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Abstract Our real-time actions in everyday life reflect a range of spatiotemporal dy-

namic brain activity patterns, which are the consequence of neuronal computation with

spikes in the brain. Most existing models with spiking neurons aim at solving static

pattern recognition tasks such as image classification. Compared with static features,

spatiotemporal patterns are more complex due to their dynamics in both space and time

domains. Spatiotemporal pattern recognition based on learning algorithms with spiking

neurons, therefore, remains challenging. Herein, we propose an end-to-end recurrent

spiking neural network model trained with an algorithm based on spike latency and

temporal difference backpropagation. Our model is a cascaded network with three lay-

ers of spiking neurons whereof the input and output layers are the encoder and decoder,

respectively. In the hidden layer, the recurrently connected neurons with transmission

delays carry out high-dimensional computation to incorporate the spatiotemporal dy-

namics of the inputs. The test results based on the datasets of spiking activities of the

retinal neurons show that the proposed framework can recognize dynamic spatiotem-

poral patterns much better than using spike counts. Moreover, for 3D trajectories of

human action dataset, the proposed framework achieves the test accuracy of 83.6%

on average. Rapid recognition is achieved through the learning methodology based on

spike latency and the decoding process using the first spike of the output neurons. Taken

together, these results highlight a new model to extract information from activity pat-

terns of neural computation in the brain and provide a novel approach for spike-based
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neuromorphic computing.

Keywords: Spiking neurons, spatiotemporal dynamics, spatial-temporal patterns, spike

latency, biological plausibility

1 Introduction

We conduct various cognitive behaviours in response to the dynamic environment and

make a sequence of decisions every day (Golestani and Moghaddam, 2020). Neurons,

the building blocks of the brain, play an important role in the powerful computations

that give rise to these reactions. The most basic computation performed by individual or

networked neurons is to generate sequences of input-output relations. Mechanistically,

individual neurons receive the input stimuli and respond by adjusting their membrane

potentials to generate a sequence of fast events, termed spikes (Rieke et al., 1996).

Information is then transmitted by a group or network of neurons over time (Buono-

mano and Maass, 2009; Liu and Buonomano, 2009; Liu, 2011; Buzsáki, 2010; Yuste,

2015; Laje and Buonomano, 2013). Dynamic spatiotemporal patterns of neural spikes

thus convey important messages of the brain activities (Buonomano and Maass, 2009).

However, proper methods remain missing to effectively extract the rich information

from such trajectories of spiking patterns (Quiroga and Panzeri, 2009; dos Santos et al.,

2015; Panzeri et al., 2017).

In recent years, the development of machine learning (ML) — in particular, the ar-

tificial neural network (ANN) modeling — has made significant progress in analyzing

temporal sequences (Lecun et al., 2015; Miranda et al., 2012; Devanne et al., 2013;
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Miranda et al., 2014). Unlike most ANNs that employ artificial neurons communicat-

ing via continuous variables, the spiking neural networks (SNNs) transfer information

through discrete spiking data. Hence, SNNs resemble the biological information pro-

cessing system in the brain. Moreover, SNNs triggered by discrete inputs have event-

driven computational advantages over general ANNs, allowing for the transmission of

spatiotemporal data through spike-based encoding, learning rules, and memory mecha-

nisms (Tsukada and Pan, 2005; Ghosh Dastidar and Adeli, 2009; Maass, 1997).

Many existing SNNs aim at solving the static pattern recognition tasks by incor-

porating additional temporal information into the original two-dimensional system and

transforming the stimuli from static inputs, such as images, to dynamic spatiotemporal

patterns (Diehl and Cook, 2015; Göltz et al., 2019; Yu et al., 2013; Xu et al., 2020).

However, the performance of these SNNs is limited by their intrinsic shallow structures

and basic classifying strategies. Hence, they are unable to potently process stimuli com-

plexed with temporal data. In order to address this problem, recurrent SNNs (RSNNs)

have been proposed with nodes connected by feedback loops (Soula et al., 2006; Pyle

and Rosenbaum, 2017; Arena et al., 2012; Panda and Roy, 2017; Gilra and Gerstner,

2017). However, most of the current RSNNs are unreliable in computation due to the

random connections in the recurrent layer (Pyle and Rosenbaum, 2017) in an overall

superficial network structure.

Herein, we propose an RSNN model that can be trained end-to-end on GPU effi-

ciently with a flexible network structure. Different from the conventional SNNs, the

proposed framework is a multilayer model containing recurrent connections to take full

advantage of spike latency. The system is capable of extracting useful features in large
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quantities from complex inputs. Moreover, the learnable delays applied to the expand-

able time steps in the recurrent layers can balance the spiking time distribution of differ-

ent input sources. Hence, they can enhance the classification capability of the system.

