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Short-term Lateral Behavior Reasoning for

Target Vehicles Considering Driver

Preview Characteristic
Zhisong Zhou, Yafei Wang, Member, IEEE, Ronghui Liu, Chongfeng Wei,

Haiping Du, Senior Member, IEEE, Chengliang Yin

Abstract—A timely understanding of target vehicles (TVs)
lateral behavior is essential for the decision-making and control
of host vehicle. Existing physical model-based methods such as
motion-based method and multiple centerline-based method are
generally constructed based on TV pose and longitudinal velocity,
and tend to ignore TV preview driving characteristic and other
useful information such as lateral velocity and yaw rate. To
address these issues, a driver preview and multiple centerline
model-based probabilistic behavior recognition architecture is
proposed for timely and accurate TV lateral behavior prediction.
Firstly, a driver preview model is used to describe vehicle preview
driving characteristic, and TV preview lateral offset and preview
lateral velocity are calculated with TV states and road reference
information. Then, the preview lateral offset and preview lateral
velocity are combined with multiple centerline model for TV
lateral behavior reasoning based on the interacting multiple
model-based probabilistic behavior recognition algorithm. With
this method, TV preview driving characteristic and lateral motion
states are combined for precise TV lateral behavior description.
Furthermore, to predict short-term lateral behavior, a preview
lateral velocity-dependent transition probability matrix model
constructed with Gaussian cumulative distribution function is
proposed. Simulation and experimental results show that the
proposed method considering vehicle preview driving character-
istic predicts TV lateral behavior earlier than the conventional
method.

Index Terms—Autonomous vehicles, driver preview model,
behavior reasoning, lateral behavior.

I. INTRODUCTION

W ITH the development of advanced sensing and com-

munication technologies, autonomous vehicles have

received much attention recently for their potential benefits

on road safety and traffic efficiency [1]–[3]. For autonomous

driving, the controlled autonomous vehicle is generally defined
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as the host vehicle (HV), and the vehicles surrounding the HV

that affect the decision and planning of the HV are defined

as the target vehicles (TVs). For a vehicle system including

HV and TVs, the comprehensive understanding of TV lateral

behavior is essential for HV decision and control. For example,

in [4], the cut-in intention of nearby vehicles are predicted

and considered in HV trajectory tracking control. The lateral

motions of surrounding vehicles are predicted and then inte-

grated into threat assessment algorithm of the decision-making

system in [5]. In [6], TV lane change behavior are estimated

and then combined in the car-following control. Methods for

TV lateral behavior recognition can be classified into two

categories, data-driven and physical model-based methods.

For data-driven methods, vehicle driving data is collected

for model training, and then the learned models are able to

recognize vehicle lateral behavior. In [7], the hidden Markov

model is trained with trajectory snippets and used for behavior

recognition. By training the parameters of Bayesian network

with collected driving data, drivers’ intention can also be well

identified in [8]–[10]. In [11], the multi-class support vector

machine is trained for maneuver classification. Recently, with

the rapid development of deep learning methods, they have

also been widely used for TV behavior identification. For

example, in [12], the lane change intention is predicted based

on the convolutional neural network and Long Short-Term

Memory network with visual information. In [13], the vehicle

maneuvers are classified using artificial neural networks. Al-

though the above mentioned data-driven methods have been

widely accepted and can achieve good performance, the phys-

ical meaning of the data-driven models is unclear, and their

performance is highly dependent on the quality and quantity

of training data sets [14]–[16]. In this way, the development of

high-accuracy physical model-based methods is also essential

for TV lateral behavior reasoning. For physical model-based

methods, motion model and multiple centerline model are two

widely adopted models for describing TV lateral behavior.

