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ABSTRACT: Understanding how sorption depends on temperature on a molecular
basis has been made difficult by the coexistence of isotherm models, each assuming a
different sorption mechanism and the routine application of planar, multilayer sorption
models (such as Brunauer−Emmett−Teller (BET) and Guggenheim−Anderson−de
Boer (GAB)) beyond their premises. Furthermore, a common observation that
adsorption isotherms measured at different temperatures fall onto a single
“characteristic curve” when plotted against the adsorption potential has not been
given a clear explanation, due to its ambiguous foundation. Extending our recent
statistical thermodynamic fluctuation theory of sorption, we have generalized the classical isosteric theory of sorption into a statistical
thermodynamic fluctuation theory and clarified how sorption depends on temperature. We have shown that a characteristic curve
exists when sorbate number increment contributes purely energetically to the interface, whereas the correlation between sorbate
number and entropy drives the temperature dependence of an isotherm. This theory rationalizes the opposite temperature
dependence of water vapor sorption on activated carbons with uniform versus broad pore size distributions and can be applied to
moisture sorption on starch gels. The adsorption potential is a convenient variable for sorption in its ability to unify sorbate−sorbate
fluctuation and the isosteric thermodynamics of sorption.

■ INTRODUCTION

Understanding how sorption depends on temperature is an
important question in basic and applied sciences alike.1−3 This
paper aims to answer this question on a molecular scale via
statistical thermodynamics.4−7 This question may seem simple
yet has been made complicated. We have identified the three
areas of difficulty in the previous attempts to answer this
question.
Coexistence of Multiple Adsorption Models. Studying

sorption was made complicated by the coexisting of 80+
different isotherm models, each assuming a different sorption
mechanism including how it depends on temperature.8−14

Here, we demonstrate that temperature dependence has been
explained differently from model to model and there are even
disagreements within the same model as to which parameters
are temperature-dependent.

• The Langmuir model15 contains two parameters, the
Langmuir constant and the saturation loading.16 The
Langmuir constant is linked to adsorption enthalpy via
the van’t Hoff equation,17 and generally agreed to be
temperature-dependent.1,3 However, an agreement has
not been reached regarding when the saturation loading
is temperature-independent18,19 or temperature-depend-
ent.16,20,21

• The models mathematically related to the Langmuir
model, such as the Langmuir−Freundlich and Toth
models,16,22 have been used to analyze the temperature
dependence of adsorption, in which multiple different

assumptions on the temperature dependence of their
parameters have been adopted.16,22

• The Brunauer−Emmett−Teller (BET)23,24 and Gug-
genheim−Anderson−de Boer (GAB)25−27 models orig-
inally assumed monolayer adsorption to be temperature-
independent, whereas adsorption onto second and
subsequent adsorption layers depend on temperature.
However, when applying the planar, multilayer GAB
model to foods (which are not planar), the monolayer
capacity is assumed to be temperature-independent28 or
being the only parameter that depends on temper-
ature;29 some authors consider all of the parameters
temperature-dependent.30 Thus, how the temperature
dependence should be incorporated into the BET and
GAB models has not been agreed upon.

• Iglesias, Chirife, and co-workers have demonstrated that
moisture sorption isotherms of food can be expressed as
the product of the two contributions, one dependent
solely on temperature and another dependent solely on
sorbate activity.29,31,32 They have attempted to justify
this approach based on the fitting using the BET model
and the Hailwood−Horrobin model.33
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• The Dubinin−Astakhov34 and Dubinin−Radushke-
vich34−38 models assume the isotherm to be a function
of the “adsorption potential”, which fully accounts for
the temperature dependence of sorption (see the
Adsorption Potential subsection for details).

We have seen in the above that the study of temperature
dependence has been model-dependent and that the model
isotherms have been applied beyond their original assumptions
and basic premises, leading to inconsistencies regarding the
origin of the temperature dependence of sorption not only
between different sorption models but also within the same
model. Thus, the lack of consistency arising from the
coexistence of many different sorption models must be
overcome by a unified theory.
Adsorption Potential. Isotherms measured at different

temperatures, when plotted against the “adsorption potential”
instead of the sorbate activity, quite commonly fall onto a
single “characteristic curve”.39−41 However, the theoretical
foundation for this common observation, including the
applicability and physical meaning of the adsorption
potential,39,40 has been subjected to criticisms.41,42 First,
considering an isotherm as a function of the adsorption
potential violates Henry’s law.41,42 Second, there are at least
three different definitions, each claiming to be the adsorption
potential.43 Consequently, Dubinin went so far as to say that
“it became more and more obvious that the initial principles of
the potential theory have no physical meaning for adsorption
in micropores”.37 A rigorous theoretical approach is required
to clarify the physical basis of this common observation.
Attempts have been made to clarify the theoretical foundation
of the adsorption potential theory and of the isotherms based
thereupon,36−41,44−46 yet the question has remained unre-
solved.
Thermodynamics of Adsorption. The thermodynamics

of adsorption was founded mainly in the 1940s and 1950s,
which have been summarized most systematically by Hill,47−50

Everett,51−53 and Dubinin and co-workers,34,36−38,54 with
many subsequent applications.29,32,37,55 However, there are
two different definitions for enthalpy, depending on the
thermodynamic conditions.1,2,24,56 The “isosteric” enthalpy can
be obtained from differentiating isotherms with respect to
temperature under constant adsorbed quantity.1,2,24,56 The
“calorimetric” enthalpy is accessible directly via calorimetry but
its link to sorption isotherms is complex.1,2,24,56 The
multiplicity of definitions regarding enthalpy, as well as the
complex interrelationships, posed difficulties to understanding
how isotherms change with temperature.56−58

To clarify the mechanism of isotherm’s temperature
dependence, the principles of statistical thermodynamics,
with a few, generally acceptable assumptions, are necessary.
The fluctuation sorption theory,4,5 an extension of the
fluctuation solution theory59−65 to surfaces, is a rigorous
theory applicable to any interfacial geometry; its only postulate
is that the effect of an interface is confined within a finite
distance.4 Taking full advantage of rigorous statistical
thermodynamics,4,5 this paper will clarify the microscopic
mechanism of temperature-dependent adsorption. To identify
the microscopic mechanism for the existence of the character-
istic curve, how sorption depends on temperature and sorbate
activity must be explained from a molecular basis. To this end,
we have generalized the classical isosteric thermodynamics of
sorption into a statistical thermodynamic fluctuation theory. In

this framework, the existence of the characteristic curve, i.e.,
when sorption depends only on the adsorption potential, will
be linked to a relationship between number−number and
number−energy fluctuations, and the deviation therefrom can
be attributed to the entropic contribution. A simple energetics
of sorption will emerge from this linkage, clarifying why the
characteristic curves are so common in adsorption phenomena.

