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Abstract

This work presents a novel intelligent robot perception sys-

tem, including a real-time, high-quality, 3D scanning pipeline

for texture-less scenes and a human-supervised grasping sys-

tem. Comparison is carried out with the state of the art 3D

reconstruction systems, and the performance of the proposed

system is demonstrated. The scanning methods are applied

to a new user interface with object 6D-pose estimation. This

work supports human-robot interaction in remote handling

operations in hazardous environments by providing a high-

quality telepresence. Current teleoperation systems primar-

ily utilise 2D images or point clouds to display the remote

workspace to the operator. Operators require extensive train-

ing to be able to perceive the spatial relationship between the

robot and the target objects by remotely looking at multiple

2D images. Therefore, this paper proposes a new teleoper-

ation system that exploits artificial intelligence to improve

the efficiency of operators. The experiments show that the

proposed method surpasses state-of-the-art reconstruction

systems and successfully complements a simulated nuclear

waste handling experiment.

Keywords: human-robot interaction, semi-autonomous sys-

tem, 3D environment reconstruction, 3D object detection
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1 Introduction

Recently, there has been an increasing number of teleoper-

ated robotic systems deployed in unstructured and hazardous

environments, such as the nuclear industry, search and res-

cue, manufacturing and the international space station, etc.

[24]. However, current teleoperations are mostly based on

multi-screen displays [15, 19], which means operators need

to view the multiple video streams cameras placed in the

remote environment and also monitor the robot’s state in

physical space at any point in time. As a result, operators

have to shift their concentration between monitoring the

remote camera’s video feed and monitoring the robot states

constantly, whichmay lead to fatigue and stress for operators.

Apart from this, operator’s 3D perception of the remote en-

vironment during teleoperation depends on a 2D projection

of a 3D environment. This process can be time-consuming,

inefficient and less productive.

An advanced 3D visualisation system of the remote envi-

ronment requires explicit 3D reconstruction scenes. How-

ever, the current environment reconstruction technologies

cannotmeet the demand, especially for the small-scale texture-

less scenes. Offline methods often need hours to process,

while online approaches have a severe weakness which is

relying on object surface texture to compute corresponding

relations between different frames.

What is more, an excellent teleoperation system should

help operators improving their work efficiency. The majority

of state-of-art systems still depend on human’s intelligence

in excess. With the development of 6D pose estimation tech-

nology, an increasing number of works can achieve semantic

grasping in the clutter environment. Despite this fact, vision

algorithms for 6D pose estimation in teleoperation system is

still a challenge. Template-based algorithms (e.g., LineMOD

[10], PWP3D[23]) depend on the intact and high-quality 3D

object model to extract texture features of the object and

compare with scenes. In current industrial applications, all
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objects manipulated by robots are made of similar material

and cannot easily be differentiated by features such as texture

or colour. Deep learning based-methods (e.g., DOPE[28]) can

overcome this slightly, but those systems inevitably require

long training times and enormous computing resources.

To bridge such contradictory technical challenges, we

propose a novel teleoperation system that can significantly

improve the operator’s experience. A robot can first scan

the surrounding environment and generate a high-quality

3D realistic model in this system. Second, the object lists

are visualised based on the detection history and operator’s

guidance from the visual recognition system. Finally, opera-

tors can select the target object which needs to be grasped

by robots. Through a proposed graphical user interface, the

operator can interact with the environment easily.

The main contributions of this paper are listed as follows:

• Proposes a novel 3D visualisation system that presents

a high-quality model of a robot’s work-space to the

operator, thus improving their scene understanding.

• Develops a novel human-robot interface that can sig-

nificantly reduce the work pressure on the operator.

Note that most teleoperation in the past required visuali-

sation using 2D interfaces [7, 14, 22], 3D point clouds [17]

or object surface meshes [29].

The remainder of this paper is organised as follows: Sec-

tion 2 gives an overview of the related literature; Section 3

details the pipeline of the 3D environment reconstruction

system. Section 4 introduces the human-supervised semi-

autonomy system. Section 5 presents the experiments and

results. Finally, conclusions are drawn in Section 6.

2 Related Work

Recently, there has been an increasing amount of research on

solving the problem of perceiving 3D task environments in a

2D display. For example, Lipton [14] proposed an innovative

homunculus model that created a Virtual Reality Control

Room in a head monitor and embedded the operator in the

centre. Yew [30] presented a mixed-reality-based mainte-

nance robot by a cyber-physical model, which used a virtual

object overlay in the actual target to guide the operator for

tasks such as disassembly, cleaning, and repair work. What’s

more, those improvements can help operators complete a

few well-defined tasks more easily but were limited in 3D

position perception.