For motion model-based method, TV lane keeping and lane

changing behaviors are generally modeled base on different

vehicle kinematics models such as constant acceleration model

and constant turn rate and acceleration model, and then these

models are combined based on the interacting multiple model

(IMM) method for behavior probability updating with detected

TV pose. For example, in [17], the constant velocity lane

keeping, constant acceleration lane keeping, constant velocity

lane changing and constant acceleration lane changing models
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are adopted for TV behavior modeling, and the IMM filter is

used for behavior reasoning with the detected vehicle pose in

road curvilinear coordinate system. Considering the limitations

of the number of dynamic models for motion model-based

method, TV lateral behaviors are modeled based on the lateral

offsets of road centerlines in multiple centerline model-based

method, and then the model probabilities are updated with TV

lateral offset and lateral velocity in road curvilinear coordinate

system [18]. However, due to the limitations of the existing

simplified physical models, useful information such as TV

lateral velocity and yaw rate, which contain significantly

different features in lane keeping and lane changing processes,

have not been used for model probability updating in both

of these two methods [13]. Besides, driver preview driving

characteristic which is common in path following control

have not been considered for TV lateral behavior reasoning

[19]. Therefore, to accurately describe TV lateral behavior,

these two aspects mentioned above should be considered in

the design of physical model-based lateral behavior reasoning

architecture.

This study aims to estimate TV short-term lateral behaviors,

including lane change left (LCL), lane keeping (LK) and lane

change right (LCR), which are defined based on a single

lane change process. To provide timely and accurate predic-

tion of these short-term lateral behaviors, a driver preview

and multiple centerline model-based probabilistic behavior

recognition architecture is proposed. At first, a driver preview

model is adopted for the description of vehicle preview driving

characteristic, and the preview lateral offset and preview

lateral velocity in road curvilinear coordinate system are

calculated with TV states and road reference information.

Then, these two measurements combined with TV multiple

certerline model are used for lateral behavior prediction with

the IMM-based probabilistic behavior detection algorithm.

With this driver preview and multiple centerline model-based

probabilistic behavior recognition architecture, TV preview

driving characteristic and lateral motion states including lat-

eral velocity and yaw rate are used for TV lateral behavior

reasoning. Furthermore, for the identification of short-term

lateral behavior, a new dynamic transition probability matrix

(TPM) directly constructed based on the Gaussian cumulative

distribution function (CDF) with the preview lateral velocity

is proposed in this study to speed up the behavior recognition

process. The contributions of this study are two folds.

1) Different from the conventional multiple centerline

model-based method without considering TV preview driving

characteristic, a driver preview and multiple centerline model-

based probabilistic behavior recognition architecture is pro-

posed in this study for TV lateral behavior reasoning. With

this proposed method, TV lateral velocity and yaw rate which

contain significantly different features in lane keeping and

lane changing processes are used for TV lateral behavior

describing, and TV lateral behavior can be predicted earlier

than the conventional method.

2) For the prediction of TV short-term lateral behavior, a

new dynamic TPM model constructed based on the Gaussian

CDF with preview lateral velocity is proposed in this study to

speed up the behavior recognition process.
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Fig. 1. TV multiple centerline model. (a) the solid and dotted lines represent
lane markers, and the dash-dotted lines represent the centerlines that vehicle
tends to follow. (b) the blue, red and green curves represent the probability
distribution of these three centerline models in (a).

The remainder of this article is organized as follows, in

section II, TV multiple centerline model is given and problems

for lateral behavior reasoning are formulated. Driver preview

model and TV lateral behavior reasoning architecture are

given in section III. Simulation and experimental results are

presented in section IV. In section V, this study are concluded.

II. TARGET VEHICLE LATERAL BEHAVIOR MODELING

AND PROBLEM FORMULATION

In this section, TV multiple centerline model is presented

at first. Then, problems of TV short-term lateral behavior

reasoning are formulated.

A. Target Vehicle Multiple Centerline Model

To describe TV lateral behavior, two typical physical models

are generally adopted, motion model and multiple centerline

model. For motion model, TV lateral behaviors such as lane

keeping and lane changing are modeled based on different

kinematics models [17]. For multiple centerline model, TV

trajectory is considered based on vehicle maneuvers, and the

multiple lane centerlines are considered as the paths that TV

tends to follow [18]. In this study, the multiple centerline

model is selected as the basic model for TV lateral behavior

reasoning. On a road with multiple lanes, a centerline model

is constructed for each lane, and the TV lateral offset of the

centerline model follows the Gaussian distribution with respect

to the centerline. Then, these models can be unified as the

multiple centerline model (1).

qik = q̄ik + wi
k (1)

where qik is TV lateral offset, q̄ik is lateral offset of the

ith centerline, wi
k ∼ N(0, θ2w) represents zero-mean normal

distribution with variance θ2w, in which θ2w is set as (W/4)2

to cover the lane by two-sigma variance. W is lane width.

i > j indicates that ith lane is on the left side of jth lane.