Specifically, the dynamic input stimuli are encoded as spatiotemporal patterns, which

are then transformed into spike trains by the designed encoding mechanism. The spik-

ing neurons of the fully-connected layers and the recurrent layer could communicate the

temporal information through the spiking trains. Such a framework and functional mo-

tifs are expected to improve the information processing ability of RSNN, representing

a more cognitive neural system with biological plausibility than conventional ANNs.

We tested the RSNN system on dynamic datasets of spike patterns recorded from

biological neurons and human motion trajectories to evaluate its learning capabilities

under different dynamic input stimuli. The experimental results show that the proposed

RSNN not only has a more efficient encoding scheme and more effective network archi-

tecture, but also exhibits enhanced ability in processing dynamic stimuli and performing

complex classification than many other spike-based models.

2 Related Works

In recent years, ANNs showed upstaging advances in conducting various tasks (Lecun

et al., 2015), particularly in classifying static images. However, when processing dy-

namic videos with additional time information, the large amount of data redundancy

can corrupt or alter the integrality of individual image frames. Very few ANN studies

operating on spatiotemporal patterns have been reported (Miranda et al., 2012; Devanne
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et al., 2013; Miranda et al., 2014).

On the other hand, temporal patterns have been a focus of interest in recent years for

SNN modeling (Diehl and Cook, 2015; Göltz et al., 2019; Yu et al., 2013). According to

the network structure, the common-used SNNs can be categorized into the feedforward

SNN and the recurrent SNNs.

For feedforward SNNs, different directly-trained and indirectly-trained SNN learn-

ing models sprang up for static spike pattern recognition. Firstly, the directly-trained

SNNs consider more biologically plausible features of spike trains and adapt to the tem-

poral coding mechanism more smoothly than indirectly-trained way. To improve the

feature extraction ability of the SNN model, an augmented spike-based framework with

perceptron-inception was introduced to combine the feature learning abilities of CNN

and SNN (Xu et al., 2020) while using fewer neurons and training samples. Subse-

quently, a new approach controlling spiking networks with realistic temporal dynamics

was proposed, exploring the end-to-end training technique with the gradient descent

rule (Mostafa, 2018). With temporal coding, the input-output relations in a network

became differential with a piecewise linear topology. Secondly, considering the lim-

ited performance of the directly-trained SNNs, the deep neural networks (DNNs) based

converted training method is introduced to transfer the fully-trained DNNs into rate-

based SNNs. In (Cao et al., 2015), the deep CNNs were converted into SNNs by first

tailoring the CNNs structure to fit the requirements of SNNs then mapping the trained

CNNs to the derived SNNs. Although these converted SNNs achieve competitive per-

formance as CNNs, there exists information loss during converting process and makes

inadequate use of spike characteristics. These feedforward SNNs recognize objects by
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transforming the static input patterns to dynamic spatiotemporal ones. However, the

patterns which recognized by these SNNs are limited by their feedforward structures.

Hence, this kind of feedforward structures are good at recognizing static pattern without

temporal information, while taking little advantage of the induced temporal information

hidden in the spike trains.

Meanwhile, efforts have been made to improve the learning capability by resorting

the recurrent connections. It is suggested that recurrent connections are important for

object recognition in the biological visual system (Kar et al., 2019). To explore the

variability of network dynamics, a parsimonious model with random recurrent connec-

tions of spiking neurons was firstly proposed, although being notoriously unreliable in

computations (Soula et al., 2006). By incorporating the well-documented dependence

of connection probability on distance, a new reservoir computing framework for SNNs

was reported to perform dynamical computations (Pyle and Rosenbaum, 2017). In an-

other recent work (Gilra and Gerstner, 2017), a network of heterogeneous spiking neu-

rons with feedforward and recurrent connections was constructed and the corresponding

supervised learning scheme was explored. During the training process, the output er-

rors are fed back through fixed random connections with a negative gain, driving the

network to improve in the desired direction. This model was evaluated on the learning

of linear, non-linear, and chaotic dynamics, as well as those with a two-link arm. Yet,

these recurrent SNN models failed to solve complex pattern recognition problems as a

result of limited computation ability.

Except the random recurrent connection, the recurrent SNNs models with learn-

able recurrent connections are explored further. The first kind of the common-used
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method for learning those recurrent connections is by virtue of the unsupervised learn-

ing rule, such as spike-timing-dependent plasticity (STDP). Combining the standard

spike time correlation-based Hebbian plasticity and a reservoir network-based synaptic

decay mechanism, a new SNN model was trained to generate sequences on datasets

of word images (Panda and Roy, 2017), where the adaptive decay of synaptic weights

introduced by Hebbian plasticity facilitates in learning stable contextual dependencies

between temporal sequences, while reducing the strong attractor states that emerge in

recurrent models due to feedback loops. However, the structure of this network cannot

be scaled to multiple layers easily, limiting the learning ability of the model. Inspired

by the insect olfactory system, a multilayer spiking network was proposed (Arena et al.,

