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 CURRENT

OPINION Therapeutic strategies for C9orf72 amyotrophic
lateral sclerosis and frontotemporal dementia

Guillaume M. Hautberguea,b,c,�, John D. Clearyd,e,f,�, Shu Guod,e,f, and Laura
P.W. Ranumd,e,f,g,h

Purpose of review

An intronic G4C2 expansion mutation in C9orf72 is the most common genetic cause of amyotrophic lateral
sclerosis and frontotemporal dementia (C9-ALS/FTD). Although there are currently no treatments for this
insidious, fatal disease, intense research has led to promising therapeutic strategies, which will be
discussed here.

Recent findings

Therapeutic strategies for C9-ALS/FTD have primarily focused on reducing the toxic effects of mutant
expansion RNAs or the dipeptide repeat proteins (DPRs). The pathogenic effects of G4C2 expansion
transcripts have been targeted using approaches aimed at promoting their degradation, inhibiting nuclear
export or silencing transcription. Other promising strategies include immunotherapy to reduce the DPRs
themselves, reducing RAN translation, removing the repeats using DNA or RNA editing and manipulation
of downstream disease-altered stress granule pathways. Finally, understanding the molecular triggers that
lead to pheno-conversion may lead to opportunities that can delay symptomatic disease onset.

Summary

A large body of evidence implicates RAN-translated DPRs as a main driver of C9-ALS/FTD. Promising
therapeutic strategies for these devastating diseases are being rapidly developed with several approaches
already in or approaching clinical trials.
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INTRODUCTION

AGGGGCC hexanucleotide repeat expansion in the
first intron of C9ORF72 causes the most common
forms of familial amyotrophic lateral sclerosis (ALS)
and frontotemporal dementia (FTD) [1,2], geneti-
cally linking these two clinically distinct adult-onset
neurodegenerative disorders. C9ORF72 ALS, FTD or
both ALS and FTD can occur in individual patients
and within families [3]. C9-ALS/FTD patients typi-
cally have hundreds to thousands of G4C2�G2C4

repeats, while shorter tracts of 2–24 repeats are
present in unaffected people [1,2]. ALS is character-
ized by motor neuron loss, muscle atrophy, progres-
sive paralysis and usually death within 2–5 years of
onset [4]. In FTD, degeneration of neurons in the
frontal and anterior temporal lobes can result in
personality changes such as apathy, loss of empathy,
disinhibition and executive function deficits [4].
Therapeutic options are limited and there are no
current treatment options that substantially change
the course of C9ORF72 ALS or FTD. The standard of

care includes the antiglutamatergic drug riluzole for
ALS [5] and the antidepressant fluoxetine or a
related compound for FTD [6]. In 2017, the free-
radical scavenger drug edaravone was approved for
use in ALS patients [7]. Unfortunately, none of these
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treatments improve motor or cognitive deficits;
however, riluzole and edaravone have been shown
to modestly slow disease progression in some
ALS patients.

Similar to other microsatellite expansion disor-
ders [8,9], the C9ORF72 G4C2�G2C4 mutation is bi-
directionally transcribed and sense G4C2 and anti-
sense G2C4 expansion transcripts form RNA foci and
produce repeat associated non-AUG (RAN) proteins
[10–15]. Proposed disease mechanisms include
toxic effects of the expansion RNAs [1,16]; toxic
effects of sense (poly-GA, GR, GP) and antisense
(poly-PR, PA, GP) dipeptide RAN proteins [10,12–
14] and haploinsufficiency of the C9ORF72 protein
[17,18]. Overall, RAN proteins, particularly GA, GR
and PR, have been shown to be toxic in a number of
cell culture and animal models (for reviews [19,20]).

The discovery of the C9ORF72 expansion as the
most commongenetic cause of ALS and FTD [1,2] has
fuelled an interdisciplinaryworldwide research effort
to understand the mechanisms and develop thera-
pies for this disorder. C9ORF72 expansions cause
nearly 40% of familial and 6–8% of sporadic ALS
cases and nearly 18% of familial and 6% of sporadic
FTD cases [21,22

&

] in European populations but are
relatively rare in Asia [23]. The relatively large num-
bers of C9-ALS/FTD patients worldwide, combined
with multiple emerging therapeutic strategies have
positioned C9-ALS/FTD well for breakthrough ther-
apy development. Emerging therapeutic strategies
include targeting and removing the expanded
repeats; degrading, or preventing expression of
expansion transcripts; reducing toxic RAN proteins;
and modulating downstream affected pathways

including nucleocytoplasmic transport and stress
granules (Fig. 1). These strategies and additional
efforts to understand key molecular and physiologi-
cal changes that trigger disease may provide insights
that will lead to better diseasemanagement and help
stratify the inclusionof themost informativepatients
for clinical trials.