■ THEORY

Our aim for this section is twofold: to clarify the temperature
dependence of sorption isotherms from a microscopic basis
and to reveal the molecular interactions underlying the
characteristic curve in the potential theory of adsorption (or
adsorption potential theory). This section provides the
theoretical foundation necessary to achieve our twofold aim.
First, to clarify the molecular interactions underlying sorption,
the statistical thermodynamic fluctuation theory4,5 will be
extended to incorporate the temperature dependence of
sorption. The sorbate number−number correlation and
number−energy correlation will be the microscopic basis of
how sorption isotherm changes with sorbate activity and
temperature. Second, to understand the microscopic basis of
the characteristic curve, a link between the potential theory
and the statistical thermodynamic fluctuation theory must be
established, which requires chemical thermodynamics.

Statistical Thermodynamic Fluctuation Theory. Num-
ber−Number Correlation Underlies the Activity Dependence
of Adsorption. Let us consider the interface between phases I
and II. Phase I is composed of the sorbent (molecular species
1) and phase II is of the sorbate (molecular species 2). The
entire system, denoted by *, is composed of I and II, as well as
the interface between them. The thermodynamic effect of the
interface is the difference between the entire system (*, with
the interface) and the reference systems (I + II, without the
interface).1,3,4,66,67 The three systems are open to both species.
We start from the following general thermodynamic relation-
ship without any assumptions to deal with planar and
nonplanar interfaces alike4,5,65

F I II= Ω* − Ω − Ω (1)

where the interfacial free energy F (which is conventionally
expressed as a product of the interfacial tension and the surface
area) is expressed in terms of the difference in the
thermodynamic function (Ω = −PV) between the entire
system (*) and the two reference systems (I + II) under the
conservation of volume.4,65 Instead of employing the
concentration profile and the Gibbs dividing surface, we
perform Legendre transformation, converting the thermody-
namic function Ω (open to species 1 and 2) to Y = Ω + μ1N1

(open to species 2 but closed to 1), as

F Y Y Y N N N( )I II
1 1 1

I
1
II

μ= * − − − * − − (2)

where μ1 is the chemical potential of species 1.4 Here, we
introduce the condition equivalent to the Gibbs dividing
surface, N1* − N1

I
− N1

II = 0 in eq 2. Note that this condition
does not require an explicit consideration of the concentration
profiles and is applicable to any interfaces regardless of surface
geometry.4 Equation 2 now becomes

F Y Y YI II= * − − (3a)
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Equation 3a applies to any surface geometry and porosity.
Using the corresponding partition functions for the semi-open
systems, Γ*, ΓI, and Γ

II, eq 3a can be rewritten as

F kT ln
I II

= −
Γ*

Γ Γ (3b)

Equation 3b is our fundamental relationship. Differentiating eq
3b with respect to ln a2 (a2 is the activity of sorbate), through
elementary statistical thermodynamic calculus, yields the
generalized Gibbs adsorption isotherm4ikjjjjj y{zzzzzF

a
N N N

ln
T2

2 2
I

2
II

β−
∂

∂
= ⟨ *⟩ − ⟨ ⟩ − ⟨ ⟩

(4)

where ⟨⟩ denotes ensemble average. The only postulate that
we need to introduce in our theory is that the effect of an
interface is confined within a finite distance from the surface.4

Under this postulate, we have shown previously that the Gibbs
adsorption isotherm can be expressed as4,68ikjjjjj y{zzzzzF

a
n n n

ln
T2

2 2
I

2
II

β−
∂

∂
= ⟨ *⟩ − ⟨ ⟩ − ⟨ ⟩

(5)

in terms of the difference in number between the interfacial
subsystem, ⟨n2*⟩, and the reference subsystems I and II, ⟨n2

I⟩
and ⟨n2

II⟩, that have the volumes vI and vII.4 From eq 5, we have
previously obtained the expression for the sorbate number−
number correlation, again under the postulate of the finite-
ranged nature of the interface, whose corollary is that the
interfacial sorbate number does not correlate with the bulk
sorbate number, leading to sorbate number−number correla-
tion being confined within a finite distance range from the
interface.4 Since the vapor-phase fluctuation is negligibly small,
eq 5 leads to4ikjjjjj y{zzzzzn

a
n n

ln
T

2

2
2 2δ δ

∂⟨ ⟩

∂
= ⟨ ⟩

(6)

where the asterisk has been omitted for simplicity and will be
consistently so from now onward. Since δn2 = n2 − ⟨n2⟩, ⟨δn2
δn2⟩ is the sorbate−sorbate number correlation in the presence
of the interface.
Number−Energy Correlation Underlies the Temperature

Dependence of Sorption. Here we show that understanding
the temperature dependence of sorption is related to the
number−energy correlation. Differentiating eq 4 with respect
to β under constant fugacity yieldsikjjjj y{zzzzN

N U N U2
2 2

2

β
−

∂⟨ ⟩

∂
= ⟨ ⟩ − ⟨ ⟩⟨ ⟩

λ (7)

where U is the potential energy of the system. This can be
derived straightforwardly from the statistical thermodynamic
expression for the mean number

N
N Q T V N N

Q T V N N

( , , , )

( , , , )

N
N

N
N2

0 2 2 1 2

0 2 1 2

2

2

2

2

λ

λ
⟨ ⟩ =

∑

∑

≥

≥ (8)

where Q is the canonical partition function. Following our
theory of number−number correlation summarized above,
here, we introduce the same postulate again, that the effect of
the interface is confined within a finite distance.5 Con-
sequently, the bulk quantities do not correlate with the

quantities pertaining to the interfacial subsystem. Under this
postulate, eq 8 can be rewritten using the number and energy
(u) pertaining to the local interfacial subsystem asikjjjj y{zzzzn

n u n u2
2 2

2

β
−

∂⟨ ⟩

∂
= ⟨ ⟩ − ⟨ ⟩⟨ ⟩

λ (9)

Equation 9 can be expressed in an equivalent manner asikjjjj y{zzzz ikjjjj y{zzzzkT
n