2012), where each layer is constructed according to the insect brain components mainly

involved in olfactory information processing, namely, the Mushroom Bodies, the Lat-

eral Horns, and the Antennal Lobes. The plastic recurrent connections are learned by

the unsupervised simple learning mechanism. Thus, that structure is able to realize a

top-down modulation at the input level, which leads to the emergence of an attentional

loop as well as to the arousal of basic expectation behaviors in case of subsequently

presented stimuli. The other kind of methods can learn the recurrent connections in

the manner of supervised learning, which contain two typical ways to implement these

learnable recurrent connections. The one is like (Wu et al., 2018), the recurrent behav-

ior is implemented in the spiking neuron model, in which each spike neuron is unfolded

over time. This kind of recurrence considers the historical information reflecting at the

precise time points for each spiking neuron. Taking (Wu et al., 2018) for instance, the

spatio-temporal backpropagation (STBP) algorithm was proposed to combine the layer-
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by-layer spatio domain and the time-dependent temporal domain in a creative way. The

non-differentiable during BP process is solved by approximated derivative for spike

activity. The forget gate of the proposed iterative LIF neuron model is employed to

control the leaky extent of the potential memory, which means the recurrence is in-

troduced by the self-recurrent connection of individual spiking neurons. Considering

the local memory captured by the precise step-by-step time point in the spiking neuron

model, this method is more suitable for the tasks needing to memorize the relationships

between contiguous time points, such as the image classification based on the dynamic

vision sensor (DVS) datasets. While the other kind of learnable recurrent connections

method is implemented by unfolding the recurrent layers over time and separating them

into time windows. This method considers the global neural dynamics of recurrent

connection from the group of neurons and ignores the detailed historical information

on each single neuron. In addition, the leaky memory extent is decided by the learned

weights in the hidden layer. This is consistent with the main recurrent framework in

our recurrent SNN model. These recurrent connections implemented by unfolding the

neurons in layer is more suitable for the human activity recognition application. Be-

cause the human activity recognition process pays more attention to global information

preserved in the neuron group, not in a single neuron, then fast proceeds the recognition

process by remitting the historical information in the recurrent layer. Furthermore, to

make up the time gap between the input layer and the output of the hidden layer at the

last moment, the learnable transmission delay is introduced to control the spike time

distribution of the different input sources dynamically. Together with these analyses,

our proposed model highlights the importance of using learnable recurrent connections
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in SNNs to achieve computation advances.

As demonstrated in natural biological systems (Budd and Kisvárday, 2012), trans-

mission delays play a pivotal role in neural communication and computation. Several

SNN models implement delay learning with different computational approaches. The

direct optimization of delays between the internal and output neurons in reservoir mod-

els is attained through supervised learning (Paugam-Moisy et al., 2008). Similarly,

delays are assigned to the connections between the pre- and post-synaptic neurons and

learned by gradient descent rule in the Spikprop model (Bohte et al., 2002). As for the

unsupervised learning method, a delay is increased if a post-synaptic pulse arrives be-

fore a defined temporal reference point, and decreased if it arrives after (Hüning et al.,

1998). Hence, multiple postsynaptic pulses are synchronized. In line with these works,

our proposed model utilizes the learnable delays to help discriminate the samples closed

in time, hence enhancing the classification of temporal patterns.

In our current work, we show the capability of our model by using two types of

datasets. One consists of biological spike patterns recorded from animal retinal neu-

rons, where sequences of binary spikes are naturally triggered by image stimuli. The

other dataset contains data from human motion trajectories, represented as a series of

continual values sampled in real-life 3D space. Therefore, our framework can handle

both analogue and continuous signals. A recent study shows that systems translating

input signals into binary spikes greatly outperform those using continuous signals, even

with the same neural network model (Zhang et al., 2020), suggesting the schematic

advantage of computation with neural spikes (Yu et al., 2020).

Taken together, implementing SNN algorithms in software (Roy et al., 2019) or
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processing signals as spikes or events on the neuromorphic chips (Ma et al., 2017;

Davies et al., 2018; Pei et al., 2019) will greatly extend our computation capability and

potentially give rise to the next generation of computing.

3 Methods

3.1 Overview of RSNN Model

Inspired by the information processing mechanism in the biological neural system,

we propose an end-to-end spike-based framework with recurrent connections, named

RSNN. As shown in Figure 1, the proposed model systematically incorporates the func-

tional components, including neural encoding, learning, and decision-making layers,

which in turn synergistically enable the RSNN to powerfully process complex multi-

dimensional information with high accuracy.