As can be seen in Fig. 1 (a), a road with three lanes is

given and the corresponding centerlines are presented. For

this scene, a multiple centerline model with three sub-models

are constructed to describe TV lateral position on the road.

In Fig. 1 (b), the probability distribution of TV lateral offset

corresponding to these three sub-models is shown.
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Fig. 2. TV lateral behavior recognition based on TV lateral offset and lateral
velocity in road curvilinear coordinate system.

B. Problems Formulation

To apply multiple centerline model for TV lateral behavior

reasoning, the IMM estimator is adopted and TV lateral offset

q shown in Fig. 2 is used for model probabilities update [18].

Considering that only lateral offset q cannot provide timely

prediction, lateral velocity q̇ in the road curvilinear coordinate

system is introduced to the TPM to speed up the prediction

process. For a more accurate and timely TV short-term lateral

behavior reasoning, the following two problems should be

addressed.

1) The Description of TV Lateral Behavior Considering

Lateral Motion States and Preview Driving Characteristic:

TV state measurements are essential for lateral behavior rea-

soning. For example, in [7], the position and their correspond-

ing instantaneous velocity in ground plane coordinate system

are adopted as features for the training of hidden Markov

models. In [13], aimed at TV maneuver reasoning, the features

of yaw angle, yaw rate, lateral velocity and lateral acceleration

in lane changing and lane keeping processes are compared.

In [17], the detected TV pose in road curvilinear coordinate

system is used for TV motion tracking and behavior reasoning.

For lateral behavior recognition, TV state measurements can

be divided into two categories:

1) Pose-related states: TV pose including position and

orientation, and the road reference information.

2) Motion-related states: TV longitudinal velocity, lateral

velocity and yaw rate.

Remark 1: Pose-related and motion-related states such

as lateral offset and lateral velocity in the road curvilinear

coordinate system can also be obtained based on the above

mentioned information via coordinate transformation.

In [18], TV lateral offset q and lateral velocity q̇ in the

road curvilinear coordinate system are used for lateral behavior

recognition in multiple centerline model-based method. TV

lateral motion states such as lateral velocity and yaw rate have

not been employed for probability updating. However, these

TV lateral motion states are important features to characterize

vehicle lateral behavior [13]. To promote the performance of

TV lateral behavior recognition, the description of TV lateral

behavior with TV lateral velocity and yaw rate should be

considered.

On the other hand, considering the response delay of the

driver and the vehicle, the driver should look forward in front

Lane 

change left

Lane 

change right

Lane 

keeping

Fig. 3. TV lateral behavior classification: LK, LCL and LCR

of the vehicle for a certain distance to stably control the

vehicle, and this control characteristic of the driver is called

the driver preview [20]. For vehicle path following control,

the driver preview driving characteristic is ubiquitous. For

example, in [19], a driver perception and steering control

model presents that drivers minimize the bearing angle to

a aim point located 0.25-0.75s ahead. In [21], the preview

optimal curvature model is chosen to reflect the driver preview

driving characteristic. However, current physical model-based

methods for TV lateral behavior recognition neglect this

characteristic. To accurately describe TV lateral behavior, this

preview driving characteristic should also be considered.

2) The Design of Dynamic TPM for Short-term Lateral

Behavior Recognition: Aiming at different autonomous driv-

ing applications, there are much different lateral behavior

definitions. For example, in [7], to emphasize the motion

relationship between HV and TV, TV lateral behaviors are

defined as overtake and cut-in. In [18], for long-term TV

lateral behavior prediction, lane keeping, lane-change and

double lane-change are considered on a road with three lanes.