TARGETING EXPANSION TRANSCRIPTS

FOR DEGRADATION

Sense C9ORF72-repeat transcripts

Almost immediately following the discovery of the
C9ORF72 expansion mutation, efforts to develop
antisense oligonucleotide (ASO) drugs to knock-
down the repeat expansion RNAs began. These
nucleic acid based drugs are chemically modified,
and in some applications take advantage of the
nuclear RNase H1 pathway to degrade double-
stranded sequences that form when ASOs bind to
targeted gene transcripts [24

&&

]. For C9ORF72, spe-
cific ASOs were shown to selectively reduce sense
G4C2 RNA foci in patient cells without reducing the
levels of C9ORF72 mRNA [11,16]. BAC transgenic
mice treated with single-dose ASOs that selectively
target sense expansion RNAs but not mRNAs encod-
ing C9ORF72 protein, decreased sense RNA foci and
sense DPRs and improved behavioural abnormali-
ties [25]. Together, these results paved the way for a
phase I clinical trial to test the safety, tolerability
and pharmacokinetics of the Ionis/Biogen BIIB078
ASO in adults with C9ORF72 ALS (NCT03626012).

More recently, stereopure ASOs were shown to
increase RNAse H activity in vitro and in vivo com-
pared with stereorandom ASOs [26]. A lead candi-
date stereopure ASO showed selective degradation
of sense G4C2 expansion containing transcripts
without reducing the variant 2 isoform which lacks
the repeat. Treatment of BAC transgenic mice with
these ASOs reduced RNA foci and RAN GP proteins
but not C9ORF72 protein levels. In addition, these
oligonucleotides selectively protected iPSC-derived
motor neurons harbouring C9ORF72-expansion
mutations from glutamate-induced toxicity [27

&&

].
In an alternative approach, miRNAs targeting sense
C9ORF72-repeat transcripts using adeno-associated
virus serotype 5 (AAV5) delivery, reduced levels of
sense expansion transcripts and RNA foci in FTD
iPSC-derived frontal brain-like neurons and BAC
transgenic mice [28

&&

]. Interestingly, AAV-mediated
miRNA-depletion of SOD1 was recently reported in
two patients with SOD1-ALS [29

&&

], providing proof-
of-concept data that intrathecally delivered micro-
RNAs can be used as a potential treatment strategy
for ALS.

KEY POINTS

� Hexanucleotide repeat expansions in the C9ORF72

gene are the most common known genetic cause of
ALS and FTD, a spectrum of debilitating and incurable
neurodegenerative diseases.

� Repeat associated non-AUG (RAN) translation, which
leads to the production of dipeptide repeat proteins, is
a major driver of neuronal injury and disease.

� A number of therapeutic strategies aimed at reducing
the impact of expansion transcripts, RAN proteins,
nuclear transport deficits or stress granule biology have
shown efficacy in preclinical models of disease.

� Approaches aimed at modifying environmental factors
and lifestyle are promising complementary avenues for
improving the primary care of patients.

� Intense research efforts have resulted in several clinical
trials and others are expected to start soon.

Motor neuron disease
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Inhibiting transcription of C9-expansion
transcripts
Several different strategies are being actively pur-
sued to decrease the transcription of C9-repeat
expansion transcripts. For example, SUPT4H,
SUPT5H and RNA polymerase II associated factor
1 complex (PAF1C) are transcription factors that
play important roles in the elongation of RNAs
containing expanded repeats [30,31]. Decreased
expression of SPT4 encoded by SUPT4H was shown
to decrease the levels of sense and antisense
C9ORF72 expansion transcripts and GP-RAN pro-
teins in Caenorhabditis elegans, Drosophila and
iPSC-derived models of C9ORF72-ALS/FTD and to
ameliorate neurodegenerative phenotypes in Dro-
sophila [32]. Similarly, depletion of PAF1C reduced
expression of G4C2 expansion RNAs and poly (GR)
in aDrosophilamodel [31]. Although interesting, the

therapeutic potential of these strategies may be
limited by off-target effects [33

&

].
In other approaches, CRISPR-Cas9 deletion of

the promoter region driving expression of the
C9ORF72 repeat-containing transcript isoforms 1
and 3 led to the efficient reduction in expression
levels of all three sense DPRs in C9-ALS patient-
derived motor neurons [34

&

]. Pinto et al. [35]
showed targeting C9ORF72 expansions at the
DNA level using deactivated Cas9 (dCas9) effi-
ciently inhibits transcription and reduced the levels
of GP RAN protein in reporter cells. Similarly, use of
RNA-targeting deactivated-Cas9 (RCas9) allows
degradation of C9ORF72 expansion transcripts in
cell models [36], although it is possible that this
strategy also blocks transcription by binding of the
dCas9-PIN-gRNA to the DNA repeats as in dCas9
strategy.