3.1 Input Layer

Encoding refers to the mechanism to transfer the information from the outside stimuli

to spikes. The existing encoding methods could be categorized as rate-based encoding

and temporal encoding roughly. Rate-based methods (Gautrais and Thorpe, 1998) usu-

ally encode a value into a series of spikes, termed spike train, by systems such as the

Poisson model. However, generating spike trains not only brings too much redundancy,

but also ignores spike latency, the spike timing information. Compared to the rate-based

encoding method, temporal encoding interprets the activity patterns in a spatiotemporal

form with less redundancy where the precise timing of spikes is used for representing
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Figure 1: The framework of the RSNN model. Three different classes of spiking stim-

uli are fed into the input layer. The data are then encoded and passed to the recurrent

layer where multiple time steps take place to relay the information. In each time step,

information from the connected layer and previous time step is combined. The final

readout is computed by the output layer, and the category of the input sample is deter-

mined by the first-firing neurons.

information. Mounting evidence suggests that neurons respond to stimulus with dif-

ferent spike timings (Gollisch and Meister, 2008; Egea-Weiss et al., 2018). We hence

employed the temporal coding method in the proposed system due to its high precision

and biological plausibility.

In our model, the network structure and the number of encoding neurons are fixed.

Each neuron is permitted to fire only once. The input real-world floating data is trans-

lated into spatiotemporal spike pattern. The linear interpolation is employed to ensure

all samples have a uniform time length. The maximum firing time for the encoding

neurons is set to be ln(6) = 1.79s with z = 6 in the z-domain, in line with (Mostafa,

2018). This firing time setting guarantees a large enough temporal separation between

the spikes interpreted from different real values in time-sequential data. After the en-
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coding process, the information contained in the spike trains is transmitted into the

hidden layer.

3.2 Recurrent Hidden Layer

The recurrent learning layer of the proposed RSNN, fully connected to the encoding

neurons, is composed of recurrently networked hidden neurons and can unfold over

time. Most classic training methods, such as Tempotron and SpikeProp, cannot train a

recurrent model. Tempotron ignores the precise firing times of post-synaptic neurons

and can overburden the training process since it requires the number of sample patterns

to be approximately 3 times as many as the number of synapses. On the other hand,

SpikeProp (Bohte et al., 2002) can train the multilayer SNNs by adopting an approxi-

mate gradient descent method to mimic the backpropagation (BP), which can impair the

performance. Furthermore, SpikeProp cannot be implemented in machines with GPU.

To overcome these problems, we propose a new training rule based on the previous

work (Mostafa, 2018), which can be fitted into the recurrent spiking neural structures.

Our formulation establishes an analytical relation between input and spike times with

mathematical support. To accelerate the training process, our method can make full use

of the existing GPU-based training packages to scale up the network capacity.

In addition, compared with ANN models where connection weight is the only pro-

grammable parameter, SNNs contain transmission delays that can be configured and

used for achieving more powerful computation. In our RSNN model, we assign dif-

ferent transmission delays for each time step in the hidden layer. These delays are

also learnable through the training process. In detail, for the time step r >= 1 in the

13



recurrent layer, the input spike train Tr should be delayed by Dr, which means that

Tr = T ′

r + Dr(r >= 1), where Dr is constrained as [0, 20] ms in line with biological

plausibility. The transmission delay can balance the spikes from different input sources.

In detail, when computing the output spike of one hidden neuron at rth unfolded time

step, there are two input sources with different weights. The One is the spike trains

from the input layer, the other is the spike trains from the hidden layer at r − 1th time

step. Due to the sequential property of spike trains, the latter spikes are usually more

delayed than the former ones. Under the condition of no transmission delay in the recur-

rent layers, for instance, as illustrated in Fig. 2 (left), when computing the output firing

time of this hidden neuron, the spikes from the input layer at rth unfolded time step

decide the first firing spike time of hidden neurons in a dominant way. Hence, for the

first-time encoding mechanism in this paper, most of the hidden spikes at r − 1th time

step could not contribute to the first firing spikes of the hidden neuron. Even worse, the

time gap between those two input source could be more serious. In such a case, that

situation could not be moderated only through adjusting their network weights. Hence,

the learnable delay is introduced to balance the spike time distribution of two input

sources. As shown in Fig. 2 (right), the transmission delay avoids the dominance of

one input source. The output spike firing time of the hidden neuron is jointly decided

by the current input spike from the input layer and the historical information from the

hidden layer at the last time step.
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Figure 2: The simulation for computing the output firing time of one hidden neuron

with/without transmission delay. (left) Without transmission delay, the output spike

firing time of hidden neuron is dominated by input spike trains from input layer but

ignoring the historical information on the spikes of hidden layers at the last time step.

(right) With the learnable transmission delay, the relationship between the spike times

from input layers and the spike times from hidden layers at the last time step becomes

balanced.