Different from the definition of long-term TV lateral behavior

that regards two consecutive lane changes as a double lane

change behavior, we dedicate to estimating TV short-term

lateral behavior in this study, and as can be seen in Fig. 3, TV

short-term lateral behaviors are classified into three categories

including LK, LCL and LCR. The set of TV lateral behaviors

is given as

B = {LK,LCL,LCR} (2)

Based on this definition, the TPM for multiple centerline

model can be represented as

TPM =
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where πij = 0 (|i− j| > 1)

(3)

πij indicates the transition probability from the ith lane

model to the jth lane model, and the following relationship

should be satisfied

πij = P [Lk = j|Lk−1 = i] where
∑

j

πij = 1 (4)
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Fig. 4. The increments of the conventional lateral velocity-dependent dynamic
TPM. The solid lines indicate the increment of single lane change while the
dashed lines for double lane change.

Generally, the TPM is established based on the Markov

assumption as a constant matrix. In [18], to detect TV lateral

behavior rapidly, TV lateral velocity q̇ in the road curvilinear

coordinate system is introduced. For LCR, i ≥ j, and TV

lateral velocity q̇ is negative and below a certain threshold

λij . For LCL, i < j, TV lateral velocity q̇ is positive and

above a certain threshold λij . Then, for TV lateral behavior,

the model transition criteria considering TV lateral velocity q̇
is defined as

{

q̇ − λij ≤ 0(i ≥ j)

q̇ − λij > 0(i < j) where λij ∼ N(ηij , σ
2
ij)

(5)

where λij represents the model transition criteria for lane

changing. ηij and σ2
ij is the mean and variance of λij . Then,

a dynamic TPM is designed as

π0,ij(q̇) =

{

πini
ij +Φ(q̇, ηij , σ

2
ij) q̇ − ηij ≤ 0

πini
ij + [1− Φ(q̇, ηij , σ

2
ij)] q̇ − ηij > 0

(6)

where πini
ij is the initial constant model transition probability.

π0,ij(q̇) is the lateral velocity dependent model transition

probability and it should be normalized to satisfy equation

(4). Φ(q̇, ηij , σ
2
ij) denotes the Gaussian CDF.

As can be seen in Fig. 4, the solid and dashed lines represent

the probability increments in single and double lane changing

processes respectively. It can be found that when the absolute

value of TV lateral velocity approaching η2, the increments for

double lane changing increase while the increments for single

lane changing decrease, and TV is regarded as tending to

conduct double lane changing maneuver. However, this study

aims to predict TV short-term lateral behaviors and double

lane changing process can be separated into two short-term

single lane changing processes. To predict short-term lateral

behavior, a new dynamic TPM should be designed.

III. DRIVER PREVIEW MODEL AND TARGET VEHICLE

LATERAL BEHAVIOR REASONING

A. Target Vehicle Driver Preview Model

As can be seen in Fig. 5, TV driver preview model is

selected to consider driver preview driving characteristic. In

r
φt

φ

R

tx
vty

v

γ
t

tx
vty

v

γ τ
t tx
v

pre
q

r
φt

φ

q

preq

R

τ
tx
v

(a) Pose relationship (b) Motion relationship

q
TV TV

Fig. 5. TV driver preview model. (a) shows the pose relationship between
the preview point and current vehicle pose. (b) gives the relationship between
the motion of the preview point and vehicle current motion states.

Fig. 5(a), the pose relationship is shown, and the preview

lateral offset qpre is given as

qpre =
q + vtxτsin(ϕt)−R(1− cos(ϕr))

cos(ϕr)

=
q + vtxτsin(ϕt)− 2Rsin2(ϕr

2 )

cos(ϕr)

(7)

where vtx is TV longitudinal velocity, ϕt is the vehicle heading

angle relative to the road reference. ϕr is the difference

between the heading angle of the road reference in the preview

point and current position. τ is the preview time. R is the road

radius. Considering that R is much larger than the preview

distance vtxτ and lateral offset q, the relative angle ϕr is

approximately equal to

ϕr =
vtxτ

R− q
= ρvtxτ (8)

where ρ is the road curvature.