FIGURE 1. Cellular consequences and therapeutic approaches for C9ORF72-ALS/FTD. C9-ALS/FTD affects a wide variety of
downstream cellular pathways with different therapeutic approaches (green boxes) targeting pathogenic C9 RNAs and RAN
DPRs as well as downstream pathways. External factors (bottom red bar) can also influence cellular events and combined with
lifestyle changes (bottom green bar) may affect disease onset and progression. Some content modified from Servier Medical
Art (smart.servier.com) under creative commons license.
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Although there is great hope that decreasing the
levels of G4C2 expansion transcripts will be suffi-
cient to improve disease, several studies suggest that
it will be important to increase efforts to also target
antisense transcripts. For example, antisense RNA
foci preferentially accumulate in regions of disease
in a C9ORF72 BAC transgenic mouse model suggest-
ing antisense expansion RNAs or RAN proteins may
be more toxic than their corresponding sense prod-
ucts [37]. Additionally, ASOs that target sense
C9ORF72 expansion transcripts did not correct
widespread transcriptomic defects found in
patient-derived cells [11], suggesting strategies tar-
geting both transcripts may offer the best outcomes.

IMMUNOTHERAPY STRATEGIES

TARGETING RAN PROTEINS

There is strong evidence that RANDPRs, particularly
GA, GR and PR, are one of themain drivers of disease
(for reviews [19,20]) and hence decreasing their
levels is an attractive therapeutic approach. Several
immunotherapy approaches have focused on the
GA RAN proteins. In patient fibroblasts and primary
neurons, a-GA antibodies reduced GA aggregate
formation and blocked aggregate seeding activity
of cerebellar extracts from C9ORF72 autopsy tissue
[38]. Vaccination of GA-overexpression mice with
ovalbumin-(GA)10 peptides elicited the production
of a-GA antibodies, lowered GA protein levels and
prevented microglial activation and motor deficits
[39

&&

]. Using BAC transgenic mice that express sense
and antisense transcripts and multiple types of RAN
proteins, Nguyen et al. [40

&&

] showed passive immu-
notherapy with a-GA antibodies improved behav-
ioural deficits, increased survival and decreased
neuroinflammation and motor neuron loss. These
peripherally injected antibodies crossed the blood
brain barrier and co-localizedwithGAprotein aggre-
gates. Glycosylation of the Fc antibody region was
important for cell entry and GA proteins were
reduced in a TRIM-21-, proteosome-, and autoph-
agy-dependent manner [40

&&

]. In addition to reduc-
ing GA, the a-GA1 treatment surprisingly also
reduced GP and GR proteins, likely through
increased proteosome function. No changes in sense
or antisense RNA levels or foci were observed in a-
GA1 treated mice providing strong support that
RAN proteins and not RNA gain of function effects
drive C9-ALS/FTD [40

&&

].

DECREASING RAN PROTEIN LEVELS

Several groups have shown that activation of the
integrated stress response (ISR) and increased p-
eIF2a levels increase RAN translation [41–44,45

&&

].

Zu et al. [45
&&

] showed G4C2 and other repeat expan-
sion RNAs activate ISR protein kinase R (PKR) and
that PKR inhibition dramatically reduces RAN pro-
tein levels. Zu et al. [45

&&

] went on to show inhibition
of PKR using AAV-delivered dominant negative PKR-
K296R or the FDA-approved drug metformin,
decreased p-PKR and RAN protein levels and
improved behaviour and neuropathology in C9
BAC transgenic mice without changing sense or
antisense transcript levels. There is an active clinical
trial to test the safety of metformin in C9ORF72 ALS
patients and its effects on RAN protein levels
(NCT04220021). Inhibition of the SRSF1-dependent
nuclear export of both sense and antisense
C9ORF72-repeat transcripts and subsequent RAN
translation was also reported as a promising gene
therapy approach in preclinical models including
patient-derived motor neurons andDrosophilamod-
els of disease [46].

Other strategies to reduce RAN protein levels
include stimulating their clearance. For example,
heat shock protein family B member 8 (HSPB8)
has been shown to promote autophagy-mediated
removal of several misfolded C9 RAN proteins from
motor neurons [47]. Although the therapeutic
potential of this approach is uncertain, clearance
of protein aggregates could have applications for a
wide variety of neurodegenerative diseases. Taken
together, these data support the therapeutic poten-
tial of targeting RAN translation and RAN proteins
for C9-ALS/FTD as well as other RAN protein
associated disorders.