3.3 Decision-Making Layer

For the decision-making layer, the label is defined by the neuron with the minimum

spike timing. With the maximized value of negative spike timing in the z-domain, the

neuron of the correct class would fire earlier than those from the incorrect ones, as

shown in Equation 4.
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3.2 Feedforward and Feedback Process

In this section, we derive the feedforward and feedback processes for non-recurrent

layer and recurrent layer, respectively. During the feedforward phase, the output spike

trains for each layer are recorded in order, while in the feedback process, all the con-

nection weights are updated by the gradient descent rule.

3.1 The Feedforward and Feedback Processes in the Non-Recurrent Layer

We assume the post-synaptic neuron j receives NI spikes at time {t1, t2, ..., tNI
} with

weights {w1, w2, ..., wNI
} from NI pre-synaptic neurons. Each neuron is permitted to

fire only once. The membrane potential of neuron j is as follows:

Vj(t) =

NI
∑

i=1

Θ(t− ti)wi(1− exp(−(t− ti))), (1)

where Θ is the Heaviside function. Once the value of Vj crosses the threshold Vthr = 1,

the neuron j emits a spike. The causal set Cj = {i : ti < tj} is defined to collect the

pre-synaptic spikes that contribute to the firing of the first spike of the post-synaptic

neuron. Hence tj satisfies:

1 =
∑

i∈Cj

wi(1− exp(−(tj − ti))). (2)

After completing a transformation for spike times by exp(tx) → zx, that is, spike time

description in z-domain, the first spike of neuron j would be described as:

zj =

∑

i∈cj
wizi

∑

i∈cj
wi − 1

. (3)
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For the feedforward process of fully-connected multilayer SNNs, the firing time of

each neuron is calculated according to its causal set. If its causal set is empty, the output

spike time is set to be infinite. The cross-entropy loss is used to prepare the neuron of

the correct class fire earlier than the others in the output layer. Assuming that the spike

time of the output layer is zo and the target class label is g, the cost is as follows:

L(g, zo) = −ln
exp(−zo[g])

∑

k exp(−zo[k])
. (4)

Moreover, for the feedback process, the derivatives of the first spike time of pre-synaptic

neuron in the z-domain and the corresponding weight are given by:

dzj

dwi

=



















zi−zj∑
i∈Cj

wi−1
if i ∈ Cj ,

0 Otherwise.

(5)

dzj

dzi
=



















wi∑
i∈Cj

wi−1
if i ∈ Cj ,

0 Otherwise.

(6)

3.2 The Feedforward and Feedback Process in the Recurrent Layer

Assuming that there are two time steps in the recurrent hidden layer. For a hidden

neuron d, the incoming spike train Ti = {t1, t2, ..., tNI/2} from the input layer has a

transmission delay D0, that is, Ti = Ti
′ +D0. The potential of the hidden neuron d can

then be defined as:

Vd(t) =

NI
∑

i=1

Θ(t−ti)wi(1−exp(−(t−ti)))+

NH
∑

h=1

Θ(t−th)wh(1−exp(−(t−th))), (7)
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where wh is the linking weight between dth neuron in the current time step and the hth

neuron in the last time step. NH denotes the total number of hidden neurons. th is the

firing time of the hth hidden neuron of the recurrent layer in the last time step, which

can be computed by:

1 =

NI
∑

i=1

wi(1− exp(−(t− ti))) +

NH
∑

h=1

wh(1− exp(−(t− th))). (8)

Then zh that represents the th in the z-domain is given by:

zh =

∑

i∈cd
wizi +

∑

h∈cd
whzh−1

∑

i∈cd
wi +

∑

h∈cd
wh − 1

. (9)

For the backward process, the partial differential for dzh
dwi

is:

dzh

dwi

=



















zi−zh∑
i∈Cd

wi+
∑

h∈Cd
wh−1

if i, h ∈ Cd,

0 Otherwise.

(10)

The partial differential of zh over zh−1 time step in z-domain is as follows:

dzh

dzh−1

=



















wh∑
i∈Cd

wi+
∑

h∈Cd
wh−1

if i, h ∈ Cd,

0 Otherwise.

(11)

Finally, the gradient of wh can be caculated as:

dzh

dwh

=



















zh−1−zh∑
i∈Cd

wi+
∑

h∈Cd
wh−1

if i, h ∈ Cd,

0 Otherwise.

(12)
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In addition, transmission delay D0 satisfies that z(Ti) = z(T ′

i+D0), that is, exp(Ti) =

exp(T ′

i +D0). Its gradient dzh
dD0

= dzh
dzi

dzi
dD0

can be obtained by:

dzh

dD0

=



















∑
i∈Cd

wizi
∑

i∈Cd
wi+

∑
h∈Cd

wh−1
if i, h ∈ Cd,

0 Otherwise.

(13)

Based on these formulas, the derivatives of other variables in the network can be

obtained with backpropagation error through the layers using standard backpropagation

technique. Besides, the constrains on synaptic weights and gradient normalization are

applied to avoid neurons ceasing spike firing.