Then, the preview lateral offset qpre in road curvilinear

coordinate system is simplified as

qpre = q + vtxτsin(ϕt)−
(vtxτ)

2ρ

2
(9)

To model TV lateral motion of the preview point, we

must understand that this lateral motion is affected by TV

longitudinal velocity vtx, lateral velocity vty and yaw rate γt.
Then, as can be seen in Fig. 5(b), TV preview lateral velocity

q̇pre in the road curvilinear coordinate system is given as

q̇pre = (vty + γtvtxτ)cos(ϕr − ϕt)− vtxsin(ϕr − ϕt)

= (vty + γtvtxτ)[cos(ϕr)cos(ϕt) + sin(ϕr)sin(ϕt)]

− vtx[sin(ϕr)cos(ϕt)− cos(ϕr)sin(ϕt)]
(10)

Considering that ϕr and ϕt are close to zero and equation

(8), TV preview lateral velocity q̇pre is simplified as

q̇pre = vty + γtvtxτ + vtxsin(ϕt)− vtxsin(ϕr)

= vty + γtvtxτ + vtxsin(ϕt)− ρv2txτ
(11)

With TV preview lateral offset qpre and preview lateral ve-

locity q̇pre in road curvilinear coordinate system, TV preview

driving characteristic is considered for TV lateral pose and

motion description. Besides, TV longitudinal-lateral states in-

cluding lateral offset q, heading angle ϕt, longitudinal velocity

vtx, lateral velocity vty and yaw rate γt are combined and used
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Fig. 6. The driver preview and multiple centerline model-based probabilistic
behavior recognition architecture.

for TV future position and motion description using equations

(9) and (11).

B. IMM-based Probabilistic Behavior Reasoning

In Fig. 6, TV lateral behavior recognition architecture is

presented. Based on the measurements obtained by sensors

such as radar, LiDAR, vision system and vehicle to vehicle

communication, TV longitudinal-lateral states can be mea-

sured or estimated [22], [23]. Then, TV lateral offset q,

longitudinal velocity vtx, lateral velocity vty , yaw rate γt
and road curvature ρ are available for the calculation of TV

preview lateral offset qpre and preview lateral velocity q̇pre
with the driver preview model. At last, IMM-based proba-

bilistic behavior detection algorithm is used for TV lateral

behavior recognition [18]. The main steps of this algorithm

are summarized as following.

1) Interaction (Mixing): The mixing probability µij

k|k−1
represents the ith lane model was in effect at time k−1 given

that the jth lane model is in effect at time k and it is written

as

µij

k|k−1 =
πij(q̇pre)µ

i
k−1

µ
j

k|k−1

(12)

where πij(q̇pre) represents the preview lateral velocity-

dependent transition probability from the ith to jth lane model.

µi
k−1 is the ith model probability at time k − 1 obtained by

equation (20) and the predicted model probability µj

k|k−1 is

calculated by

µj

k|k−1 =
∑

i

πij(q̇pre)µ
i
k−1 (13)

Then, the mixed lateral offset and covariance are calculated

based on the above mentioned multiple centerline models as

q̂j
k|k−1 =

∑

i=1

q̄ik−1u
ij

k|k−1 (14)

Lane 
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2
...
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N
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π
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23
π

32
π

π
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Fig. 7. Model transition relationship of the multiple centerline models.

P j

k|k−1 =
∑

i=1

uij

k|k−1{θ
2
w + [q̄ik−1 − q̂j

k|k−1]

· [q̄ik−1 − q̂j
k|k−1]

T }
(15)

2) Model Probability Update: To consider vehicle preview

driving characteristic, the measurements of TV preview lateral

offset zk is obtained based on the driver preview model for

TV lateral behavior reasoning and they can be given as

zk = qpre,k + vq (16)

where vq ∼ N(0, θ2q) is used to describe the measurement

noise. θ2q is the variance of vq .