TARGETING THE GENOMIC C9ORF72

HEXANUCLEOTIDE-REPEATS

Correcting the GGGGCC�GGCCCC repeat expan-
sion mutation should theoretically address all dele-
terious mutation effects, including effects from
sense and antisense RNAs and DPRs. Current gene
editing techniques have focused primarily on clus-
tered regular interspaced short palindromic repeats
(CRISPR)-associated (Cas) systems, although appli-
cation to C9-ALS/FTD has so far been limited
[48,49

&

]. In iPSC-cells, CRISPR/Cas9 editing and
homology-directed repair (HDR) replacement of
the expansion with a wildtype repeat resulted in
restoration of C9ORF72 gene expression and meth-
ylation and reduced intron retention and down-
stream pathogenic phenotypes [49

&

]. In iPSC-
derived motor neurons, CRISPR/Cas9 correction
abolished GluA1 AMPA receptor (AMPAR) mediated
excitotoxicity [48]. Targeting regions outside the
repeat or the entire C9ORF72 gene have also been
tested with varying degrees of success. For example,
deletion of a portion of the upstream C9ORF72

Motor neuron disease
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promoter prevents the production of exon 1a expan-
sion containing transcripts and the activation of
neurodegenerative pathways [34

&

]. Unfortunately,
this approach does not prevent expression of anti-
sense RNA and associated antisense DPRs, which
likely contribute to disease. Although correcting
the expansion mutation seems to be a straight-for-
ward idea, adequate delivery to affected tissues/cell
types and the accuracy of emerging CRISPR based
approaches will be critical for effective therapy
development.

STRESS GRANULES AND

NUCLEOCYTOPLASMIC TRANSPORT

TDP43 plays important roles in transcriptional reg-
ulation, alternative splicing of pre-mRNAs, axonal
transport of mRNAs, translational regulation and
miRNA processing. TDP-43 also associates with
stress granules [50], which constitute dynamic
membrane-less organelles that promote cell survival
by halting translation of nonessential mRNAs in
response to cellular stress [51]. Stress granules are
composed of RNA and RNA-binding proteins with
low complexity domains (LCDs) that mediate liq-
uid-liquid phase separation (LLPS). Mutations in the
LCDs domains of TDP43, ataxin-2 and other RNA-
binding proteins involved in ALS/FTD stimulate
their self-assemblies leading to the formation of
persistent cytoplasmic stress granules that leave
aggregated proteins that may contribute to disease
[52]. Interestingly, arginine-rich C9ORF72 DPRs
impair stress granule assembly dynamics by under-
going LLPS, further inducing the phase separation of
stress granule proteins [53]. Overexpression of GFP-
polyGR proteins impairs stress granules and protein
translation in mice deficits [54]. TDP-43 proteinop-
athy, aggregation of stress granule proteins (G3BP1,
ataxin-2), nucleocytoplasmic defects, neuronal loss
and motor/cognitive deficits were observed in an
AAV-driven overexpression mouse model of
expanded G4C2 repeats [55]. DPRs also promote
nucleocytoplasmic transport disruption by stimu-
lating the recruitment of nucleocytoplasmic trans-
port proteins to stress granules [56]. In fact, many
nucleocytoplasmic transport factors are localized to
stress granules when exposed to stressors or mutant
proteins implicated in ALS pathogenesis, leading to
impaired nucleocytoplasmic transport [56].

TARGETING NUCLEOCYTOPLASMIC

TRANSPORT DEFICITS

In 2015, Zhang et al. [57] demonstrated increased
nuclear export inC9ORF72ALS iPSNmodels showed
abnormal cytoplasmic RanGTPase accumulation.

RanGTPase is important in nucleocytoplasmic pro-
tein transport (reviewed in [58]). Abnormal expres-
sion and localization of nuclear pore proteins are
found in C9ORF72 autopsy tissue and patient-
derived iPSNs [57,59]. Modulating the expression
of nuclear pore proteins or transport-associated pro-
teins affects G4C2 expansion transcripts and argi-
nine containing RAN protein toxicity [57,60,61].
Overexpression of importin or inhibition of nuclear
export with RNA inhibition of (Exportin 1) XPO1 or
pharmacologically ablating XPO1 function using
KPT-276 rescued C9ORF72 toxicity in the
C9ORF72 fly model [57]. Another XPO1 inhibitor,
KPT-350, designed by KaryopharmTherapeutics and
acquired by Biogen (BIIB100), has been used in
preclinical studies of many neurological diseases
and demonstrated neuroprotective and anti-inflam-
matory roles [62,63,64

&

,65].

TROPHIC SUPPORT SUPPLEMENTATION

Neurotrophic factors (NTFs), a family of biomole-
cules that support neuronal growth, survival and
differentiation, have been explored for decades as
therapeutic strategies for neurodegenerative dis-
eases [66

&

], including ALS. Various NTFs have been
tested in preclinical rodent models of SOD1-ALS,
including brain-derived neurotrophic factor
(BDNF), insulin-like growth factor 1 (IGF-1) and
vascular endothelial growth factor (VEGF). Small
molecule agonist of the BDNF receptor [67], VEGF
injections [68,69], lentiviral and AAV-mediated
delivery of NTFs [70–73] and stem cell therapy of
NTF secreting cells [74–82] have shown promise in
SOD ALS models. Despite these promising results,
including several ongoing clinical trials [66

&

], there
have been no direct studies looking at NTF thera-
peutics in C9-ALS/FTD. Although some NTF clinical
trials in ALS likely include C9-ALS/FTD participants,
it will be important, given the unique disease mech-
anisms of C9-ALS/FTD, to directly examine NTF
specifically in the C9 context.

