
This is a repository copy of Machine Learning in Robot Assisted Upper Limb 
Rehabilitation: A Focused Review.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177392/

Version: Accepted Version

Article:

Ai, Q, Liu, Z, Meng, W et al. (2 more authors) (2021) Machine Learning in Robot Assisted 
Upper Limb Rehabilitation: A Focused Review. IEEE Transactions on Cognitive and 
Developmental Systems. ISSN 2379-8920 

https://doi.org/10.1109/TCDS.2021.3098350

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



  

 

Abstract—Robot-assisted rehabilitation, which can provide 

repetitive, intensive and high-precision physics training, has a 

positive influence on motor function recovery of stroke patients. 

Current robots need to be more intelligent and more reliable in 

clinical practice. Machine learning algorithms (MLAs) are able 

to learn from data and predict future unknown conditions, 

which is of benefit to improve the effectiveness of robot-assisted 

rehabilitation. In this paper, we conduct a focused review on 

machine learning-based methods for robot-assisted upper limb 

rehabilitation. Firstly, the current status of upper rehabilitation 

robots is presented. Then, we outline and analyze the designs 

and applications of MLAs for upper limb movement intention 

recognition, human-robot interaction control and quantitative 

assessment of motor function. Meanwhile, we discuss the future 

directions of MLAs-based robotic rehabilitation. This review 

article provides a summary of MLAs for robotic upper limb 

rehabilitation and contributes to the design and development of 

future advanced intelligent medical devices. 

 
Index Terms—Machine learning, upper limb rehabilitation, 

intention recognition, human-robot interaction, quantitative 

assessment 

I. INTRODUCTION 

troke is a disorder of cerebral blood circulation caused by 
blockage of vessels. According to World Health 

Organization, stroke is one of the most common causes of 
death and the main cause of adulthood disabilities. Whilst 
there are more than 2 million new stroke patients, and more 
than 1.5 million people die from stroke each year in China [1]. 
With the rapid progress of neurosurgery technologies, the 
mortality rate of stroke patients is gradually decreasing, but 
the disability rate remains high. One of the most common 
symptom of stroke is the restriction of motor activity, which 
reduces muscle movement and mobility [2]. More than 
two-thirds stroke patients suffer from impairment upper limb 
exercise capacity [3]. About 50% of patients have chronically 
impairment of arm function after stroke [4]. The lack of upper 
limb function makes it difficult for patients to perform daily 
living activities independently, which leads to serious family 
and social issues.  
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Traditional treatments that physiotherapists utilize simple 
equipment or qualitative observations to guide patients have 
obvious drawbacks of intensive subjectivity and uncertainty. 
Experiments indicate that robot-assisted rehabilitation can 
promote the reorganization and compensation of central 
nervous system, and restore patient's limb motor function by 
providing precise, repetitive, and task-specific treatments [5]. 
Robots can accurately track predefined path, perform various 
training modes according to patient’s recovery conditions, 
objectively record the patient data and assess the ability during 
exercise. Besides, rehabilitation robots can arouse patient’s 
training willingness through virtual reality or other techniques. 

Rehabilitation robots are directly in contact with human, it’s 
thus crucial for robots to acquire patients’ data and learn their 
movement characteristics to ensure the safety and effectiveness 
of training. Machine learning algorithms (MLAs) learn from 
experience and predict unknown conditions, which has great 
potential to improve the intelligence of robot-assisted 
rehabilitation. Combined with MLAs, robots can explore the 
inherent movement patterns and predict human intentions. 
Intelligent methods can learn from past control process, adapt 
better to dynamic environment and unknown robotic model. 
Also, the evaluation process can be more objective through 
index quantification and feature learning. Though existing 
review articles have discussed various robot-assisted upper 
limb rehabilitation in terms of the robotic hardware [6], sensing 
technologies [7], control strategies [8, 9], patient engagement 
[10], human-robot interaction (HRI) modalities [11], and 
kinematic assessment [12, 13], etc., the applications of MLAs 
in robot-assisted rehabilitation has not been fully discussed.  

This paper aims to provide a systematic review of the 
design and applications of MLAs for robot-assisted upper 
limb rehabilitation. Fig. 1 shows a typical system of 
robot-assisted upper limb rehabilitation, which can be an 
end-effector or exoskeleton mounted design. End-effector 
rehabilitation robots rely on a single attachment point at the 
end of the human arm, whereas exoskeleton rehabilitation 
robots interact with human arm through multi-point contact. 
Whilst MLAs can appropriately sit in several components of 
the system, such as intention understanding, robotic control 
and patient assessment, by using the collected human and/or 
robot data. MLAs can be used in intension recognition with 
physiological and/or physical signals to predict patient 
movements; intelligent controller is able to learn from patient 
status to adjust their reference trajectories or control criteria; a 
rehabilitation knowledge library can also be established by 
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combining MLAs with conventional medical clinical scales to 
realize automatic evaluation of patient recovery stage.   