In the field of telepresence vision systems, Kohn et al.

[12] proposed model-based teleoperation, which can ren-

der the figure captured from different angles into a three-

dimensional model in real-time. However, they employed a

traditional point-to-point ICPmethod to perform point cloud

registration, which proved time-consuming. Similarly, Ni et

al. [17] provided a new approach to demonstrate the entire

view of the robot working space. They used the Kinect sen-

sor to get the raw point cloud and then acquired a full vision

point cloud by using a point-cloud registration algorithm.

Furthermore, to improve the teleoperability, Kyunghwan et

al. [5] proposed a visualization system that can help opera-

tors recognize target objects in a 3D environment by using

a faster region-based convolutional neural network R-CNN.

Both [20] and [3] rely on a virtual reality presenting the

3D point cloud scene that allows the operator to perceive

the spatial position of the remote environment. To further

support the application in industry, several nuclear waste

detection and categorization technologies were proposed

to speed up the disposal of those wastes [1, 15]. Such ap-

proaches, however, fully rely on operating personnel, so that

the operator is in the object-handling feedback-control loop;

this results in low productivity and operator fatigue.

3 System Overview

(a) Block diagram of the teleoperation system

(b) Experimental configuration showing various components used in this

work

Figure 1. System Architecture

The workspace comprises a robotic work cell and a hang-

ing robot system as shown in Fig.1 (a). The robot system is a

UR5e series robot arm with two-fingered grippers ROBOTIQ

2F-85. The stroke of the gripper is 85mm while its form-fit

grip payload achieves 5 kg. In addition, The size of the robotic

work cell is 180 cm × 130 cm × 120 cm, which is suitable

for the robot’s movement. What’s more, this system also

includes a stereo camera ZED mini with a maximum depth
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distance of 15 meters. In this configuration, the camera will

move with the robot end-effector when scanning the scene.

Fig.1 conceptually depicts the architecture of our semi-

autonomous teleoperation system. Firstly, a stereo camera,

fixed on the robot end-effector, scans the robot work cell

over a full 360-degree range. The point cloud captured by

the 3D sensor will be fed into the environment reconstruc-

tion system. After accumulating point cloud registration, a

complete model of robot workspace can be created. The user

interface simultaneously displays the robot’s surrounding

environment model. Those objects that were detected be-

fore can be recognized automatically. Regarding items that

appear for the first time in the scene, the operator can se-

lect them through the interface and type the object’s name.

Afterwards, the perception system will find out this object

instance in the scene. Besides, the point cloud of the selected

objects should be stored in the object library automatically.

Finally, the grasp list will display the name of all detected

object instances, and operators can choose the object that

needs to be picked up. The robot will execute and accom-

plish pick up action MoveIt! [4] when it has finished path

planning.

4 Model-Based Teleoperation

In this section, a novel pipeline is proposed to implement

the reconstruction and detection of unknown objects, which

are nuclear waste materials in our applications. As outlined,

this method involves three components: (a) scenes recon-

struction, (b) human-supervised object 6D estimation and

(c) a novel user interface.

4.1 Virtual Environment Reconstruction

Industrial objects are generally texture-less, irregular in

shape and even radiant. So it is difficult to obtain 3D models

of these materials using regular CAD modelling methods.

Most of the online reconstruction approaches are either noisy

[6, 21] or completely missed [13] in the fused output. There-

fore, we decided to develop an algorithm for small-scale

industrial scene reconstruction.

4.1.1 Improving point cloud registration. Fig.2 gives

an overview introduction of the 3D scene reconstruction sys-

tem. The core component of this pipeline is a robust point

cloud registration algorithm. Inspired by [21], the colour

information is considered along with the geometry informa-

tion to improve the accuracy of the point cloud alignment.

In [21], the authors pioneered a joint optimization objec-

tive that converts both photometric and geometric terms as

a continuous function.

𝐹 (𝑇 ) = 𝜎𝐹𝐺 (𝑇 ) + (1 − 𝜎)𝐹𝐶 (𝑇 ) (1)

where 𝐹𝐺 and 𝐹𝐶 are the nonlinear least-squares function for

geometric and photometric items, respectively; 𝜎 ∈ [0, 1] is

the weight of those two items.