PREVENTION AND FUNCTIONAL

MANAGEMENT

For C9-ALS/FTD, there is a relatively long period of
apparent good health prior to disease onset, which
most often occur in the fourth or fifth decade of life,
and extending this period of good health has been
gaining considerable attention. Both preclinical ani-
mal studies and human studies demonstrate that
moderate exercise regimens improve functionality
and ameliorate disease symptoms for ALS in general
(reviewed in [83]). However, the role of exercise is
complex. In a retrospective study, patient-reported

Therapeutic strategies for C9ORF72-ALS/FTD Hautbergue et al.
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exercise history was inversely correlated with age-of-
onset in C9ORF72 but not other forms of ALS [84],
although additional studies that examine the
impact of specific types of exercise will be impor-
tant. Targeted trainingmay be key. In a randomized,
sham-controlled clinical trial, Plowman et al.
[85,86

&&

] showed that expiratory muscle-strength
training is well tolerated in ALS patients and
improved bulbar function in a longitudinal
C9ORF72 case-study and also in larger cohorts of
genetically undefined ALS patients. Longitudinal
studies suggest that lifestyle modifications (e.g.
smoking cessation, maintaining a healthy BMI) at
a younger age may lower the risk of developing ALS
[87

&&

]. Recent studies have identified C9ORF72
expansions in 1.6% (n¼8/487) of cases with possi-
ble idiopathic normal pressure hydrocephalus
(iNPH) but not in control cases (n¼0/432) aged
more than 65years. Clinically significant shunt
response was detected in six out of seven shunted
C9ORF72 expansion carriers. Additional studies are
needed to understand the frequency of NPH in
C9ORF72 expansion carriers and the potential util-
ity of shunts to drain excess cerebrospinal fluid in
these patients. Patient lifestyle, co-morbid diseases
and environmental factors (Fig. 1) can influence
cellular events, making it important to study and
understand external factors that may influence dis-
ease. Dietary studies specific to C9-ALS/FTD are rare,
although a larger study focused on ALS in general
has demonstrated that increasing fruit and vegeta-
ble associated fibre, antioxidants and carotenes was
associated with improved function [88]. The results
of many of these broader ALS studies are compli-
cated by the complex genetics and phenotypic pre-
sentation of ALS, increasing the call for preventive
and lifestyle studies that focus on C9ORF72 or other
single ALS mutations.

STRATIFICATION AND EFFICIENCY IN

CLINICAL TRIALS

Although there are multiple therapeutic approaches
for C9-ALS/FTD in the preclinical pipeline, there are
only two C9-ALS/FTD specific clinical trials regis-
tered in ClinicalTrials.gov: an ASO-based clinical
trial of BIIB078 (Biogen), which targets C9ORF72
expansion containing transcripts for ASO-induced
RNase H-mediated degradation (NCT03626012);
and a clinical trial (NCT04220021), to test the safety
and tolerability of metformin in C9ORF72 ALS
patients and the drug’s ability to decrease RAN
protein levels. Several additional trials are open to
but not specific to C9-ALS/FTD patients. These
include a phase 1 clinical trial of BIIB100 to reduce
excessive nuclear export (NCT03945279) in C9 and

other ALS patients, will examine the safety, tolera-
bility, pharmacokinetics (PK) and pharmacodynam-
ics (PD) of the drug. A phase 2 clinical trial
examining the safety, tolerability, PK and PD of
AL001, a recombinant human antihuman sortilin
(SORT1) monoclonal IgG1 antibody in FTD patients
with either granulin or C9ORF72 mutations
(NCT03987295). Sortilin is a type I membrane gly-
coprotein involved in proganulin trafficking that is
expressed in the central nervous system [89]. Fron-
totemporal degeneration can be caused bymutation
in the progranulin (GRN) gene or the C9ORF72
hexanucleotide expansion repeat and there are rare
patients withmutations in both [90]. More recently,
Wave Life Sciences has been reported to seek regu-
latory approval for WVE-004, an investigational
stereopure ASO targeting the expansion transcript
of C9-ALS/FTD [27

&&

]. It is interesting to note the
current batch of clinical trials, which focus on dif-
ferent pathogenic pathways, could potentially be
used together.

