. As for distances in

(S0.05, +∞), the predictions are taken as ‘not trust-able’.

E. The Activation Pattern Monitoring Algorithm

In the proposed monitoring algorithm, activation states of

neurons from the close-to-output layer of the DNN model

is monitored. To accomplish this, a two-phase algorithm is

implemented as depicted in Fig. 1. The details are given in

Algorithm 1. In Phase 1, the pre-trained model is fed with

the training dataset again and the activation patterns of training

samples will be recorded and stored as the ground-truth (GT).

After Phase 1, when a new input comes to the model, the

activation pattern and prediction of the model will be the

output. In Phase 2, the activation pattern is compared with

the GT with the same label to find out their differences by

calculating their Hamming distances. If the distance is larger

than a threshold, the prediction is defined as a problematic

decision that is unacceptable.

IV. EXPERIMENTS AND ANALYSIS

To verify the proposed algorithm, we applied it in two

tasks: 1) image classification on the MNIST dataset; 2) object

detection on the PASCAL dataset.

A. Datasets and Implementation Details

1) Classification on MNIST Dataset: MNIST [1] dataset

is a digital hand-written dataset which contains number 0-

9, where the training dataset contains 60,000 images while

the testing dataset consists of 10,000 images In this paper,

activation patterns of the last activation layer with 40 neurons

are monitored.

Table I presents the classification results on MNIST

datasets. We treat activation patterns from those images with

correct predictions on training set as the ground-truth acti-

vation patterns to generate central activation pattern P̃ of

different classes.

TABLE I
PREDICTION RESULTS ON MNIST

Datasets Correct Wrong Accuracy

Training 59,605 395 99.34%

Testing 9,881 119 98.81%

Algorithm 1 Real-time Activation Pattern Monitoring

Phase 1: Record activation patterns of training set T
for Tc ⊆ T do

for x ∈ Tc do

y ← F(x) and P c is the activation pattern of x

if y = c then

Pc ← Pc ∪ P c

end if

end for

end for

/⋆ Generate central patterns of different classes ⋆/
Phase 2: Monitor the Neural Network

y′ ← F(x′) and P ′ is the activation pattern of x′

for c ∈ C do

if y′ = c then

/⋆ Calculate the shortest Hamming distance between

P ′ and Pc ⋆ /
Dist← H(P ′, Pc)

if Dist ∈ (0, S0) then

Print “y′ is trusted”

else if Dist ∈ (S0, S0.05) then

Print “Require Human Judgement”

else

Print “y′ is not trusted”

end if

end if

end for

2) Object Detection on the PASCAL Dataset: The PASCAL

VOC 2007 dataset [28] contains 20 classes with around 10k

images and 24k annotated objects. There are mainly four

categories, i.e. Vehicles, Households, Animals, and Person.

Each category contains several object classes. We have listed

them in Table II and numbered them to facilitate further

descriptions [2].

TABLE II
PASCAL OBJECT CLASSES

Vehicles Households Animals Person

Aeroplane: 0 Bottle: 4 Bird: 2 Person: 14

Bicycle: 1 Chair: 8 Cat: 7

Boat: 3 Dining table: 10 Cow: 9

Bus: 5 Potted plant: 15 Dog: 11

Car: 6 Sofa: 17 Horse: 12

Motorbike: 13 TV/Monitor: 19 Sheep: 16

Train: 18

In classification tasks, the ground-truth activation patterns

are simply from those activation patterns with correct classi-

fications on training set. Different from classification tasks, it

is hard to extract the ground-truth activation patterns in object

detection by using the same strategy.

Faster R-CNN[29] is implemented for detecting and recog-

nising PASCAL objects in this paper. Different from extracting



the last activation layers only in the classification task, we need

to detect objects, i.e. determine labels and bounding boxes of

the objects first, then the corresponding patterns in the close-

to-output activation layers are extracted.

In object detection, both predicted labels and intersection

over union (IoU ) between the predicted bounding boxes and

the ground-truth bounding boxes should be considered and the

IoU is defined as

IoU =
Area of Overlap

Area of Union
. (11)

The predictions with IoU > 0.5 are defined as True Positive

(TP), while those with IoU lower than 0.5 are defined as False

Positive (FP) [28]. The number of TP/FP in training set and

testing set is shown in Table III.

TABLE III
NUMBERS OF TP&FP ON PASCAL

Datasets TP FP Accuracy

Training 12,411 26,429 32%

Testing 11,133 28,208 28%

In this case, we treat activation patterns of TP in the training

set as the ground-truth patterns and apply them to generate

central activation patterns for 20 classes.

B. Validation Results and Analysis

Fig. 3 and Fig. 4 show distributions of distances between

the central patterns and activation patterns. In both figures,

we use ‘Same’ to represent activation patterns with the same

classes as the central activation patterns while ‘Different’

are those patterns with different classes. From these two

distributions under different classes, activation patterns with

the same classes as the central activation have shorter dis-

tances compared to those with different classes. By analysing

Hamming distance distributions of activation patterns as well

as their Kullback-Leibler divergences, it is confirmed that

activation patterns with the same class are clusterred to their

corresponding central activation pattern. As for a class, by

using ‘Same’/‘Different’ distributions, three monitoring zones

can be built for monitoring the decision made by a neural

network.

TABLE IV
MONITORING CLASSIFICATION RESULTS ON MNIST AND PASCAL

Autonomous Manual Mis-

Dataset Correct Clas- Human classified

sification Decision

MNIST
Training 63.77% 35.56% 0.66%

Testing 62.62% 36.73% 0.65%

PASCAL
Training 60.16% 36.24% 3.60%

Testing 55.69% 38.99% 5.32%

Monitoring experiments are implemented on the MNIST

and PASCAL datasets and the results are shown in Table IV.

As for a test image, the neural network outputs a predicted

result and its activation pattern. The distance between the

pattern and its corresponding central activation pattern is

calculated and to which zone the distance belongs to is

also obtained. Table IV presents the monitoring classification

results in different datasets. We use ‘Autonomous Correct

Classification’ to represent faster R-CNN correct decisions

- when the neural network works well. ‘Manual’ means

additional human involvement is made in the decision making.

‘Misclassified’ represents that the proposed algorithm misclas-

sifies the prediction made by the network. We can see that

the proposed algorithm achieved low misclassified monitoring

results, i.e. over 99% accuracy of prediction in both training

and testing sets of MNIST. As for complicated object detection

tasks, the monitoring process within faster R-CNN can also

achieve a good performance with over 96% accuracy in the

training phase and 94% accuracy during testing over PASCAL

datasets.

V. CONCLUSIONS

This paper presents a real-time activation pattern monitoring

algorithm of the faster R-CNN in image classification and

object detection. The real-time activation pattern monitoring

algorithm is introduced to provide extra resilience in decision

making for DNNs based systems. First the Kullback-Leibler

divergence is calculated to find how different two distributions

of the monitored patterns are. Next, the Hamming distance is

calculated for decision making purposes. It gives the distance

between the activation pattern of the current input and the

corresponding central activation pattern. In this way a mon-

itoring zone is represented and gives a level of trust in the

obtained results. The proposed monitoring algorithm has been

thoroughly verified over two different computer vision tasks:

image classification and object detection - with MNIST and

PASCAL data sets - and demonstrates its capacity and achieves

very good monitoring performances.
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