T

n n u

n

ln ln2 2 2 2

2
2 2

β

δ δ∂ ⟨ ⟩

∂
= −

∂ ⟨ ⟩

∂
=

⟨ ⟩

⟨ ⟩
λ λ (10)

Adsorption Thermodynamics. Adsorption Potential.
Here, we present the isosteric thermodynamics in a form
conducive for statistical thermodynamic generalization. First,
the “adsorption potential” ϵ, originally introduced by
Polanyi,1−3,39−41 is defined most commonly in the current
literature as

RT aln 2ϵ = − (11)

where R is the gas constant. When plotted against the
adsorption potential, instead of a2, adsorption isotherms
measured at different temperatures commonly fall onto the
same curve.1−3,39−41 This experimental observation is ex-
pressed as

n

n
f ( )2

1

⟨ ⟩
= ϵ

(12)

where f is a function, namely, the characteristic curve. Note
that the sorbed quantity per sorbent, ⟨n2⟩/n1, has been used as
the definition in eq 12. The lack of clarity regarding the
theoretical basis of eq 12, together with the long-standing
doubts about the physical meaning of eq 11,37,46,69 motivates
us to construct a statistical thermodynamic generalization of
the isosteric thermodynamics of sorption to clarify the
existence of the characteristic curve on a molecular scale. To
do so, as a first step, let us note that varying T and a2 under
constant ϵ does not change the isotherm because of eq 12.
Consequently

T
T

a
a

T
T

RT

a
a0

2
2

2
2δ δ δ δ δϵ = =

∂ϵ

∂
+

∂ϵ

∂
=

ϵ
−

(13a)

Applying the implicit function theorem70,71 on eq 13a yieldsikjjj y{zzza

T

a

RT

2 2
2

∂

∂
=

ϵ

ϵ (13b)

Noting the equivalence between constant ϵ and constant ⟨n2⟩/
n1 and using again the definition (eq 11), we obtaini

kjjjjjjj
y
{zzzzzzzT

T n n

1

/2 1

∂

∂
= ϵ

ϵ

⟨ ⟩ (14)

This left-hand side of eq 14 is reminiscent of the procedure for
obtaining the energy from the free energy (ϵ in this case). This
derivative is also ϵ; hence, eq 14 signifies the purely energetic
nature of the adsorption potential, ϵ,34,36−41,46,54 which is in
agreement with the original assumption by Polanyi.1−3,39−41

Relationship to the Isosteric Thermodynamics of
Adsorption. Here, we generalize the above thermodynamic
treatment of the adsorption potential when the characteristic
curve, eq 12, is not observed. To do so, let us first link the
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adsorption potential ϵ to the chemical potential of sorbate, μ2,
and the standard chemical potential, μ2

0

RT aln
2 2

0
2 2

0
μ μ μ= + = − ϵ (15)

Equation 15 makes it clear that the introduction of sorbate−
interface interaction lowers the chemical potential by ϵ. The
“interaction” here is defined in reference to the standard
chemical potential, μ2

0, of the saturated vapor. Consequently

2
0

2
μ μϵ = − (16)

which signifies the free energy required to move a sorbate
molecule to its saturated vapor standard state. Let us now
generalize eq 14 to the cases when eq 12 does not apply, i.e.,
there is no characteristic curve. The following relationship
always holds truei

kjjjjjjj
y
{zzzzzzz ikjjj y{zzzT

T

T

T n n
n n

1

/
/

2 1
2 1

ϵ =
∂

∂
+

∂ϵ

∂

ϵ

⟨ ⟩
⟨ ⟩

(17)

Equation 14 is a special case of eq 17, in which( ) 0
T n n/2 1

=
∂ϵ

∂ ⟨ ⟩
,

whose significance can be made clear using the definition of ϵ
in eq 16, which yieldsi

kjjjjjjj
y
{zzzzzzz

i
k
jjjjjjjjj

y
{
zzzzzzzzz u uT

T n n

T

T
n n

1

/

1

/

2
0

2

2 1

2
0

2

2 1

∂

∂
=

∂

∂
= −

μ μϵ

⟨ ⟩

[ − ]

⟨ ⟩ (18a)

ikjjj y{zzz ikjjjjjj y{zzzzzzT T
s s

n n
n n

/

2
0

2

/

2
0

2

2 1
2 1

μ μ
−

∂ϵ

∂
= −

∂[ − ]

∂
= −

⟨ ⟩
⟨ ⟩ (18b)

where the isosteric energy and entropy (u2 and s2), as well as
their standard (saturated vapor) counterparts with the
superscript 0, are defined asi

kjjjjjjj
y
{zzzzzzz

i
k
jjjjjjjjj

y
{
zzzzzzzzzu u,T

T n n

T

T
n n

2 1

/

2
0

1

/

2

2 1

2
0

2 1

=
∂

∂
=

∂

∂

μ μ

⟨ ⟩ ⟨ ⟩ (19a)ikjjjj y{zzzz ikjjjjjj y{zzzzzzs
T

s
T

,

n n n n

2
2

/

2
0 2

0

/2 1 2 1

μ μ
= −

∂

∂
= −

∂

∂
⟨ ⟩ ⟨ ⟩ (19b)

Thus, the temperature dependence of the adsorption potential,
ϵ, has been linked to the isosteric thermodynamic quantities of
sorbates.47−53 In the language of the isosteric thermodynamics
of adsorption, the existence of the characteristic curve (eq 12),
under which ϵ is purely energetic (eq 14), leads to

( )s s 0
T n n

2
0

2
/2 1

− = − =
∂ϵ

∂ ⟨ ⟩
, i.e., the entropic contribution is

negligible.
Representing Equilibrium Conditions at the Interface. Let

us take solid sorbents for simplicity. According to the Gibbs
phase rule, the subsystem composed of the adsorbate +
interface is a two-phase system containing two components,
leading to 2 degrees of freedom. Two intensive variables, such
as (T,μ2) or (T,ϵ), can be chosen as the independent variables.
In the theory of sorption, ⟨n2⟩/n1 is also an intensive quantity
within our treatments, which is a function of (T,μ2) or (T,ϵ).
Consequently, the change of ⟨n2⟩/n1 is linked to

i
k
jjjjjjjjj

y
{
zzzzzzzzz

i
k
jjjjjjjjj

y
{
zzzzzzzzzn

n T
Td d d

n

n

v n

n

n

v n T

2

1

, ,
2

, ,

2

2

1

1 2

2

1

1

μ
μ

⟨ ⟩
=

∂

∂
+

∂

∂
μ

⟨ ⟩ ⟨ ⟩

(20)

Two out of (T, μ2, ⟨n2⟩/n1) can be adopted as independent
variables for sorption equilibria, and this property will be
exploited in the following developments through variable
transformations. It should be noted that n1 is constant
throughout our treatments, and n1 will be omitted from the
list of fixed variables in partial differentiation.