This article points out the current research gaps and future 
directions, and promotes the emergence of more adaptable and 
intelligent robots to meet the growing demand of rehabilitation. 
The remaining of this article are organized as follows: Section 
II overviews the upper limb rehabilitation robots; Section III 

summarizes the movement intention recognition of patients 
using MLAs; In Section IV, the intelligent control strategies of 
upper limb rehabilitation robots are analyzed and discussed; 
Section V summarizes robot-assisted quantitative assessment 
methods based on MLAs. Finally, we make a conclusion on 
MLAs in robot-assisted rehabilitation and the future trends. 

Intention Recognition

Motion 
Intention

Intelligent Controller

Adjustment based 
on Intension

Reference 
trajectory

Controller 

Machine 

Learning 

Algorithms

Robot 
system

feedback

-

+

+

d u

Quantitative Assessment

Patient 
data

Standard 
clinical 

tests

Feature 

selection

Machine 

Learning 

Algorithms

Rehabilitation 
Assessment

Rehabilitation 
Knowledge 

library

Machine Learning 

Algorithms

Physiological 
Signals

Physical 
Signals

End-effect 
(position sensor)

Camera

Force/Torque sensor

sEMG electrode

Exoskeleton(Force/
Torque, position sensor)

Exoskeleton End-effector human data

Offline

analysis

Automatic 

evaluation





r

Online acquire Data feedback Real-time control

 
Fig. 1.  Machine learning-based robot-assisted upper limb rehabilitation system 

II. OVERVIEW OF UPPER LIMB REHABILITATION ROBOTS 

End-effector robots firstly appeared 30 years ago, which 
have the advantages of simple structure, convenient control 
and high-precision [14]. A majority of end-effector robots 
were designed that time and many rehabilitation experiments 
with human participants have been conducted in the past two 
decades. Currently, some end-effector robots have been even 
applied in clinical robotic rehabilitation or treatments. Typical 
end-effector robots include MIT-Manus [15], MIME [16], 
ARMGuide [17], GENTLE/S [18], NeReBot [19], EMUL 
[20], Braccio di ferro [21] and ACT3D [22], etc. Fig. 2(a) 
illustrates a new end-effector upper limb rehabilitation robot 
named EULRR, which consists of a supporting module and a 
motion assistance module. Two 7 degree-of-freedom (DOF) 
manipulators were used to support and assist patient’s arm to 
complete rehabilitation training. Each joint was equipped with 
a torque sensor and a position encoder, which can be used for 
torque control. The assist-as-needed (AAN) controller allows 
patient’s arm to move freely in a virtual channel and provide 
assistance while the arm deviates the virtual channel. 

Wearable exoskeleton robots can provide assistance for 
multiple joints of the upper limb to perform safe and flexible 
rehabilitation training, which has gradually become popular in 
clinics. However, exoskeleton robots have more complicated 
mechanical structures and control strategies, so a majority of 
rehabilitation exoskeletons are still in prototype phase [25]. 
ETH Zurich has developed the ARMin series [26-30] for 
upper limb rehabilitation. Other well-known examples include 
L-Exos [31], CADEN-7 [32], IntelliArm [33], SUEFUL-7 
[34], UL-Exo7 [35], Pneu-Wrex [36], RUPERT [37], etc. In 
Fig. 2(b), the upper limb neurorehabilitation exoskeleton  has 

        
    (a) EULRR [23]             (b) Neurorehabilitation exoskeleton [24] 

Fig. 2.  Examples of robot-assisted upper limb rehabilitation 

seven actuated DOF for shoulder, elbow, and wrist joints. The 
robot joint positions were measured via potentiometers and 
two six-axis force/torque sensors were used to detect the 
interaction force. A neural-fuzzy adaptive controller based on 
radial basis function neural network (RBFNN) was  proposed 
to guarantee the trajectory tracking accuracy with parametric 
uncertainties and environmental disturbances. 