Then, the measurement residual rjk and its corresponding

covariance Sj
k are described as

rjk = zk − q̂j
k|k−1 (17)

Sj
k = P j

k|k−1 + θ2q (18)

Based on the measurement residual and its covariance, the

model probability of each lane model is updated with

Λj
k = N(rjk, 0, S

j
k) =

1√
2π|Sj

k
|
exp{− (rj

k
)2

2Sj

k

} (19)

uj
k =

Λj

k
u
j

k|k−1∑
i=1

Λi
k
ui
k|k−1

(20)

where Λj
k is the likelihood function of model j at time k.

With the IMM-based probabilistic behavior detection al-

gorithm, the probabilities of multiple centerline models are

updated.

C. Preview Lateral Velocity-Dependent TPM for Short-term

Lateral Behavior Recognition

In this study, LCL, LCR and LK are defined for TV short-

term lateral behavior recognition. In Fig. 7, the transition

relationship of these multiple centerline models is given and

the model transition criteria is presented in equation (5) . To

predict TV short-term lateral behavior, a new preview lateral

velocity-dependent dynamic TPM is designed as

π0,ij(q̇pre) =

{

πini
ij + b[1− Φ(q̇pre; ηij , σ

2
ij)] (i > j)

πini
ij + bΦ(q̇pre; ηij , σ

2
ij) (i < j)

(21)

where b is the amplitude of the increments. The Gaussian CDF

Φ(x; ηij , σ
2
ij) with mean ηij and variance σ2

ij is given as

Φ(x; ηij , σ
2
ij) =

∫ x

−∞

1

σij

√
2π

exp{− (x− ηij)
2

2σ2
ij

}dx (22)
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model transition probability

Lane change (LC) point

1𝑠𝑠𝑠𝑠 LC 2𝑛𝑛𝑛𝑛 LC 7𝑠𝑠𝑡 LC

6𝑠𝑠𝑡 LC5𝑠𝑠𝑡 LC4𝑠𝑠𝑡 LC3𝑟𝑟𝑛𝑛 LC

Fig. 9. Target vehicle lateral offset in simulation. These red dots are the lane
change points.

To make the designed preview lateral velocity-dependent

TPM satisfies equation (4), a normalization procedure is

required and denoted as

πij(q̇pre) =
π0,ij(q̇pre)∑

N
j=1

π0,ij(q̇pre)
(23)

In Fig. 8, the increments of the designed TPM are shown.

When the absolute value of the preview lateral velocity q̇pre
closes to zero, a small increment is added to the transition

probability for lane changing. When the absolute value of the

preview lateral velocity increases, the corresponding transition

probability increment also gradually increases to a constant.

Compared with existing lateral velocity-dependent TPM pre-

sented in Fig. 4, the proposed one is more suitable for TV

short-term lateral behavior recognition.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation

To verify the effectiveness of the proposed method for TV

short-term lateral behavior recognition, Carsim-simulink co-

simulation is conducted. In the test, TV performs a continuous

lane change process and Fig. 9 plots TV lateral offset. TV

longitudinal velocity is given in Fig. 10. In this study, we

assume that TV longitudinal-lateral states have been obtained,

and they are modeled based on the true value with Gaussian

noise in the simulation. The preview time τ of the proposed

method is set as 1s.

Fig. 10. Target vehicle longitudinal velocity in simulation.

(a)

(c)

(b)

Fig. 11. The model probabilities in simulation. (a) Model probabilities of the
conventional multiple centerline model-based method. (b) Model probabilities
of the conventional motion model-based method. (c)Model probabilities of the
proposed driver preview and multiple centerline model-based method. The red
points are the predicted lane changing points in each lane changing process.
The gray dashed lines are aligned with the predicted lane change points of
the proposed method for comparison with the predicted points of these two
traditional methods.

In this study, the proposed method with driver preview

model is compared with the conventional motion model-based

method [17] and multiple centerline model-based method [18].

For the conventional motion model-based method, TV motion
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TABLE I
THE COMPARISON OF ADVANCE TIME BETWEEN THE CONVENTIONAL AND

PROPOSED METHODS IN SIMULATION.