■ RESULTS AND DISCUSSION

Fluctuation Theory of Temperature-Dependent Sorp-
tion. Relationship between Number−Number and Num-
ber−Energy Correlations. Statistical thermodynamics makes it
possible to quantify molecular interactions underlying an
isotherm.4 In the Theory section, we have shown that sorbate−
sorbate interaction (that is, by definition, mediated by the
presence of the interface), characterized by number−number
and number−enthalpy correlations, determines how an
isotherm varies with activity and temperature. Before clarifying
the consequence of the existence of the characteristic curve (eq
12) on number−number and number−energy correlations, let
us first establish a general relationship between these two
correlations, using ϵ as a variable. The sorbate number−
number correlation (eq 6) can be expressed asikjjjjj y{zzzzz ikjjjj y{zzzzn n

n

n

a
kT

nln

ln

ln

T T

2 2

2

2

2

2δ δ⟨ ⟩

⟨ ⟩
=

∂ ⟨ ⟩

∂
= −

∂ ⟨ ⟩

∂ϵ (21)

which leads to a simple relationship valid for any T. The
number−energy correlation, eq 10, can be expressed using ϵ
via the change of variables asikjjjj y{zzzzikjjjj y{zzzz ikjjjj y{zzzz ikjjjj y{zzzz

n u

n

n

n n

ln

ln ln

2

2

2

2 2

2

2

δ δ

β

β β

−
⟨ ⟩

⟨ ⟩
=

∂ ⟨ ⟩

∂

=
∂ ⟨ ⟩

∂
+

∂ ⟨ ⟩

∂ϵ

∂ϵ

∂

λ

β λϵ (22)

Note that λ2 = e−βϵ eβμ2
0

. For the first term of the right-hand
side, applying the chain rule, as well as eq 18b, it can be
rewritten asikjjjj y{zzzz ikjjjj y{zzzz ikjjjj y{zzzzikjjjj y{zzzz

n n

kT s s
n

ln ln

( )
ln

n

2 2

ln

2
2
0

2
2

2

β β

∂ ⟨ ⟩

∂
= −

∂ ⟨ ⟩

∂ϵ

∂ϵ

∂

= − −
∂ ⟨ ⟩

∂ϵ

β

β

ϵ ⟨ ⟩

(23)

The second term of the right-hand side of eq 22 can be
simplified viaikjjjj y{zzzz ikjjjj y{zzzz ikjjjjj y{zzzzz u2

2

2
0

2

β

λ

β λ β

∂ϵ

∂
= −

∂

∂

∂ϵ

∂
=

− ϵ

λ βϵ (24a)

where u2
0 is the partial molar energy of saturated vapor.

Equation 24a has been derived using the definition of fugacity
λ2
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ikjjjj y{zzzz ikjjjj y{zzzz
Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅ ikjjjjjj y{zzzzzz

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑ

u

e

( )

o2 ( )
2

2
0

2

2
0

2

2
0λ

β β
μ β

μ

β
λ

λ

∂

∂
=

∂

∂
= −ϵ + +

∂

∂

= − ϵ

β μ

ϵ

−ϵ+

ϵ

(24b)ikjjj y{zzz ikjjj y{zzze2 ( )
2

2
0λ

βλ
∂

∂ϵ
=

∂

∂ϵ
= −

β

β μ

β

−ϵ

(24c)

Combining all of the above, we obtain the following result for
number−energy correlation ikjjjj y{zzzzn u

n
kT u T s s

n
( )

ln2

2
2
0

2
0

2
2δ δ

−
⟨ ⟩

⟨ ⟩
= [ − ϵ − − ]

∂ ⟨ ⟩

∂ϵ
β

(25a)

Using eq 16, eq 25a can be simplified asikjjjj y{zzzzn u

n
kTu

nln2

2
2

2δ δ
−

⟨ ⟩

⟨ ⟩
=

∂ ⟨ ⟩

∂ϵ
β (25b)

Comparing eq 25b with eq 21, we obtain the following
relationship between number−number and number−energy
correlations

n u u n n2 2 2 2δ δ δ δ⟨ ⟩ = ⟨ ⟩ (26)

We emphasize that this linkage between number−energy and
number−number correlations originates from the representa-
tion of the vapor-interface equilibrium condition with T and ϵ
as the independent variables. Note that s2

0
− s2 = 0 leads to

( ) 0
nln 2 =
β

∂ ⟨ ⟩

∂
ϵ

via eq 23, signifying the existence of the

characteristic curve. Taken together with our argument in the
Theory section, the existence of the characteristic curve has
been proven to be equivalent to s2

0
− s2 = 0.

Isosteric and Partial Molar Energies. In simple terms, eq 26
means that an increase of sorbate number by δn2 is
accompanied by the increment of energy by δu = u2δn2.
Here we show that the isosteric energy u2 is actually the same
as the partial molar energy of the sorbate in the interface. To
do so, let us start from the expressions for the number−
number and number−energy fluctuations, asikjjjjjj y{zzzzzzn n n
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Combining eqs 27a and 27b yields

i
kjjjjjj

y
{zzzzzz

( )

( )
u n

n n

u

n

u

v T

n

v T

T v

T v
v T

2

2 2

,

,

, ,

2 , ,
,

T v

T v

, , 2

2

2 , , 2

2

2

2

δ δ

δ δ

δ

δ

⟨ ⟩

⟨ ⟩
= =

⟨ ⟩

⟨ ⟩

μ

μ

μ

μ

∂⟨ ⟩

∂

∂⟨ ⟩

∂

{ }

{ }

μ

μ

{ }

{ }

(28a)

Comparing eq 28a with eq 26 leads toi
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The isosteric energy u2 is proven to be the partial molar energy
of the sorbate through statistical thermodynamics.