CONCLUSION

Despite the mechanistic and clinical complexity of
C9ORF72 ALS/FTD, intense research efforts over the
10 years since the expansion mutation was identi-
fied have led to a remarkable number of novel
therapeutic approaches in preclinical and clinical
trial stages. The breadth and diversity of these
approaches provide hope for C9-ALS/FTD patients,
who currently have limited therapeutic options
focused on supportive care. The pace of research
focused on the root causes of this disease has been
remarkable and is likely to accelerate and uncover
additional new therapeutic targets and treatment
strategies that will significantly impact C9-ALS/FTD
and the larger family of repeat expansion disorders.
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17. O’Rourke JG, Bogdanik L, Yáñez A, et al. C9orf72 is required for proper
macrophage andmicroglial function in mice. Science 2016; 351:1324–1329.

18. Burberry A, Suzuki N, Wang JY, et al. Loss-of-function mutations in the
C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci Transl
Med 2016; 8:347ra93.

19. Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways
to disease. Nat Rev Neurol 2018; 14:544–558.

20. Jiang J, Ravits J. Pathogenic mechanisms and therapy development for
C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia. Neurother-
apeutics 2019; 16:1115–1132.

21. Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J
Neurol 2020; 27:1918–1929.

22.

&

Roggenbuck J. C9orf72 and the care of the patient with ALS or FTD: progress
and recommendations after 10 years. Neurol Genet 2021; 7:e542.

An excellent review on C9ORF72-ALS/FTD genetics, clinical challenges and
available care for patients regarding testing and counselling.
23. Ogaki K, Li Y, Atsuta N, et al. Analysis of C9orf72 repeat expansion in 563

Japanese patients with amyotrophic lateral sclerosis. Neurobiol Aging 2012;
33:2527. e11-6.

24.

&&

Roberts TC, Langer R,WoodMJA. Advances in oligonucleotide drug delivery.
Nat Rev Drug Discov 2020; 19:673–694.

A comprehensive review on the use and delivery of advanced oligonucleotide
therapeutics including RNA interference, RNase H-mediated degradation, tran-
scription/splicing modulation and genome editing technologies.
25. Jiang J, Zhu Q, Gendron TF, et al.Gain of toxicity from ALS/FTD-linked repeat

expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting
GGGGCC-containing RNAs. Neuron 2016; 90:535–550.

26. Iwamoto N, Butler DCD, Svrzikapa N, et al. Control of phosphorothioate
stereochemistry substantially increases the efficacy of antisense oligonucleo-
tides. Nat Biotechnol 2017; 35:845–851.

27.

&&

Liu Y, Dodart JC, Tran H, et al. Variant-selective stereopure oligonucleotides
protect against pathologies associated with C9orf72-repeat expansion in
preclinical models. Nat Commun 2021; 12:847.

Latest improved iterations of ASOs targeting all isoforms of pathological sense
C9ORF72-repeat transcripts with increased RNase H-mediated activity. Nonviral
gene therapeutic approach requiring repeated injections over time.
28.

&&

Martier R, Liefhebber JM, Garcia-Osta A, et al. Targeting RNA-mediated
toxicity in C9orf72 ALS and/or FTD by RNAi-based gene therapy. Mol Ther
Nucleic Acids 2019; 16:26–37.

Use of adeno-associated virus serotype 5 (AAV5) expressing a microRNA target-
ing C9ORF72 intron-1 upstream of the repeat expansion in patient-derived
neurons and a C9ORF72-ALS BAC transgenic mouse model. Viral gene ther-
apeutic approach, which requires a single dose injection.
29.

&&

Mueller C, Berry JD, McKenna-Yasek DM, et al. SOD1 suppression with
adeno-associated virus and microRNA in familial ALS. N Engl J Med 2020;
383:151–158.

First in man adminstration of adeno-associated virus rh10 expressing a microRNA
targeting human SOD1 in two SOD1-linked ALS patients.
30. Liu CR, Chang CR, Chern Y, et al.Spt4 is selectively required for transcription

of extended trinucleotide repeats. Cell 2012; 148:690–701.
31. Goodman LD, Prudencio M, Kramer NJ, et al. Toxic expanded GGGGCC

repeat transcription is mediated by the PAF1 complex in C9orf72-associated
FTD. Nat Neurosci 2019; 22:863–874.

32. Kramer NJ, Carlomagno Y, Zhang YJ, et al. Spt4 selectively regulates the
expression of C9orf72 sense and antisense mutant transcripts. Science
2016; 353:708–712.

33.

&

Naguib A, Sandmann T, Yi F, et al. SUPT4H1 depletion leads to a global
reduction in RNA. Cell Rep 2019; 26:45–53. e4.

siRNA-mediated interference of the RNA polymerase II transcriptional elongation
SUPT4H1 subunit highlighted a global genome-wide alteration of RNA expression
levels in several human cell models and a limitation of SUPT4H1 depletion as a
potential therapeutic approach.
34.

&

KrishnanG,ZhangY,GuY,et al.CRISPRdeletionof theC9ORF72promoter in
ALS/FTD patient motor neurons abolishes production of dipeptide repeat
proteinsand rescuesneurodegeneration.ActaNeuropathol2020;140:81–84.