Existing upper limb rehabilitation robots are able to 
enhance the muscle strength and expand range of movement 
of affected limb. However, they are not intelligent enough to 
provide integral rehabilitation training without the guidance of 
therapists. Due to the uncertainty of human movement, it’s 
difficult for current robots to provide appropriate assistance as 
patients needed. It is thus important for rehabilitation robot to 
recognize the motor intentions of patient during training. 
MLAs are capable of recognizing motion intention through 
physiological and physical signals to automatically regulate 
the training according to patient’s actual ability. In addition, 
most of the existing robotic systems still follow the predefined 
control methods, while intelligent or adaptive controller is 
more appropriate for personalized rehabilitation. Combing the 
advanced control theory with MLAs, intelligent control 
methods can be proposed to adapt better to nonlinear systems 



  

and dynamic environment. Last but not least, MLAs are 
suitable for patient quantitative assessment by preprocessing, 
learning and classifying patient’s data in recovery process. In 
summary, MLAs can improve the efficiency and reliability of 
motor function assessment in post-stroke rehabilitation.  

III. MACHINE LEARNING-BASED INTENTION RECOGNITION 

During rehabilitation training, the involvement of patients' 
willingness to actively exercise can strengthen the central 
nervous system and speed up the recovery. The interactive 
process between human and robot should be dominated by 
patient's movement intention, supplemented by the robot 
assistance. How to incorporate patient's voluntary intention 
into robotic system is the primary goal for active rehabilitation. 
A common strategy is to quantify patient’s intention with 
patient’s data during the recovery. There are mainly two 
branches for the digitization of movement intention: 1) via 
physiological signals, and 2) via physical signals. 

A. via Physiological Signals 

Various physiological signals [38] have been used to obtain 
the movement intention information of human limbs, including 
electromyogram (EMG), electroencephalogram (EEG), 
electrooculogram (EOG) and electrocardiogram (ECG), etc. 

However, the amplitude of EEG is very small (5-300 μV), 

which requires signal amplifier with very high gain multiple 
(about 100dB), while the subtle movement of any small muscle 
may cause large noises; the learning and calibration process of 
EOG signal is extremely complicated, which also brings 
limitations to its application; ECG mostly reflects emotional 
information but less exercise intention information. In addition, 
the EMG signal can predict the human's movement before it 
occurs, so in this section we mainly consider the intention 
recognition using surface EMG (sEMG) signals, which are 
easy to acquire, stable and contains rich muscle information. 
Currently, MLAs have been usually applied in sEMG signal 
classification, such as Hidden Markov Models (HMMs) [39], 
Support Vector Machine (SVM) [40], Dynamic Bayesian 
Network (DBN) [41], Multilayer Perceptron Neural Network 
(MLPNN) [42] and Linear-based Artificial Neural Network 
(ANN) [43], etc. Though these methods can reach satisfactory 
classification accuracy, they can only provide an "on/off" 
signal, which may lead to non-smooth robot control. The robot 
actions cannot switch to each other arbitrarily and no further 
control can be performed during the execution of each action. 

TABLE I.  CONTINUOUS MOTION ESTIMATION VIA SEMG USING MACHINE LEARNING METHODS 

Types Methods 
Representative 
work 

Aims Features Prediction results 

Angle 
estimation 

SVM Siddiqi (2015) 
Prediction of thumb angle during 
flexion motion 

AR(2)-Vr. 
+MWAMP+SSI 

Average accuracy: 86.53% 

GRNN Liu (2018) 
Knee joint angle prediction based on 
muscle synergy theory 

WL Mean R2: 0.933 

TDRNN Xin (2017) 
Prediction of hand and wrist in 
3-DOF 

RMS R2 ranges between 0.81 and 0.94 

NARX 
MLPNN 

Retheep (2017) 
Estimation of elbow movement 
velocity and elbow joint angle 

IEMG+ZC 
R value: 0.9641 (angular prediction) and 
0.9347 (velocity estimation) 

LS-SVR Li (2015) 
Estimation of joint angles of knee 
and hip 

IAV RMSE is smaller than 5° 

PCA(ICA) 
and ANN 

Zhang (2017) 
Simultaneous and continuous 
estimation for 4-DOF shoulder and 
elbow joint 

MAV 
Average estimation accuracy 91.12% 
(90.23%) 

Force/ 
Torque 
estimation 

ANN Bahareh (2013) Force estimation of wrist and hand MAV 
Average RMSE: 0.76 ± 0.42 and average 
of R2: 0.84 ± 0.08 

TDNNs Claudio (2014) Online elbow joint torque prediction MAV 
RMSE(shoulder): 2.17 
RMSE(elbow): 1.19 

