

This is a repository copy of *Transcriptomic analysis* of the activity and mechanism of action of a ruthenium(II)-based antimicrobial that induces minimal evolution of pathogen resistance.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/177470/

Version: Supplemental Material

Article:

Varney, A.M., Smitten, K.L., Thomas, J.A. orcid.org/0000-0002-8662-7917 et al. (1 more author) (2021) Transcriptomic analysis of the activity and mechanism of action of a ruthenium(II)-based antimicrobial that induces minimal evolution of pathogen resistance. ACS Pharmacology & Translational Science, 4 (1). pp. 168-178. ISSN 2575-9108

https://doi.org/10.1021/acsptsci.0c00159

This document is the Accepted Manuscript version of a Published Work that appeared in final form in : ACS Pharmacol. Transl. Sci, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsptsci.0c00159.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A transcriptomic Analysis of the Activity and Mechanism of Action of a Ruthenium(II)-Based Antimicrobial That Induces Minimal Evolution of Pathogen Resistance

Adam M Varney, ¹ Kirsty L Smitten, ² Jim A Thomas ^{2*} and Samantha McLean ^{1*}. ¹ School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS.

Contents	Page
S-1. Chemistry methods	S-2
S-1a. [Ru(3,4,7,8-tetramethyl-1,10-phenanthroline) ₂ Cl ₂] ²⁺	S-2
S-1b. [{Ru(TMP) ₂ } ₂ (tpphz)] ⁴⁺	S-2
S-1c. Anion metathesis	<u>S-</u> 2
S-2. Supporting data	<u>S-</u> 3 – S-4
Table S-1 - Primer sequences designed for transcriptomic analysis.	<u>S-</u> 3
Table S-2 - Kinetic turbidimetric solubility plate readings	S-4
Figure S-1 – Variation in colony size of <i>Escherichia coli</i> after exposure to 1 ⁴⁺	<u>S-</u> 4
Figure S-2 – Minimal inhibitory and bactericidal concentrations for <i>Escherichia con</i> mutants after exposure to 1 ⁴⁺	<i>li</i> BL21 and porin knockout S-4

²Department of Chemistry, The University of Sheffield, Western Bank, Sheffield, S3 7HF.

^{*} Corresponding authors

Supplementary 1 - Chemistry methods

The ligand TPPHZ was synthesised through established procedure.¹

S-1a. [Ru(3,4,7,8-tetramethyl-1,10-phenanthroline)₂Cl₂]²⁺, ²

RuCl₃.3H₂O (1.14 g, 5.50 mmol), TMP (2.4 g, 10.16 mmol) and LiCl (1.47 g, 34.68 mmol) were heated for 8 h under reflux in DMF (19 mL). The reaction mixture was cooled to room temperature and acetone was added (100 mL). The solution was stored at 4 °C for 16 h forming a dark purple precipitate. The product was washed with water and ethanol and dried *in vacuo*. Mass = 2.07 g (3.21 mmol, 63.2 %) purple solid. MS m/z (%): 609.1 (62) [M –Cl]+, 637.1 (100) [M]+ 667.1 (44) [M + Na]+. Carbon monoxide displaced one of the chlorines.

[M-3(PF₆)]³⁺. ¹H NMR (MeCN-d₆) δ (splitting integration): 2.1 (s, 48H), 7.8 (s, 4H), 7.9 (t, 8H), 8.2 (dd, 4H), 8.4 (s, 8H)

S-1b. [{Ru(TMP)₂}₂(tpphz)]⁴⁺, ³

Ru(TMP) $_2$ Cl $_2$ l $^{2+}$ (1.12 g, 1.73 mmol) and TPPHZ (0.260 g, 0.68 mmol) were added to a 1:1 solution of ethanol and water (80 mL). The solution was refluxed for 12 h under argon. After completion the reaction mixture was cooled to room temperature and stored at 4 °C for 16 h. The red solution was filtered, and ethanol removed by rotary evaporation. A saturating amount of NH $_4$ PF $_6$ was added; this caused the formation of a dark red precipitate. The precipitate was collected *via* vacuum filtration, washed with water and recrystallised in acetonitrile by addition of diethyl ether. The product was dried *in vacuo* and purified on an alumina column, solvent system: 95 % MeCN, 3 % dH $_2$ O and 2 % KNO3. Mass = 1.22 g (0.58 mmol, 85.7 % yield). MS; m/z (%): 911 (10) [M – 2(PF6)]2+, 559 (100) [M-3(PF $_6$)] $^{3+}$. $^{1+}$ H NMR (MeCN-d $_6$) δ (splitting integration): 2.1 (s, 48H), 7.8 (s, 4H), 7.9 (t, 8H), 8.2 (dd, 4H), 8.4 (s, 8H), 9.9 (dd, 4H). $^{1+}$ H NMR (Acetone-d $_6$) δ (splitting integration): 2.1 (dt, 48H), 8.0 (m, 4H), 8.1 (s, 4H), 8.2 (s, 4H), 8.52 (d, 4H), 8.6 (s, 8 H), 10.1 (d, 4H). Elemental analysis [{Ru(3, 4, 7, 8-Tetramethyl-1,10-phenanthroline)} $_2$ 2(tpphz)](PF $_6$ 4-5.5H2O, C88H87N14O5.5Ru $_2$ P4F $_2$ 4 Calculated: C; 47.93, H; 3.97, N: 8.89. Found C; 47.92, H; 3.83, N; 8.82. Accurate mass analysis: C88H76N14[102Ru] $_2$ 4+ Calculated: 383.1111. Found: 383.1112.