3.3 Datasets

3.1 Biological Neural Spike Data

We used two datasets of spiking patterns recorded from biological retinal ganglion cells.

Experimental recordings were made in isolated retinas obtained from axolotl salaman-

ders as described previously (Liu and Gollisch, 2015; Onken et al., 2016). The first

dataset is for classification of moving direction. We analyzed the neural spike pat-

terns in response to the drifting square-wave gratings, i.e., black and white patterns,

moving in eight different directions, with the entire sequence repeated five times, as

described priorly (Liu et al., 2017). The second dataset contains flashed grating images

with different spatial phases as reported in (Onken et al., 2016), we used a stimulus

set of square-wave grating consisted of 60 shifted versions of the same grating images,

uniformly covering the complete range of spatial phases of the grating. Images were
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presented individually for 200 ms each in a pseudo-random sequence, with an inter-

image interval of 800 ms in which a full-field gray stimulus was presented. At least

30 trials per grating image were recorded. For simplicity, we selected a few stimulus

images and classified their corresponding neural spike responses by our model.

3.2 Human Action Dataset

We employed the MSRAction3D dataset (Li et al., 2010) collected by an MS Kinect-V1

camera to evaluate the performance of our model. The corresponding 3D joints posi-

tions are extracted from the depth sequences using the same real-time skeleton tracking

algorithm as in (Shotton et al., 2011). This dataset consists of 20 actions performed by

10 subjects for 2 or 3 times. The categories of actions include “high arm wave”, “hori-

zontal arm wave”, “hammer”, “hand catch”, “forward punch”, “high throw”, “draw X”,

“draw tick”, “draw circle”, “hand clap”, “two hand wave”, “side-boxing”, “bend”, “for-

ward kick”, “side kick”, “jogging”, “tennis swing”, “tennis serve”, “golf swing” and

“pick up & throw”.

4 Results

The proposed RSNN model was evaluated on two types of datasets, biological neural

spike data and 3D human action data. Firstly, we assessed the classification of stimuli

in different moving directions using spike patterns of retina neurons, and compared the

results with those from experiments using static images. Secondly, we tested our RSNN

model on the MSRAction3D dataset for human trajectory activity recognition. Through

comparison, our model demonstrated better performance than other SNNs. The effect
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Figure 3: Classification of moving directions of neural spike patterns. (Left) Neural

responses are similar among eight different directions as shown by the spike counts for

two retinal neurons, cell 1 (top) and cell 2 (bottom). (Middle) Neural responses to eight

different directions are distinguished as shown by the spatiotemporal spike patterns.

(Right) High accuracy is shown by the confusion matrix of classification based on spike

patterns. The average accuracies are shown beside the matrices.

of network structure with different numbers of hidden neurons was also evaluated.

4.1 Classification of Moving Directions using Neural Spike Patterns

We evaluated the performance of our RSNN model on biological retina cell data ob-

tained from the retinal ganglion cells of salamanders in previous studies (Onken et al.,

2016; Liu et al., 2017). The collected retina cell data consists of gratings moving in

eight different directions as stimuli. We conducted binary classifications for different
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directions and computed the accuracy. As shown in Figure 3, the average spike numbers

in different directions are quite similar, which means that distinguishing these directions

by spike number would be difficult.

We therefore employed the RSNN model to capture the spike timing and sequence

distribution of spike trains to improve the classification performance. The RSNN struc-

ture was configured as 10 − 50 − 2, which means there are 10 encoding neurons, 50

hidden neurons, and 2 output neurons in the network. Only the first ten spikes were

extracted to represent the input spike train of a neuron. If the spike number was less

than ten, we would treat the last few missing spikes as not being fired by setting their

firing times to be a large enough value. The number of time steps in the recurrent layer

was set to be two, making the learnable delay a scalar. The original data was divided

into the training set, validation set and test set with 64%, 16%, and 20% of the entire

data, respectively. The accuracy on the test dataset was recorded when the validation

set achieved the highest performance within 500 epochs.

As illustrated in Figure 3, for cell 1, the spike patterns in different directions have

different time latency but similar spike numbers, which means the temporal coding with

latency is more suitable for binary classification than the rate coding. Almost all pairs

of directions are distinguished with high accuracy for their highly different time laten-

cies. The direction classification of 0 and 225 degrees give a relatively low accuracy

of 78%. The direction towards 270 degrees is recognized with the best average accu-

racy of 97.75%. It coincides with the feature of spike trains, where this direction is the

most different from others in the gap between the first and second spikes. However,

there are also some directions, such as the one towards 315 degrees, hard to be classi-
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Figure 4: Recurrence in SNNs is necessary for classifying spatiotemporal patterns.