Condition for the Existence of the Characteristic Curve.
When the sorption isotherms, measured at different temper-
atures, fall onto a single characteristic curve, eq 12 is satisfied.
Under this condition, eq 14 holds true, which is equivalent to
s2
0
− s2 = 0 in eq 18b, leading, via eq 25a, to

n u u n n( )2 2
0

2 2δ δ δ δ⟨ ⟩ = − ϵ ⟨ ⟩ (29)

and eq 28a becomes

u u n( )2
0

2δ δ= − ϵ (30)

Thus, the characteristic curve is observed when transferring a
sorbate molecule from the saturated vapor reference state to
interact with the interface reduces the energy simply by the
adsorption potential, ϵ.

Temperature Dependence of Sorption Isotherms.
Adsorption Potential Facilitates the Analysis. The temper-
ature dependence of an isotherm is often invoked for validating
the basic assumptions of an isotherm model. However, there
are multiple ways to plot isotherms from different temper-
atures: sorbate activity, a2, sorbate pressure, P2, and adsorption
potential, ϵ, have been used as variables.1−3 Here, we show that
choosing adsorption potential as the variable facilitates the
analysis of the temperature dependence of sorption isotherms.
The temperature dependence of the isotherm under constant ϵ
can be linked to correlations using the following change of
variables71ikjjjj y{zzzz ikjjjj y{zzzz ikjjjjj y{zzzzz ikjjjj y{zzzzn n nln ln ln2 2 2
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The first term on the right-hand side, via eq 10, is related to
the number−energy correlation. The second term of eq 31,

with the definition λ2 = eβ(μ2
0
−ϵ), yieldsikjjjj y{zzzz ikjjjjjj ikjjjjjj y{zzzzzzy{zzzzzz u( )2

2
0 2

0

2 2
0

2

λ

β
μ β

μ

β
λ λ

∂

∂
= − ϵ +

∂

∂
= − ϵ

ϵ (32a)

Using eq 32a, we obtainikjjjjj y{zzzzz ikjjjj y{zzzzikjjjjj y{zzzzzikjjjj y{zzzz
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It should be noted that μ2
0 is a function only of the

temperature. Therefore, combining eqs 31, 32b, 21, and 22
yields ikjjjj y{zzzz ikjjjj y{zzzzkT
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Since number−number and number−energy correlations are
linked via eq 26, with the help of eq 16, we obtain
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Thus, adopting the adsorption potential ϵ as the variable
facilitates the analysis of the temperature dependence of an
isotherm. The key is the increment of entropy, δs, which
accompanies the introduction of a sorbate, as

s s s n( )2 2
0

2δ δ≡ − (35)

Note that δs is defined relative to the saturated vapor, which is
different from the definition of δu. The temperature depend-
ence of an isotherm is driven via eq 34 by

n s s s n n( )2 2 2
0

2 2δ δ δ δ⟨ ⟩ = − ⟨ ⟩ (36)

The linkage between number−entropy and number−number
correlations comes again from the representation of the vapor-
interface equilibrium condition with T and ϵ as the
independent variables. Here, the isosteric entropy, s2, defined
by eq 19b is also the partial molar entropy of sorbates under
isochoric condition, which is a direct consequence of our proof
that the isosteric energy, u2, is the isochoric partial molar
energy (see eq 28b). Thus, eq 34 signifies that a larger
number−entropy correlation leads to a greater variation of
ln⟨n2⟩ with temperature. When there is no entropy change,
there is no temperature dependence of an isotherm plotted
against ϵ, leading to the existence of the characteristic curve.
Sorbate Activity and Partial Pressure Perspectives for the

Analysis of Temperature Dependence.We saw that simplicity
and clarity are attained using the adsorption potential as a
variable, while sorbate activity or pressure may also be used as
a variable to describe adsorption. As derived in Appendix A,
taking a2 or P2 as the variable requires the consideration of u2
− u2

0 or u2 − h2
(cal), respectively. When a2 is the variable, the

deviation from the "characteristic curve" (when a2 is chosen as
the abscissa) is caused by the energetic contribution. The
choice of P2 as the variable does not lead to a clear-cut
interpretation because of the factor u2 − h2

(cal). The adoption of
ϵ as the variable has offered a clear link to s2 − s2

0, the entropy
difference between the interface and the saturated vapor, as the
cause of temperature dependence. When s2 − s2

0 = 0, it leads
straightway to the existence of the characteristic curve and the
lack of temperature-dependent sorption when plotted against
ϵ.
Application to Water Vapor Sorption on Porous

Carbons. The origin of temperature-dependent sorption,
when plotted against the adsorption potential, was attributed
to the partial molar entropy of sorbates at the interface. Such a
simplification of the question, via statistical thermodynamics,
will be beneficial in interpreting challenging sorption
behaviors, as will be demonstrated below. We take water
vapor adsorption on carbons as our examples: (i) on a
bamboo-derived activated carbon, B-AC, by Horikawa et al.72

with a broad distribution of pore sizes (Figure 1a) and pitch-
based activated carbon fiber, ACF, by Ohba et al.73 which
contains slit pores with uniform width (Figure 2a), both
plotted against the adsorption potential. B-AC is reported to
exhibit pore size distribution ranging broadly from the
microporous to mesoporous regions with the microporous
peak at around 0.7 nm and another broad distribution ranging
between 1 and 3 nm.72 ACF, on the other hand, has been
reported to have considerably uniform slit pores with a width

around 1.1 nm.73,74 These two examples exhibit an opposite
temperature dependence:75 adsorption increases with temper-
ature on B-AC72 and decreases on ACF.73 Figures 1b and 2b
shows the plots of ln⟨n2⟩ against ϵ for both adsorbents; note
that the log plot makes low ⟨n2⟩ datapoints look more
scattered. Since the gradient of a plot of ln⟨n2⟩ against ϵ is

( ) N( ( 1))
n

T

n n

n

ln
22

2 2 2

2

β β= − ≡− +
δ δ∂ ⟨ ⟩

∂ϵ

⟨ ⟩

⟨ ⟩
via eq 21, the excess

cluster number (i.e., N22, the excess number of sorbates around
a probe sorbate, plus 1 including the probe sorbate), N22 + 1,
for ACF has been calculated using eq 21 and Figures 1b and 2b
as 10.2 (323 K), 5.2 (328 K), and 4.2 (333 K), whereas for B-
AC, the values are 3.3 (263 K), 4.0 (278 K), 4.5 (288 K), and
4.0 (298 K). Our result for ACF at 323 K is close to the
estimation based on isosteric enthalpy and simulation, 9.0, by
Ohba et al.73 The smaller N22 + 1 for B-AC is consistent with
the report of a peak around a smaller pore size (ca. 0.7 nm) in
the pore size distribution.72 Note that the excess cluster
number depends only weakly with temperature for B-AC (with
a broad pore size distribution), whereas the excess cluster
number for ACF (with a narrow pore width distribution)
decreases significantly with temperature rise.