Lane change

process

Conventional multiple

centerline model-based

method (s)

Conventional

motion model-based

method (s)

Proposed

method (s)

1st LC 0.326 0.726 1.086

2nd LC 0.299 0.779 1.019

3rd LC 0.346 0.786 1.106

4th LC 0.213 0.813 1.053

5th LC 0.244 0.964 1.084

6th LC 0.330 0.970 1.050

7th LC 0.313 0.953 1.033

are modeled by four motion models including the constant

velocity lane keeping, constant acceleration lane keeping,

constant velocity lane changing and constant acceleration lane

changing models. In this study, TV lateral behaviors need

to be identified, and these four models are divided into two

categories: lane keeping models and lane changing models.

Then, the probabilities of the lane keeping and lane changing

models are obtained, and TV lateral behavior is inferred.

In Fig. 11, the model probabilities of these three methods

are given. In Fig. 11(a), the model probabilities of the con-

ventional multiple centerline model-based method are shown.

The blue, red and yellow curves are the predicted probabilities

of each lane model. The intersections of the two curves with

higher probabilities are the predicted lane change points, which

are indicated by red dots. In Fig. 11(b), the probabilities of

the conventional motion model-based method are given. The

blue and red curves are the probabilities of the lane changing

models and lane keeping models, respectively. As the lane

keeping models can be regarded as a special case of the lane

changing models without lateral motion, the probabilities of

the lane keeping and lane changing models fluctuate around

0.5 during the lane keeping processes. Considering this sit-

uation, the lane changing behavior is recognized when the

probabilities of the lane changing models are greater than

the probabilities of the lane keeping models by a certain

threshold. The predicted lane change points of the conventional

motion model-based method are indicated by the red dots in

Fig. 11(b). The model probabilities of the proposed method

are plotted in Fig. 11(c), and the blue, red and yellow curves

are the predicted probabilities of each lane models. The red

dots are the predicted lane changing points of the proposed

method. In Fig. 11, the gray dashed lines aligned with the

predicted lane change points of the proposed method are added

in these figures to compare the time sequence of the predicted

lane change points of different methods in each lane change

process. Comparing these lane change points in these three

figures, it is found that the proposed method predicts TV

lateral behavior earlier than the conventional two methods. To

quantify the performance of these three methods, as can be

seen in Fig. 9, the points where TV cross the lane edge are

defined as the lane change points, and the corresponding time

is defined as the crossing time tc. In Fig. 11, the time of these

LUX-4 GNSS(RTK)+IMUGNSS(RTK)+IMU

TV HV

(a)Testing scenarios 

(b) Testing platform

HV

TV

Fig. 12. HV-TV testing system.

Lane change (LC) point

1𝑠𝑠𝑠𝑠 LC

2𝑛𝑛𝑛𝑛 LC 7𝑠𝑠𝑡 LC

6𝑠𝑠𝑡 LC

5𝑠𝑠𝑡 LC4𝑠𝑠𝑡 LC

3𝑟𝑟𝑛𝑛 LC

Fig. 13. TV lateral offset in experiment. These red dots are the lane change
points.

predicted lane change points are defined as the prediction time

tp. The difference of these two time is defined as the advance

time of behavior prediction, and it is represented as

ta = tc − tp. (24)

Table I shows the advance time of these three methods, and

it is found that the conventional multiple centerline model-

based method predicts TV lateral behavior about 0.2-0.4s

in advance. The conventional motion model-based method

predicts TV lane changing behavior about 0.7-1.0s in advance,

while the proposed method considering TV preview driving

characteristic achieves about 1.0-1.1s in advance. In each

lane changing process, the advance time of the proposed

method is greater than that of the two conventional methods,

which shows that the proposed method can predict TV lateral

behavior earlier than the two conventional methods.

B. Experimental Results

In this study, a HV-TV testing platform presented in Fig. 12

is adopted to verify the effectiveness of the proposed method.

In this system, the ground truth of HV and TV states are

obtained based on the GNSS(RTK)+IMU system. We assume

that vehicle-to-vehicle communication is possible between HV

and TV, and a Lux-4 Lidar is mounted in HV to detect TV

and road reference. Based on the sensor configuration, TV

longitudinal-lateral states are measured and estimated based

on the methods proposed in [22], [23]. Then, TV lateral
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Fig. 14. TV longitudinal velocity in experiment.