Similar to Figure 3 for two example cells, but deleterious average accuracies (Bold font)

are shown by confusion matrices obtained from SNNs without recurrent connections.

fied because of the small inter-class distances. For cell 2, the neuron responses of all

directions are similar, except for those near 180 degrees. All pairs of directions can be

classified by our RSNN model with high accuracy of over 85% except for those between

45 and 135 degrees with a performance of 75%. The direction towards 45 degrees is

relatively harder to distinguish from others due to the small distances to other classes.

As the results show, the RSNN model with temporal coding with latency information

outperforms the rate coding-based models.

Moreover, we compared the performance of the RSNN model with the SNN model

of the same 10 − 50 − 2 network structure on these two retina cell datasets. As shown

in Figure 4, the average accuracies of SNN are 83.87% for cell 1 and 88.10% for cell

2, much lower than those of the RSNN model (95.59% and 95.13%, respectively). Al-

though there are more 1s in the matrix obtained by SNN model for cell 2, all the average

accuracy of SNN model on each direction is quite lower than that obtained by RSNN
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Figure 5: Image classification based on neural spike patterns. (Left) Four stimulus

images of gratings with different phases. (Middle) Spike patterns triggered by stimuli

in one retinal cell. (Right) Confusion matrix of classification for these four images

based on neural spike patterns.

model. Moreover, we compute the variances of these accuracy matrices to observe the

model’s stability. The variances of the matrices obtained by the RSNN model in Fig.

3 are 0.002 and 0.003 for cell 1 and cell 2, respectively. The variances of the matrices

achieved by the SNN model in Fig. 4 are 0.027 and 0.025 for these two cells. This

indicates the stability of our RSNN model compared with the original SNN model for

these neural spike patterns classification. Thus, our RSNN model achieves better per-

formance than the SNN model in the binary classification of cell response to directional

moving stimuli.

4.2 Classification of Static Images from Neural Spike Patterns

The above results are based on the stimulus images of gratings moving in different di-

rections. Knowing that the retinal neurons are sensitive to static stimulus images by
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varying spike timings relative to the onset of the stimulus (Gollisch and Meister, 2008),

we proceeded to evaluate the RSNN model on static stimuli by employing a dataset of

the retinal ganglion cell response to different static images (Onken et al., 2016). As

shown in Figure 5,the neural responses are characterized by spike patterns with dif-

ferent spike time, but not spike count. We performed the binary classification among

four different grating images based on temporal spike patterns. Although the cell re-

sponses to different grating images exhibit similar spike latency, they are nonetheless

well classified by the RSNN model as evidenced by the confusion matrix with an aver-

age accuracy of 82.29%. Hence, the RSNN model can also classify spike patterns with

quite similar latency.

4.3 Classification of Human Action from Motion Trajectories

Next, we attempted to extend the capacity of our model to real-life applications beyond

neural spike patterns. To this end, we employed the MSRAction3D80 dataset (Li et al.,

2010) where all body action categories are divided into three subsets as in (Li et al.,

2010), and each subset contains 8 actions, as illustrated in Table 1.

The subsets 1 and 2 contain actions of a similar movement, while subset 3 encom-

passes complex actions. Figure 6 visualized the moving trajectory of ’high throw’ with

twenty posture frames on x, y, and z axes each. These patterns were encoded into the

spike trains which were then fed into the RSNN model. As previously described, the

sample class is determined by the index of the output neuron that fires the earliest. The

decoding spike trains of the RSNN model for samples of different categories are also

shown. The output neuron corresponding to the correct class would generate the first
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Subset 1 Subset 2 Subset 3

Horizontal arm wave High arm wave High throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

Hand throw Draw kick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw

Table 1: The divided three subsets for MSR3D dataset of human motion trajectories.

spike the earliest.

We then performed a cross-subject test to compare the performance between our

model and other methods. Half of the samples were selected randomly to form the

training set and the rest are included in the test set. The task would be repeated 10 times

to acquire average accuracy. The following three typical models used previously for

this human action dataset were adopted:

• Key-pose learning method (Miranda et al., 2014). An approach based on deci-

sion forests, in which each forest node is a key pose. The key poses are identified

through a multi-class classifier derived from Support Vector Learning machines

among the body poses, which are described as a tailored angular representation

of the skeleton joints.

• Feedforward SNN with SRM (Yang et al., 2018). A plain feedforward SNN

model constructed as a two-layer SNNs with single neurons for human motion
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Figure 6: Classification of human motion trajectories by RSNN. (A) Visualization of

human motion trajectory of ’high throw’ demonstrated by a sequence of 20 recorded

human postures in x, y and z direction. (B) Different action readouts by output neurons

with different timings of first spikes. (Left) Human trajectories with 20 posture frames

in x, y and z directions each. (Middle) Trajectories fed into the RSNN are read out by

eight output neurons. (Right) Each action is decoded by an output neuron firing a spike

with the shortest latency.

recognition, also described as a spike response model (Bohte et al., 2002). The

movement shift in two different directions in the original 3D data is encoded into

the spike trains, abandoning the motion movement range and velocity informa-

tion.