𝐹𝐺 is actually a point-to-plane ICP algorithm:

𝐹𝐺 (𝑇 ) =
∑

(𝑝,𝑞) ∈𝜅

((𝑝 −𝑇𝑞) · 𝑛𝑝 )
2 (2)

where 𝑛𝑝 is the normal of point 𝑝 and 𝜅 = (𝑝, 𝑞) is the

correspondence set from target point cloud 𝑃 and source

point cloud 𝑄 .

The photometric term 𝐹𝐶 represents a continuous and

differentiable colour function:

𝐹𝐶 (𝑇 ) =
∑

(𝑝,𝑞) ∈𝜅

(𝐶𝑝 (𝑞
′) −𝐶 (𝑞))2 (3)

where 𝐶 (𝑝) is the colour intensity of each point p, 𝐶𝑝 ()

represents a continuous colour defined on the tangent plane

of point 𝑝 function and 𝑞′ is the projection of point 𝑞 onto

the tangent plane of 𝑝 .

Despite achieving a good registration result, this algorithm

still has many drawbacks affecting the quality of the align-

ment. Therefore, we attempt the following improvements

for this algorithm to improve the accuracy and robustness

of the registration.

Firstly, we use gray scale representing the intensity value

of each point to calculate the colour gradient.

𝐶 (𝑝) = 0.299 ∗ 𝑅(𝑝) + 0.587 ∗𝐺 (𝑝) + 0.114 ∗ 𝐵(𝑝) (4)

where𝑅(),𝐺 (), 𝐵() are point intensity for red, green and blue

respectively. Compared with the original method utilizing

average intensity value, gray scale can avoid many ambi-

guities. For example, the average intensity of red (255,0,0)

and green (0,255,0) are the same, whereas gray scale can

distinguish them easily.

What’s more, for objective optimization, we propose a

Levenberg-Marquardt Iterative Closest Point (LM-ICP) ap-

proach. Specifically, LM-ICP begins with an initial trans-

formation 𝑇0 and executes an optimization iteratively. In

each iteration, we calculate the residual 𝑟 and Jacobian 𝐽𝑟 at

the 𝑇𝑘−1 that was estimated in the last iteration, and solve

the LevenbergśMarquardt function (5) to obtain increment

𝜉 = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧, 𝛼, 𝛽,𝛾). In the next iteration, we recompute 𝑇𝑘
around 𝑇𝑘−1 and repeat until convergence.

(𝐽𝑇𝑟 𝐽𝑟 + 𝜇𝐼 )𝜉 = −𝐽𝑇𝑟 𝑟 (5)

where damping parameter 𝜇 is adjusted at each iteration,

which influences both the magnitude and direction of the

step. For the choice of the 𝜇, we refer to [18]. 𝐼 is a 6 × 6

identity matrix.

4.1.2 Coarse-to-fine pipeline. To achieve a more precise

fusion result, we design the coarse-to-fine pipeline, shown

in Fig 2. The original raw point cloud data from 3D sensors

are noisy and cluttered owing to the camera’s field of view,

measurement errors and light reflections; this complicates

the point cloud processing. Consequently, before the feature

extraction, we need to remove the redundant and outlier

points.



ICARTI2021, December 09ś10, 2021, Bagatelle, Mauritius Jin, et al.

Figure 2. Block diagram of our point cloud fusion system

First, the raw point cloud is filtered by a pass-through filter

that can delete the points outside the workspace. Secondly,

the filtered points will pass to a radius outlier removal filter

that can clear outlier points according to the number of

neighbours. The point will be seen as an outlier if the number

of neighbours within a given radius is less than the threshold.

In the first place, the denoised point cloud will be down-

sampled by an approximate voxel filter, which can speed up

the alignment process while retaining features detail. Next,

we will perform a RANSAC registration [6] to obtain a rough

translation between source and target point cloud. Then, we

use our improvement point cloud registration algorithm to

refine the alignment further.

After alignment, the new point cloud has many overlaps

with the target point cloud, and direct merging may cause

feature occlusion and increase the computational burden.

Consequently, for each point of the source point cloud, we

exploit kd-tree data structures to the retrieve neighbours’

distance for finding and removing duplicate points. Finally,

the new fused point cloud will be defined as the target point

cloud for the next iteration until the reconstruction ends.

Fig.3 illustrates the reconstruction results of the robot’s work-

ing environment. To facilitate the operator to perceive the

spatial relationship between the robot and the target objects,

we render the reconstruction scene and known robot model

together in the Rviz Moveit! environment.