Figure 1. (a) Water vapor adsorption ⟨n2⟩ on a bamboo-derived
activated carbon, B-AC, using the data by Horikawa et al.72 measured
at 263, 278, 288, and 298 K, plotted against the adsorption potential,
ϵ. B-AC is reported to have a broad distribution of pore sizes. (b)
Replotting of (a) in terms of ln⟨n2⟩. The gradient was calculated from
fitting (solid lines).

Figure 2. (a) Water vapor adsorption ⟨n2⟩ on pitch-based activated
carbon fiber, ACF, using the data by Ohba et al.73 measured at 323,
328, and 333 K, plotted against the adsorption potential, ϵ. ACF is
reported to be with uniform pore width. (b) Replotting of (a) in
terms of ln⟨n2⟩. The gradient was calculated from fitting (solid lines).
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The difference in the temperature dependence of isotherm
and excess cluster number can be rationalized based on the
fluctuation theory. However, in experiments, the temperature
is not changed in small increments to allow differentiation with
respect to it.58 Our analysis here will be qualitative. Under
constant ⟨n2⟩, the change (δϵ)⟨n2⟩ is positive for B-AC (Figure

1), negative for ACF (Figure 2). The positive (negative)
(δϵ)⟨n2⟩ indicates the positive (negative) entropy difference, s2
− s2

0, from the saturated vapor. (The signs here are justified by
eq 18b). Hence, according to eq 36, the number−entropy
correlation is positive for B-AC, negative for ACF. A positive
entropy−sorbate number correlation for B-AC is consistent
with a broad pore size distribution with a sharp peak in
distribution in the microporous region.72 While water can form
large clusters in mesopores, micropores restrict water cluster
size. The water molecules in the micropores are expected to
contribute to a positive number−entropy correlation because
the addition of water into a micropore already filled with water
is possible only by breaking the hydrogen bonding. Moreover,
a broad pore size distribution leads to an increasing number of
arrangements for the additional water. This rationalizes the
positive number−entropy correlation for B-AC. For ACF with
the slit-like pores of uniform width, the growth of the water
cluster is possible only along the slit pore,73 because the
additional water molecule can form hydrogen bonding with the
cluster. Consequently, s2 − s2

0 is negative, which rationalizes the
negative number−entropy correlation. Previously, the decrease
of water sorption on ACF as the increase of temperature was
attributed to the reduction of water cluster stability,73 which is
in line with our calculation of excess cluster number. Thus,
entropy−number correlation, via eq 34, governs the temper-
ature dependence of sorption, through the entropic cost of
introducing another adsorbate.
Note, at large ϵ (or low a2), the adsorption isotherms ⟨n2⟩

seem to merge onto the characteristic curve, even though the
errors inherent in the small values of ⟨n2⟩ makes it difficult to
be conclusive. (ACF, for example, has been treated to reduce
the surface functional groups significantly.73) If it is the case, it
follows that the adsorption potential ϵ in this region, which
corresponds to the adsorption of water around the residual
functional groups,76 is predominantly energetic, while the
entropic contribution is small, as has been shown above as the
condition for the existence of the characteristic curve.
Temperature Dependence in the GAB Model.

Temperature dependence of moisture sorption is an important
question in food science, for which the GAB model is routinely
used8,14,28 beyond its original model assumptions of planar
multilayer adsorption.4,5 Using the GAB model purely as a
fitting equation,4,5 here, we apply our theory to elucidate the
mechanism of temperature-dependent sorption. As an example,
we have chosen the water moisture sorption isotherm of potato
starch gel, measured at 303, 318, and 333 K, reported by
McMinn et al.77 The GAB model25−27

n
n KCa

Ka C Ka(1 ) 1 ( 1)

m
2

2

2 2

⟨ ⟩ =
− [ + − ] (37)

where the parameters nm, K, and C, varying with temperature,
were used to fit the isotherms.77 Combining eqs 21 and 37, we
obtain
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The temperature dependence of the parameters K and C were
assumed to be related to the enthalpy-related parameters, ΔHK

and ΔHC, via K = K0 exp(βΔHK) and C = C0 exp(βΔHC), with
K0 and C0 being the temperature-independent constants.77

These relationships are based purely on the assumptions of the
GAB model. Combining eqs 37 and 38, with a2 = exp(−βϵ),
yieldsikjjjj y{zzzzn Ka H
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with nm = a + bT. Through eq 34, T(s2 − s2
0) can be calculated

from eqs 38 and 39, via

( )
T s s( )
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⟨ ⟩ (40)

Figure 3 shows the temperature dependence of the isotherm,
⟨n2⟩ and ln⟨n2⟩, plotted against the adsorption potential, ϵ.

Figure 4 shows the calculation of T(s2 − s2
0) via eq 40.

Remembering from the Theory section that ϵ = (u2
0
− u2) +

T(s2 − s2
0) and that ϵ signifies the transfer of a sorbate from

interface to the saturated vapor, the free energy change of a
sorbate accompanying sorption, μ2 − μ2

0 (=−ϵ), is made up of
compensating contributions from a large negative energy
change (u2 − u2

0) and a large negative entropy change T(s2 −
s2
0). At low a2 (namely, high ϵ = −RT ln a2, i.e., ϵ > 4000 J

Figure 3. (a) Water vapor adsorption ⟨n2⟩ on a potato starch gel
modeled using the GAB model (eq 37) at 303, 318, and 333 K,77

plotted against the adsorption potential, ϵ. The parameters for eq 37
were reported by McMinn et al. (i.e., nm = 0.0559, C = 13.1, K = 0.929
at 303 K, nm = 0.0505, C = 10.7, K = 0.85 at 318 K, and nm = 0.0355,
C = 6.26, K = 0.767 at 333 K, with kg (kg dry solid)−1 for the units of
nm).