Therapeutic strategy based on the CRISPS-Cas9mediated chromosomal deletion
of the promoter region of pathological sense V1 and V3 isoforms of C9ORF72-
repeat transcripts in patient-derived motor neurons.
35. Pinto BS, Saxena T, Oliveira R, et al. Impeding transcription of expanded

microsatellite repeats by deactivated Cas9. Mol Cell 2017; 68:479–490. e5.
36. Batra R, Nelles DA, Pirie E, et al. Elimination of toxic microsatellite repeat

expansion RNA by RNA-targeting Cas9. Cell 2017; 170:899–912. e10.
37. Liu Y, Pattamatta A, Zu T, et al.C9orf72 BACmouse model with motor deficits

and neurodegenerative features of ALS/FTD. Neuron 2016; 90:521–534.
38. Zhou Q, Lehmer C, Michaelsen M, et al. Antibodies inhibit transmission and

aggregation of C9orf72 poly-GA dipeptide repeat proteins. EMBO Mol Med
2017; 9:687–702.

39.

&&

Zhou Q, Mareljic N, Michaelsen M, et al. Active poly-GA vaccination prevents
microglia activation and motor deficits in a C9orf72 mouse model. EMBOMol
Med 2020; 12:e10919.

Administration of poly-GA in mice to investigate a vaccine approach as a ther-
apeutic strategy for neuroprotection in mice expressing poly-GA.
40.

&&

Nguyen L, Montrasio F, Pattamatta A, et al. Antibody therapy targeting RAN
proteins rescues C9ALS/FTD phenotypes in C9orf72 mouse model. Neuron
2020; 105:645–662. e11.

Development of human anti polyGA antibodies as a novel therapeutic strategy,
which improved behaviour, motor neuron survival and extended lifespan in
C9ORF72-ALS BAC transgenic mice.

Therapeutic strategies for C9ORF72-ALS/FTD Hautbergue et al.

1350-7540 Copyright � 2021 The Author(s). Published by Wolters Kluwer Health, Inc. www.co-neurology.com 7



41. Green KM, Glineburg MR, Kearse MG, et al. RAN translation at C9orf72-
associated repeat expansions is selectively enhanced by the integrated stress
response. Nat Commun 2017; 8:2005.

42. Cheng W, Wang S, Mestre AA, et al. C9ORF72 GGGGCC repeat-asso-
ciated non-AUG translation is upregulated by stress through eIF2alpha
phosphorylation. Nat Commun 2018; 9:51.

43. Westergard T, McAvoy K, Russell K, et al. Repeat-associated non-AUG
translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress.
EMBO Mol Med 2019; 11:e9423.

44. Sonobe Y, GhadgeG, Masaki K, et al. Translation of dipeptide repeat proteins
from the C9ORF72 expanded repeat is associated with cellular stress.
Neurobiol Dis 2018; 116:155–165.

45.

&&

Zu T, Guo S, Bardhi O, et al. Metformin inhibits RAN translation through PKR
pathway and mitigates disease in C9orf72ALS/FTDmice. Proc Natl Acad Sci
U S A 2020; 117:18591–18599.

This study showed that PKR activation is a key pathway for RAN translation and
PKR inhibition with dominant negative AAV PKR-K296R or repurposed FDA-
approved metformin inhibit RAN translation and improve behaviour and neurode-
generation in C9ORF72-ALS BAC mice.
46. Hautbergue GM, Castelli LM, Ferraiuolo L, et al. SRSF1-dependent nuclear

export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration
and associated motor deficits. Nat Commun 2017; 8:16063.

47. Cristofani R, Crippa V, Vezzoli G, et al. The small heat shock protein B8
(HSPB8) efficiently removes aggregating species of dipeptides produced in
C9ORF72-related neurodegenerative diseases. Cell Stress Chaperones
2018; 23:1–12.

48. Selvaraj BT, Livesey MR, Zhao C, et al. C9ORF72 repeat expansion causes
vulnerability of motor neurons to Ca(2þ)-permeable AMPA receptor-
mediated excitotoxicity. Nat Commun 2018; 9:347.

49.

&

Ababneh NA, Scaber J, Flynn R, et al. Correction of amyotrophic lateral
sclerosis related phenotypes in induced pluripotent stem cell-derived motor
neurons carrying a hexanucleotide expansion mutation in C9orf72 by
CRISPR/Cas9 genome editing using homology-directed repair. Hum Mol
Genet 2020; 29:2200–2217.

CRISPR-Cas9-mediated chromosomal deletion of C9ORF72-ALS/FTD repeat
expansion rescues altered genome-wide gene expression and methylation of
the C9ORF72 promoter in patient-derived motor neurons.
50. Khalfallah Y, Kuta R, Grasmuck C, et al. TDP-43 regulation of stress granule

dynamics in neurodegenerative disease-relevant cell types. Sci Rep 2018;
8:7551.