S-1c. Anion metathesis

The hexafluorophosphate salt of each complex was dissolved in the minimum volume of acetone, and a saturated solution of tetrabutylammonium chloride in acetone added. The resultant precipitated chloride salt was collected by filtration, washed with cold acetone, and dried *in vacuo*.

Supplementary 2 – Supporting data

Table S-1 - Primer sequences designed for transcriptomic analysis. Annealing temperature and GC percentage stated for each sequence.

Gene		tm	gc%	Sequence
hcaT	Forward	59.4	47.62	cgctcggctatttcacatact
ncui	Reverse	59.89	45.45	gacgctccagaaaggtagaaaa
idnT	Forward	60.61	45.45	agggattgctttactcctgctt
	Reverse	59.91	45.45	ttcgactgaggtgacgacttta
waaM	Forward	58.77	40.91	acaactgaccatcagcaacttt
recN	Reverse	59.94	38.1	catgccgctatgaaaatcaat
was A	Forward	60.37	40.91	atggctatcgacgaaaacaaac
recA	Reverse	60.2	40.91	catgatggagcctttaccaaat
bbad	Forward	59.43	36.36	aaaaacgtaaaaaccctcatcg
bhsA	Reverse	59.35	45	cgactttttgttggccttct
ibpA	Forward	60.2	36.36	aactttgatttatccccgcttt
	Reverse	59.77	36.36	atagcaatgcggtaatggtttt
umuC	Forward	59.5	40.91	atgtttgccctctgtgatgtaa
	Reverse	59.99	40.91	caaccgtcattattcgatagca
.mhE	Forward	60.51	45.45	gtctgtggcgaatttagtcgat
yrbF	Reverse	59.85	50	agacggagtagcgtcgttttac
2000	Forward	59.98	50	ctgcactgtttgttgcctctac
spy	Reverse	60.37	47.62	gaccgaacttgcctttatggt
adh A	Forward	59.88	45.45	ccagtcagagaatttgatgcag
sdhA	Reverse	60.51	57.14	cgggaagaccttagagagcag
omnE	Forward	61.2	54.55	gtgatcgtccctgctctgttag
ompF	Reverse	59.97	45.45	ccttggagaaataatgcagacc

Table S-2 - Kinetic turbidimetric solubility plate readings - absorbance at 620 nm

Concentration µM		14+ (1)		14+ (2)		Nicardipine (1)		Nicardipine (2)				
0.2	0.130	0.123	0.149	0.132	0.125	0.152	0.435	0.504	0.540	0.499	0.531	0.514
2	0.039	0.054	0.061	0.053	0.045	0.040	0.171	0.195	0.186	0.195	0.192	0.175
4	0.012	0.012	0.012	0.012	0.011	0.013	0.002	0.009	0.018	0.004	0.021	0.009
20	0.005	0.007	0.006	0.006	0.006	0.006	0.000	0.000	0.000	0.000	0.000	0.000
40	0.001	0.002	0.002	0.002	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000
100	0.000	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
200	0.000	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Figure S-1 - Variation in colony morphology of Escherichia coli after exposure to 14+

Cultures exposed to **1**⁴⁺ consistently show differing colony size and morphology when plated onto rich medium in the absence of the compound. Microscopy images were taken using a GX Microscope L2000A at 40x magnification. (A-C) Images of typical colonies of *Escherichia coli*. (D-E) Images of colonies of *Escherichia coli* after exposure to **1**⁴⁺.

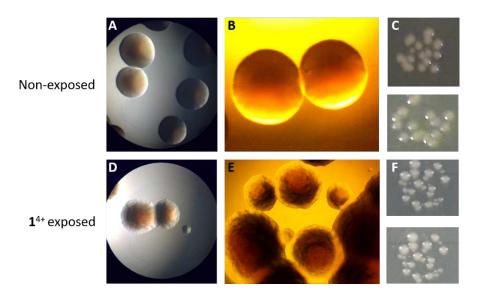


Figure S-2 – Minimal inhibitory and bactericidal concentrations for *Escherichia coli* BL21 and porin knockout mutants after exposure to 1^{4+} .

Strain	MIC (μM) ± SEM	MBC (μM) ± SEM
BL21 Gold (DE3)	0.91 ± 0.07	1.39 ± 0.14
ΔompA	1.39 ± 0.14	4.17 ± 0.89
ΔlamB	0.87 ± 0.07	1.74 ± 0.14
ΔompF	1.04 ± 0	1.48 ±0.07
ΔοmpC-ΔοmpF	1.04 ± 0	2.43 ± 0.38
Δ ompC- Δ ompF- Δ lamB	1.39 ± 0.14	2.60 ± 0.43

 $N = 3 \pm SEM$. Origin of strains⁴.

Supplementary references

- (1) Bolger, J.; Gourdon, A.; Ishow, E.; Launay, J.-P. Mononuclear and Binuclear Tetrapyrido [3, 2-a: 2', 3'-C: 3", 2"-H: 2"', 3"-"J] Phenazine (Tpphz) Ruthenium and Osmium Complexes. *Inorg. Chem.* **1996**, *35*, 2937–2944.
- (2) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Mixed Phosphine 2,2'-Bipyridine Complexes of Ruthenium. *Inorg. Chem.* **1978**, *17*, 3334–3341.
- (3) Rajput, C.; Rutkaite, R.; Swanson, L.; Haq, I.; Thomas, J. A. Dinuclear Monointercalating Rull Complexes That Display High Affinity Binding to Duplex and Quadruplex DNA. *Chem. Eur. J.* **2006**, *12*, 4611–4619.
- (4) Meuskens, I.; Michalik, M.; Chauhan, N.; Linke, D.; and Leo, J. L. A New Strain Collection for Improved Expression of Outer Membrane Proteins. *Front. Cell. Infect. Microbiol.* **2017**, 7 (464).