77 (b) Replotting of (a) in terms of ln⟨n2⟩.
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mol−1), T(s2 − s2
0) changes little. This large negative and near-

constant T(s2 − s2
0) signifies the restriction of the water

molecule, which is reminiscent of the “bound water”
hypothesis that has been invoked in biophysics and food
science.78−80 While the increase (i.e., becoming less negative)
of T(s2 − s2

0) at higher a2 (i.e., lower ϵ) shows that water
molecules are less restricted. This is reminiscent of the oft-used
previous speculation of the “free water”,78−80 yet our theory
can provide quantitative measures on the state of sorbates
directly from their isotherms. Thus, the fluctuation theory
sheds light on the state of sorbates based on the temperature
dependence of sorption isotherms beyond the assumptions
made by sorption models.

■ CONCLUSIONS

Sorption isotherms exhibit temperature dependence when
plotted against sorbate activity. However, the isotherms from
different temperatures very commonly fall onto a single
“characteristic curve” when plotted against the adsorption
potential.39−41 Ambiguity surrounding the theoretical founda-
tion of the potential theory has long prevented a clear
identification of the underlying mechanism.
To overcome this difficulty, the classical isosteric thermody-

namics of sorption has been reformulated within a general
framework of the statistical thermodynamic fluctuation theory
in combination with an assumption regarding the finite-ranged
nature of the interface.4 In this framework, the molecular
energetics underlying the existence of the characteristic curve is
the linkage between sorbate number−number and number−
energy correlations, i.e., each incoming adsorbate brings in its
partial molar energy without any entropic contributions. The
characteristic curve thus guarantees the purely energetic
behavior of sorbates at the interface.
When sorption at different temperatures does not fall onto a

characteristic curve, each incoming sorbate brings in entropy
also, giving rise to number−entropy correlation, which makes
sorption temperature-dependent. Our theory was able to
rationalize why activated carbons with uniform pore sizes
exhibit the opposite temperature dependence of water vapor
sorption from those with a broad pore size distribution and to
reveal the state of water sorbed on a starch gel. The theory

presented here is based on the principles of statistical
thermodynamics and independent of model assumptions.

Appendix A: Choice of a2 or P2 as the Variable for Sorption
Isotherm

Here, we show that a2 or P2 (partial pressure of sorbates),
when chosen as the variable, leads to a complicated picture for
the temperature dependence of the isotherm.

Sorbate Activity, a2. The change of variables in partial
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Using the definition of fugacity,81 ( )
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Combining eqs A.1 and A.3 with the definitions of number−
number and number−energy correlations (eqs 6 and 10), we
obtain ikjjjj y{zzzz ikjjjj y{zzzzkT
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Through the relationship between number−number and
number−energy correlations (eq 26), eq A.3 can be rewritten
as ikjjjj y{zzzz ikjjjj y{zzzzkT
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Sorbate Partial Pressure, P2. The change of variables in
partial differentiation yieldsikjjjj y{zzzz ikjjjj y{zzzz ikjjjjj y{zzzzz ikjjjj y{zzzzn n nln ln ln
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Using the definition of fugacity,81 ( )
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where we have introduced the partial molar entropy and
enthalpy, which are referred to as the “calorimetric” quantities
in the adsorption literature, asi
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Figure 4. Entropic contribution, T(s − s0), accompanying the transfer
of a sorbate from saturated vapor to the potato starch gel interface,
calculated at 318 K via eqs 38−40 and plotted against the adsorption
potential, ϵ. The parameters used were reported by McMinn et al.77

In addition to the parameters mentioned here, ΔHC = 20.0, ΔHK =
5.32 kJ mol−1, a = 0.2636, and b = −0.0007 kg (kg dry solid)−1.
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Combining eqs A.6 and A.7 with the definitions of number−
number and number−energy correlations (eqs 6 and 10), we
obtain ikjjjj y{zzzz ikjjjj y{zzzzkT
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Combining eq A.9 with the relationship between the two
correlations (eq 26), we obtainikjjjj y{zzzz ikjjjj y{zzzzkT

n

T

n
u h

n n

n

ln ln
( )

P P

2 2 2
2 2

(cal) 2 2

2
2 2

β

δ δ∂ ⟨ ⟩

∂
= −

∂ ⟨ ⟩

∂
= −

⟨ ⟩

⟨ ⟩

(A.10)

■ AUTHOR INFORMATION

Corresponding Author
Seishi Shimizu − York Structural Biology Laboratory,
Department of Chemistry, University of York, York YO10
5DD, United Kingdom; orcid.org/0000-0002-7853-
1683; Phone: +44 1904 328281; Email: seishi.shimizu@
york.ac.uk

Author
Nobuyuki Matubayasi − Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University,
Toyonaka, Osaka 560-8531, Japan; orcid.org/0000-
0001-7176-441X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.langmuir.1c01576

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors thank Steven Abbott, Olivia Dalby, and Kaja
Harton for stimulating discussions. N.M. is grateful to the
Grant-in-Aid for Scientific Research (no. JP19H04206) from
the Japan Society for the Promotion of Science and by the
Elements Strategy Initiative for Catalysts and Batteries (no.
JPMXP0112101003) and the Fugaku Supercomputing Project
(no. JPMXP1020200308) from the Ministry of Education,
Culture, Sports, Science, and Technology.

■ REFERENCES

(1) Adamson, A. W.; Gast, A. P. Physical Chemistry of Surfaces;
Wiley: New York, 1997; pp 599−684.
(2) Rouquerol, F.; Rouquerol, J.; Sing, K. S. W. Adsorption by
Powders and Porous Solids; Elsevier: Amsterdam, 1999; pp 237−438.
(3) Butt, H.-J.; Graf, K.; Kappl, M. Physics and Chemistry of
Interfaces; Wiley-VCH: Weinheim, 2013; pp 229−265.
(4) Shimizu, S.; Matubayasi, N. Fluctuation Adsorption Theory:
Quantifying Adsorbate-Adsorbate Interaction and Interfacial Phase
Transition from an Isotherm. Phys. Chem. Chem. Phys. 2020, 22,
28304−28316.
(5) Shimizu, S.; Matubayasi, N. Sorption: A Statistical Thermody-
namic Fluctuation Theory. Langmuir 2021, 37, 7380−7391.
(6) Shimizu, S.; Matubayasi, N. Adsorbate-Adsorbate Interactions
on Microporous Materials. Microporous Mesoporous Mater. 2021,
No. 111254.
(7) Shimizu, S.; Matubayasi, N. Cooperative Sorption on Porous
Materials. Langmuir 2021, 37, 10279−10290.