4.2 Robot Perception System

The robot can’t perceive the surroundings and make deci-

sions autonomously. Thus, we propose a human-supervised

robotic perception system that can achieve accurate 3D ob-

ject detection with the help of humans’ intelligence. We

obtained a high-quality 3D environment model for unknown

scenes through the reconstruction system. Based on it, the

Figure 3. Visualization of the environment modeling

operator can provide the complete object geometric model

as the template for detection by our interface.

The complete object detection is outlined in the flowchart

presented in Fig.4. This algorithm is a point cloud-based

method, which presents high accuracy for texture-less ob-

jects since a 3D point cloud can provide better geometry in-

formation than 2D images. For feature extraction, traditional

approaches in the image domain (SIFT [16] and SURF [2])

used at Bundle-Fusion [8] perform poorly in homogeneous

surfaces, such asmetal, which can be observed from TABLE 1.

Point cloud-based methods have greatly improved the extrac-

tion of key points. A tested SIFT-3D approach encountered

a serious issue regarding the scene keypoints detection due

to relying on pixel intensity change. As a result, most of the

keypoints detected by SIFT-3D [9] are concentrated in the

background environment with large colour variations. By

contrast, ISSKeyPoint-3D [31] can extract sufficient feature

points for both model and scene, but this can slow down

detection speed. Taking the above considerations together,

we decide to adopt a Harris-3D [25] keypoints detection

method that searches points with large intensity changes in

the surface normals’ direction to extract interest points. This

method can extract enough key points, as well as doesn’t

influence the subsequent matching process.

Table 1. The number of keypoints detected using five differ-

ent methods for target model and work scene

SIFT SURF SIFT3D ISSKeyPoint Harris3D

Model 16 8 356 845 756

Scene 3648 8790 5387 23594 14986
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Figure 4. Block diagram of our template-based 3D object detection system

After obtaining sufficient feature points, we use a feature

descriptor to describe geometrical patterns based on the

information around those points. In the proposed system, a

method based on a Signature of Histogram of Orientation

(SHOT1344) [27] was considered to describe geometrical

features. Then, the correspondence of the extracted features

descriptor from model and scene is established if the squared

descriptor distance is less than the threshold value (0.45 in

our system).

Due to the presence of noise, cluttered background, par-

tial occlusions, and similar features, these correspondence

results typically contain several wrong correspondences.

Therefore, we add a 3D Hough voting verification to weed

out lousy match points by accumulating evidence of the

existence of the objects in a 3D Hough space. To be more

specific, if there are enough features voting for the existence

of the object in the given 3D environment; thus the object is

recognized, and its pose is calculated through the computed

correspondences.

Accuracy in the object detection process is crucial for

high-level manipulation tasks. The position of the object can

be detected after the previous procedure, but there is some

slight deviation from the orientation of the object. So, we

use a, LM-ICP process introduced in the previous section as

the post-process to refine the pose detection results. Note

that this refining process does not compute for whole scene

points instead of the scene points within the 3D minimum

bounding rectangle of the instance. Eventually, the operator

can view the visualization result of 3D detection through the

user interface shown in Fig. 5 (b) and send instructions to

the robot by clicking the name of the target illustrated by

Fig. 5 (c).

4.3 User Interface

As mentioned before, the GUI is used to interact with the

environment. Therefore, we integrate each function as a

button, and the detailed functions are as follows:

Scan: The robot will start to move according to the default

scan path.

Initialization: The system will load the object model stored

in the database and instantiate object templates into a scene.

Reconstruction: We adapt the Screened Surface Poisson

Reconstruction [11] to convert the point cloud model to

triangular mesh, which can make the environmental model

more realistic.

(a) Main window of our user interface

(b) Visulization of detection result (c) The pick up list of detected object

instances

Figure 5. Our user interface with various components.

Select: For a new object, the user can select the target from

the left visualization window to provide a model template

for the object recognized system.

Pick Up:After selecting the object which it needs to pick up,

the systemwill generate a grasp pose for the object according

to the object detected pose. Then, the robot can plan and

execute grasping actions.

Place: The user can decide where to place the object by

clicking the mouse.