(a)

(c)

(b)

Fig. 15. The model probabilities in experiment. (a) Model probabilities of the
conventional multiple centerline model-based method. (b) Model probabilities
of the conventional motion model-based method. (c)Model probabilities of the
proposed driver preview and multiple centerline model-based method. The red
points are the predicted lane changing points in each lane changing process.
The gray dashed lines are aligned with the predicted lane change points of
the proposed method for comparison with the predicted points of these two
traditional methods.

offset q, longitudinal velocity vtx, lateral velocity vty , yaw

rate γt and road curvature ρ are available for TV lateral

behavior recognition. This study focuses on TV lane change

behavior recognition. To include more lane-changing scenes,

TABLE II
THE COMPARISON OF ADVANCE TIME BETWEEN THE CONVENTIONAL AND

PROPOSED METHODS IN EXPERIMENT.

Lane change

process

Conventional multiple

centerline model-based

method (s)

Conventional

motion model-based

method (s)

Proposed

method (s)

1st LC 0.559 0.957 1.120

2nd LC 0.719 1.079 1.200

3rd LC 0.516 0.917 1.157

4th LC 0.478 0.759 0.959

5th LC 0.638 0.959 1.477

6th LC 0.520 0.641 1.079

7th LC 0.759 1.240 1.639

TV performs a continuous lane change process in a two-

lane road. Fig. 13 shows TV lateral offset relative to the road

reference, and it is found that TV changes lanes 7 times, and

the red dots represent the points where the TV crosses the

edge of the lane. Instead of running at a constant speed, the

TV was randomly controlled by the driver, making the test

more in line with the real driving scene, and Fig. 14 plots TV

longitudinal velocity. In [24], driver preview time is discussed

based on field tests, and τ = 1s is used in this study for TV

lateral behavior recognition.

Fig. 15(a) shows the predicted lane probabilities of the

conventional multiple centerline model-based method without

considering driver preview driving characteristic. In Fig. 15(b),

the probabilities of the lane changing and lane keeping

models of the conventional motion model-based method are

shown. Fig. 15(c) gives the model probabilities of the pro-

posed method considering driver preview driving character-

istic. Comparing the predicted lane change points in these

three figures, it is found that the proposed method predicts

TV lateral behavior earlier than the two conventional methods.

To quantify the performance of these three methods, the

advance time is calculated and given in Table II. In Table II,

it is found that the conventional multiple centerline model-

based method predicts the lane change behavior about 0.4-

0.8s in advance. The conventional motion model-based method

predicts the lane changing behavior about 0.6-1.3s in advance.

The proposed method achieves about 0.9-1.6s in advance. For

each lane change process, the advance time of the proposed

method is greater than the other two methods, which shows

that the proposed method can predict TV lane change behavior

earlier than the two conventional methods.

V. CONCLUSION

TV lateral behavior reasoning plays a key role in the safe

and effective decision-making and control of HV, and the

physical model-based behavior reasoning method is so impor-

tant that should be carefully investigated. Existing physical

model-based methods generally neglect TV preview driving

characteristic and lateral motion states such as TV lateral

velocity and yaw rate. To predict TV lateral behavior accu-

rately and timely, a driver preview and multiple centerline

model-based probabilistic behavior recognition architecture
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was proposed in this study. Firstly, the driver preview model

was selected to describe TV preview driving characteristic.

Then, the driver preview and multiple centerline modes were

combined based on the IMM-based probabilistic behavior

recognition algorithm for TV lateral behavior detection with

TV preview lateral offset and preview lateral velocity. For

TV short-term lateral behavior reasoning, a preview lateral

velocity-dependent TPM constructed based on Gaussian CDF

was proposed to consider LCL, LCR and LK behaviors defined

in this study. Simulation and experiments were conducted and

the results showed that the proposed method considering TV

preview driving characteristic can predict TV lateral behavior

earlier than the conventional method. In the future, the pro-

posed method can be combined with the existing lane changing

decision models and data-driven models shown in [12], [13],

[25] to consider more traffic information to better identify TV

lateral behavior.
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