(8) van den Berg, C.; Bruin, S. Water Activity and Its Estimation in
Food Systems: Theoretical Aspects. Water Activity: Influences on Food
Quality; Academic Press: London, 1981; pp 1−61.
(9) Avnir, D.; Jaroniec, M. An Isotherm Equation for Adsorption on
Fractal Surfaces of Heterogeneous Porous Materials. Langmuir 1989,
5, 1431−1433.
(10) Pfeifer, P.; Obert, M.; Cole, M. W. Fractal BET and FHH
Theories of Adsorption: A Comparative Study. Proc. R. Soc. London,
Ser. A 1989, 423, 169−188.
(11) Pfeifer, P.; Wu, Y. J.; Cole, M. W.; Krim, J. Multilayer
Adsorption on a Fractally Rough Surface. Phys. Rev. Lett. 1989, 62,
1997−2000.
(12) Neimark, A. V.; Unger, K. K. Method of Discrimination of
Surface Fractality. J. Colloid Interface Sci. 1993, 158, 412−419.
(13) Bao, L.; Ma, J.; Long, W.; He, P.; Zhang, T. A.; Nguyen, A. V.
Fractal Analysis in Particle Dissolution: A Review. Rev. Chem. Eng.
2014, 30, 261−287.
(14) Peleg, M. Models of Sigmoid Equilibrium Moisture Sorption
Isotherms with and without the Monolayer Hypothesis. Food Eng.
Rev. 2020, 12, 1−13.
(15) Langmuir, I. The Adsorption of Gases on Plane Surfaces of
Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361−1403.
(16) Fianu, J.; Gholinezhad, J.; Hassan, M. Comparison of
Temperature-Dependent Gas Adsorption Models and Their Applica-
tion to Shale Gas Reservoirs. Energy Fuels 2018, 32, 4763−4771.
(17) Ghosal, P. S.; Gupta, A. K. Determination of Thermodynamic
Parameters from Langmuir Isotherm Constant-Revisited. J. Mol. Liq.
2017, 225, 137−146.
(18) Romá, F.; Riccardo, J. L.; Ramirez-Pastor, A. J. Statistical
Thermodynamics Models for Polyatomic Adsorbates: Application to
Adsorption of n-Paraffins in 5A Zeolite. Langmuir 2005, 21, 2454−
2459.
(19) Saffarionpour, S.; Tam, S. Y. S.; Van der Wielen, L. A. M.;
Brouwer, E.; Ottens, M. Influence of Ethanol and Temperature on
Adsorption of Flavor-Active Esters on Hydrophobic Resins. Sep. Purif.
Technol. 2019, 210, 219−230.
(20) Koresh, J. Study of Molecular Sieve Carbons: The Langmuir
Modelin Ultramicroporous Adsorbents. J. Colloid Interface Sci. 1982,
88, 398−406.
(21) Hwang, K. S.; Choi, D. K.; Gong, S. Y.; Cho, S. Y. Adsorption
and Thermal Regeneration of Methylene Chloride Vapor on an
Activated Carbon Bed. Chem. Eng. Sci. 1997, 52, 1111−1123.
(22) Malek, A.; Farooq, S. Comparison of Isotherm Models for
Hydrocarbon Adsorption on Activated Carbon. AIChE J. 1996, 42,
3191−3201.
(23) Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in
Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309−319.
(24) Gregg, S.; Sing, K. S. W. Adsorption, Surface Area, and Porosity;
Academic Press: London, 1982; pp 111−194.
(25) Guggenheim, E. A. Applications of Statistical Mechanics;
Clarendon Press: Oxford, 1966; pp 186−206.
(26) Anderson, R. B. Modifications of the Brunauer, Emmett and
Teller Equation. J. Am. Chem. Soc. 1946, 68, 686−691.
(27) de Boer, J. H. Dynamical Character of Adsorption; Clarendon
Press: Oxford, 1968; pp 200−219.
(28) Staudt, P. B.; Tessaro, I. C.; Marczak, L. D. F.; Soares, R. D. P.;
Cardozo, N. S. M. A New Method for Predicting Sorption Isotherms
at Different Temperatures: Extension to the GAB Model. J. Food Eng.
2013, 118, 247−255.
(29) Iglesias, H. A.; Chirife, J.; Fontan, C. F. Temperature
Dependence of Water Sorption Isotherms of Some Foods. J. Food
Sci. 1986, 51, 551−553.
(30) Menkov, N. D.; Paskalev, H. M.; Galyazkov, D. I.; Kerezieva-
Rakova, M. Brunauer-Emmet-Teller (BET)-Monolayer Moisture
Content with Temperature. Nahrung 1999, 43, 118−121.
(31) Iglesias, H. A.; Chirife, J. Technical Note: Correlation of BET
Monolayer Moisture Content in Foods with Temperature. Int. J. Food
Sci. Technol. 1984, 19, 503−506.

Langmuir pubs.acs.org/Langmuir Article

https://doi.org/10.1021/acs.langmuir.1c01576
Langmuir XXXX, XXX, XXX−XXX

I



(32) Iglesias, H. A.; Chirife, J. Prediction of the Effect of
Temperature on Water Sorption Isotherms of Food Material. Int. J.
Food Sci. Technol. 1976, 11, 109−116.
(33) Hailwood, A. J.; Horrobin, S. Absorption of Water by
Polymers: Analysis in Terms of a Simple Model. Trans. Faraday
Soc. 1946, 42, 84−92.
(34) Dubinin, M. M.; Astakhov, V. A. Development of the Concepts
of Volume Filling of Micropores in the Adsorption of Gases and
Vapors by Microporous Adsorbents - Communication 2. General
Bases of the Theory of Adsorption of Gases and Vapors on Zeolites.
Bull. Acad. Sci. USSR, Div. Chem. Sci. 1971, 20, 8−12.
(35) Dubinin, M. M.; Radushkevich, L. V. Equation of the
Characteristic Curve of Activated Charcoal. Proc. Acad. Sci. USSR,
Phys. Chem. Sect. 1947, 55, 331−333.
(36) Dubinin, M. M. The Potential Theory of Adsorption of Gases
and Vapors for Adsorbents with Energetically Nonuniform Surfaces.
Chem. Rev. 1960, 60, 235−241.
(37) Dubinin, M. M. Physical Adsorption of Gases and Vapors in
Micropores. Prog. Surf. Membr. Sci. 1975, 9, 1−70.
(38) Dubinin, M. M. Fundamentals of the Theory of Adsorption in
Micropores of Carbon Adsorbents: Characteristics of Their
Adsorption Properties and Microporous Structures. Carbon 1989,
27, 457−467.
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