This interface has two visualization windows, the left

one is used to interact with the operator, and another is to

visualize detection outcomes. The left window displays a

reconstruction model, and the operator can select the object

model from the reconstruction environment and type the ob-

ject’s property (e.g., name, material and colour). The selected

objects information will be stored in the object database

simultaneously, and thus this object can be recognized au-

tomatically if a new scene contains it. Besides, the user also
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designates the place position through this window. The right

window reflects the environment perceived by the robot.

Moreover, our interface is designed based on the ROS

framework; this can expedite data sharing and communica-

tion with MoveIt!, which combines several advanced robotic

functions such as motion planning, manipulation, etc.

5 Experimental Evaluation

In this section, we present the experimental results obtained

for both 3D visualisation system and vision-based semi-

autonomous tasks along with a detailed analysis investi-

gating the task performance.

5.1 Evaluation for Point Cloud Fusion Task

We compare against three widely used registration methods

for which the function is available in Open3D library [32].

The evaluation is performed on two scenes from the RGB-D

Scenes dataset [26].

From Fig 6 (a), we notice that the environment model

reconstructed by [21] suffers from misalignment and drift-

ing. In contrast, our method not only accurately aligns the

small-scale texture-less model but also keeps geometric in-

formation as much as possible. Such high-quality results are

beneficial for remote teleportation, point cloud-based deep

learning, etc.

(a) The reconstruction result from

colored-ICP[21]

(b) The reconstruction result using

our method

Figure 6. Comparison of our approach with colored-ICP

[21] in RGB-D Scenes dataset [26]. Red boxes indicate the

misaligned part and green boxes show the correctly aligned

part.

What’s more, we conduct the quantitative evaluation of

different registration algorithms using root mean square

error (RMSE) and standard deviation (STD) values of relative

pose error (RPE) metrics [26]. From TABLE 2 we can notice

that our method outperforms all the considered competitors

in both translation and rotation terms. Besides, we report the

running time of one registration for the different methods

in TABLE 2. The running time is measured on a PC with

an Inter Core i5-7300HQ CPU and Geforce GTX 1050 GPU.

Our method is much faster than point-to-point and point-to-

plane ICP, and is comparable to colored-ICP with improved

accuracy.

5.2 Evaluation for Robot Perception System

Figure 7. Simulated nuclear waste handling scenario

We applied the proposed system to a simulated nuclear

waste handling scenario (shown in Fig 7) to verify the ef-

fectiveness of the system. In the experiments we have con-

ducted, our perception system can precisely distinguish those

test objects which have similar size and colour. The aver-

age handling time for a single object has remained below

30 sec while using a joy controller consumed an average

of 65 sec, as demonstrated in the video in https://youtu.

be/GQ4yyA6Ooa8. Distinctive from the other complex con-

troller, our mouse-and-keyboard robot manipulation inter-

face is convenient to most of the population. More impor-

tantly, the automatic grasping process can free the operator’s

hands compared with uninterrupted manual teleoperation.

6 Conclusion and Future Work

This paper has presented a novel framework for the imple-

mentation of a 3D reconstruction and perception system for

remote teleoperation to aid human operators. The experi-

mental results show that the 3D point cloud fusion system

performed fairly well when compared against three widely

used methods.

Evaluation of the psychological aspects of the 3D models

was out of the scope of this paper. We have focused on im-

proved speed and quality of 3D modelling. The visualization

system provides a sufficiently precise virtual environment

for operators, in contrast to other research in the literature,

which still relies on a 2D image or point clouds.
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Table 2. The evaluation of point cloud registration on the RGB-D Scenes dataset

Translation RMSE(m) Translation STD(m) Rotation RMSE(degree) Rotation STD(degree) Average running time(s)

Point-to-point ICP 0.004027 0.002015 1.2408 0.6172 17.8213

Point-to-plane ICP 0.004373 0.002113 1.7964 0.7925 16.3853

Colored ICP 0.004204 0.002242 1.3262 0.5587 1.2316

Our 0.003367 0.001971 1.0325 0.5145 1.4679

The proposed visualization system displays the objects

perceived by the robot in a virtual scene. An analysis of the

modelling experiments revealed that the virtual environment

is sufficiently accurate. Thus, this 3D virtual environment

can potentially provide intuitive space perception for opera-

tors, which can assist operators in reducing work stress and

boosting work efficiency.

Moreover, we implement a human-surpervised semi-autonomic

system, which is integrated with our concise mouse-and-

keyboard user interfaces. This interface allows the operators

to select an object quickly and precisely for automated han-

dling. In the second verification experiment, we completed a

simulated nuclear waste handling experiment successfully.
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