51. Protter DSW, Parker R. Principles and properties of stress granules. Trends
Cell Biol 2016; 26:668–679.

52. Ramaswami M, Taylor JP, Parker R. Altered ribostasis: RNA-protein granules
in degenerative disorders. Cell 2013; 154:727–736.

53. Boeynaems S, Bogaert E, Kovacs D, et al. Phase separation of C9orf72
dipeptide repeats perturbs stress granule dynamics. Mol Cell 2017;
65:1044–1055. e5.

54. ZhangY-J,Gendron TF, EbbertMTW, et al.Poly(GR) impairs protein translation
and stress granule dynamics in C9orf72-associated frontotemporal dementia
and amyotrophic lateral sclerosis. Nat Med 2018; 24:1136–1142.

55. Chew J, Cook C, Gendron TF, et al. Aberrant deposition of stress granule-
resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol
Neurodegener 2019; 14:9–15.

56. Zhang K, Daigle JG, Cunningham KM, et al. Stress granule assembly disrupts
nucleocytoplasmic transport. Cell 2018; 173:958–971. e17.

57. Zhang K, Donnelly CJ, Haeusler AR, et al. The C9orf72 repeat expansion
disrupts nucleocytoplasmic transport. Nature 2015; 525:56–61.

58. Wente SR, Rout MP. The nuclear pore complex and nuclear transport. Cold
Spring Harb Perspect Biol 2010; 2:a000562.

59. Coyne AN, Zaepfel BL, Hayes L, et al.G4C2 repeat RNA initiates a POM121-
mediated reduction in specific nucleoporins in C9orf72ALS/FTD. Neuron
2020; 107:1124–1140. e11.

60. Freibaum BD, Lu Y, Lopez-Gonzalez R, et al. GGGGCC repeat expansion in
C9orf72 compromises nucleocytoplasmic transport. Nature 2015; 525:129–133.

61. Jovicic A, Mertens J, Boeynaems S, et al. Modifiers of C9orf72 dipeptide
repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat
Neurosci 2015; 18:1226–1229.

62. Haines JD, Herbin O, de la Hera B, et al. Nuclear export inhibitors avert
progression in preclinical models of inflammatory demyelination. Nat Neurosci
2015; 18:511–520.

63. Grima JC, Daigle JG, Arbez N, et al. Mutant Huntingtin disrupts the nuclear
pore complex. Neuron 2017; 94:93–107. e6.

64.

&

Hightower RM, Reid AL, Gibbs DE, et al. The SINE compound KPT-350
blocks dystrophic pathologies in DMD zebrafish and mice. Mol Ther 2020;
28:189–201.

KPT-350, an inhibitor of the nuclear export protein XPO1, which is involved in the
nuclear export of proteins and noncoding RNAs including rRNA and U snRNAs,
mitigates Duchenne muscular dystrophy pathologies in zebrafish and mouse
models of disease.
65. Archbold HC, Jackson KL, Arora A, et al. TDP43 nuclear export and neuro-

degeneration in models of amyotrophic lateral sclerosis and frontotemporal
dementia. Sci Rep 2018; 8:4606–4618.

66.

&

Gouel F, Rolland AS, Devedjian JC, et al. Past and future of neurotrophic
growth factors therapies in ALS: from single neurotrophic growth factor to
stem cells and human platelet lysates. Front Neurol 2019; 10:835.

An excellent review on the use of neurotrophic factors and potential regenerative
approaches in neurodegenerative disease.
67. Korkmaz OT, Aytan N, Carreras I, et al. 7,8-Dihydroxyflavone improves motor

performance and enhances lower motor neuronal survival in a mouse model of
amyotrophic lateral sclerosis. Neurosci Lett 2014; 566:286–291.

68. Zheng C, Nennesmo I, Fadeel B, Henter J-I. Vascular endothelial growth factor
prolongs survival in a transgenic mouse model of ALS. Ann Neurol 2004;
56:564–567.

69. Storkebaum E, Lambrechts D, Dewerchin M, et al. Treatment of motoneuron
degeneration by intracerebroventricular delivery of VEGF in a rat model of
ALS. Nat Neurosci 2005; 8:85–92.

70. Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely
transported lentivector prolongs survival in a mouse ALSmodel. Nature 2004;
429:413–417.

71. Dodge JC, Treleaven CM, Fidler JA, et al. AAV4-mediated expression of IGF-1
and VEGF within cellular components of the ventricular system improves
survival outcome in familial ALS mice. Mol Ther 2010; 18:2075–2084.

72. Wang Y, Duan W, Wang W, et al. scAAV9-VEGF prolongs the survival of
transgenic ALS mice by promoting activation of M2 microglia and the PI3K/
Akt pathway. Brain Res 2016; 1648:1–10.
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