• Mostafa SNN (1200-800-8) (Mostafa, 2018). The original SNN model with

three layers containing 1200 input neurons, 800 hidden neurons, and 8 output
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Figure 7: Comparison of model performance. The classification performance for each

subset of human actions and the averaged performance over three subsets by RSNNs

and three other models: Key-pose learning, Feedforward SNN with SRM, and Mostafa

SNN. Our model is as robust as Mostafa SNN but with better performance.

neurons. All neurons in this model are fully connected without recurrence.

And the following three RSNN models with structural variation are used for com-

parison:

• RSNN (1200-800-8, without delay). The proposed RSNN model, consisting of

an input layer, an output layer, and a hidden recurrent layer without the transmis-

sion delay mechanism.

• RSNN (1200-800-800-8). The proposed RSNN model, consisting of an input

layer, two hidden recurrent layers, and an output layer.

• RSNN (1200-800-8). The proposed RSNN model with only one hidden recurrent

layer.
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Figure 8: Classification performance of RSNN with different network structures, where

the number of neurons in the hidden ranges from 100 to 1500.

As illustrated in Figure 7, the performances of different models are compared. Both

the Key-pose Learning and Feedforward SNN with SRM methods perform unstably

across the subsets. In contrast, the Mostafa SNN and our RSNN models show robust

performance. In particular, our RSNN model with 1200-800-8 network structure per-

forms the best with 83.6% accuracy. Compared with the Mostafa SNN model contain-

ing the same number of neurons (82.6% on average), the RSNN models show higher

average accuracy. Besides, the accuracy achieved by RSNN model with delay is a bit

higher than the model without delay (83.5%). It suggests the effect of learnable trans-

mission delay. In summary, the RSNN model demonstrates competitive capability in

solving human activity recognition problems.

Moreover, to explore the effect of network structure on performance, we designed
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Figure 9: Classification of human actions in different channels. Confusion matrices

of model performance on three subsets of actions along x, y or z channel, and all three

channels combined.

a range of RSNN networks with different numbers of neurons in the hidden layer. As

illustrated in Figure 8, the performance is improved upon increasing the number of neu-

rons in the hidden layers from 100 to 800, indicating that the capability of a network

can be enhanced by scaling up the network structure. However, continually increasing

the neuron number in the hidden layer to 1500 failed to significantly improve the per-

formance any further, suggesting little overfitting in our networks. Thus, our RSNN is

suitable for solving complex tasks with a large scale of network structure.
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To get more details of human action information coded in each direction, we per-

formed the classification on each subset of action data along every motion direction,

which can be referred to as a channel. In a 3D space, some human actions are more

presented in one channel than the others. We explored the influence of different chan-

nels on the coding of human actions over time by computing the confusion matrix of

accuracy on each channel for each subset of data.

As shown in Figure 9, the performance of the RSNN model in classifying actions

along individual x, y, z channel, and all three channels combined are evaluated. The

actions taking place on all axes are generally better classified than those on an individual

channel. For instance, ’Tennis swing’ action with only x or z channel data is hard

to distinguish from ’high throw’, while with y channel can be easily confused with

’tennis serve’ and ’pick up and throw’. However, using data of all the channels, the

classification of ’Tennis swing’ can be improved by 21% in accuracy. Interestingly,

some actions can be distinguished better with single-channel data only. For example,

higher accuracy is achieved for ’Forward kick’ with only x channel data than those

using multiple direction information, presumably due to the fact that ’Forward kick’

motion is mainly moving along x channel and not significantly presented in y and z

channels.

Moreover, different actions achieve the relatively better accuracy with different

preferable channels according to their moving trajectory. For instance, the performance

on ’forward kick’ and ’side kick’ is better with x channel data only, ’golf swing’ can be

distinguished better with y channel information, while ’pick up and throw’ and ’tennis

serve’ are more sensitive to z channel. These results suggest that the classifier should
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be designed based on the nature of the actions, since body motions are not random but

often over-represented in certain channels, as evidenced by the neural activities in the

brain in response to body actions (Sabbah et al., 2017).

5 Conclusion

In this work, a recurrent spiking neural networks (RSNN) model is proposed to analyze

spatiotemporal sequence data. We evaluated the performance of the RSNN model in

classifying the biological neural spike patterns and real-life human motion trajectories.

The results show that the RSNN model can achieve high performance for spatiotempo-

ral pattern recognition. The learnable delay mechanism was introduced to improve the

learning ability of the RSNN model by balancing the spike time distribution between

different time steps in the recurrent layer. The efficient learning process of our model

is easy to be adapted to GPU and other platforms. Moreover, our model is robust and

scalable to perform complex tasks.
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