BPNN Peng (2015) 
Torque estimation to obtain human 
motion intention 

MVC 
RMS(hip): 3.71 
RMS(knee): 2.92 

Features: AR(2)-Vr. +MWAMP+SSI: 2nd order Auto-regressive + Modified Willison Amplitude + Simple Square Integral (SSI) giving;  
ML: wave-length; IEMG: integrated EMG; ZC: Zero crossing; IAV: Integral absolute value; MAV: mean absolute value; MVC: maximum voluntary 
contraction; PCA: principal component analysis; ICA: independent component analysis; 
Criterion of errors: RMSE: root mean square error; CC: correlation coefficient; R2: coefficient of determination; RMS: root-mean-squared; R value: 
correlation coefficient. 

Therefore, how to continuously estimate the joint angle 
and force/torque is the key to achieve uninterrupted and 
smooth control of rehabilitation robots. Attributing to the 
nonlinear processing capabilities, MLAs are particularly 
suitable for continuous motion estimation, while Table I 
shows the characteristics of MLAs-based methods. The joint 
angle estimation based on sEMG can promote continuous 

smooth control towards the trajectory of rehabilitation robots. 
Siddiqi et al. [44] used SVM to predict thumb angle of 
bending motion and adopted "piecewise-discretization" 
method for continuous angle prediction. Liu et al. [45] used a 
generalized neural network (GNN) to estimate the joint angle 
of the lower limb knee joint during continuous movement. Xin 
et al.[46] used sEMG to predict the joint angle of wrist flexion 



  

and extension movement through a time-delay recurrent 
neural network (TDRNN). Retheep et al. [47] proposed a 
Nonlinear Auto Regressive with eXogenous (NARX) input 
structure based multiple layer perceptron neural network 
(MLPNN) model to estimate the elbow joint angle and angular 
velocity. With the rising demand of multi-DOF rehabilitation 
equipment, multiple joint angles need to be estimated. Li et al. 
[48] derived the dynamic relationship between the joint angle 
and the level of muscle activation on the basis of least squares 
support vector regression (LS-SVR), which could estimate the 
angles of the hip and knee joints. Zhang et al. [49] proposed a 
simultaneous estimation method based on ANN, principle 
component analysis (PCA) and independent component 
analysis (ICA) to calculate the shoulder and elbow joint angles 
that coordinate the movement of the upper limbs. 

Muscle force and joint torque can reflect human activation 
status, and the accurate estimation of force and torque helps 
quantify the patient's movement intention. Bahareh et al. [50] 
mapped muscle activation coefficient to joint force with ANN, 
and estimated the joint force of wrist and hand movements. 

Claudio et al. [51] proposed a sEMG-based torque prediction 
method based on time-delay neural networks (TDNNs). Peng 
et al. [52] established two three-layer BPNN sEMG-based 
models to estimate the torques of the hip and knee joints. 

B. via Physical Signals 

Intention estimation based on physical signals is generally 
carried out with human-robot kinematic and dynamic data 
such as force and position, and a mapping model can be 
established to quantify the active movement intention. Some 
researchers regard human motion intention as a stochastic 
process. Ding et al. [53] proposed a method based on HMMs 
and used probability density function to build kinematic or 
dynamic models of human arm for long-term prediction. Dirk 
et al. [54] used Hybrid Dynamic Bayesian Network (HDBN) 
to model human intention, and proposed a multi-level 
approach towards intention, activity and motion recognition. 
Zhu et al. [55] combined a NN for gesture spotting and a 
hierarchical hidden Markov model (HHMM) for 
context-based recognition. 

 
TABLE II.  INTENTION ESTIMATION VIA PHYSICAL SIGNALS USING MACHINE LEARNING METHODS 

 
Considering the nonlinear and time-varying characteristics 

of human limbs, NN has been combined with the intention 
estimation method, due to its excellent approximation ability 
for unknown complex nonlinear system. Ge et al. [56] used a 
supervised NN to estimate the offline expected trajectory of 
the human limb. Specifically, they acquired the interaction 
force, position and speed of contact point to train the human 
limb model, and then estimated patient movement intentions. 
Nonetheless, offline estimation has two shortcomings: 
patients may change their intentions during interactive process 
which leads to retraining of models; and human fine 
movements are difficult to recognize during practical training. 
Li et al. [57] defined the desired trajectory of human as motion 
intension and used RBFNN to ensuring the accuracy of online 
estimation in spite of the change of human motion intention, 
which could overcome the nonlinear and time-varying 
property of the limb model. However, the weights refreshing 
relied heavily on the radial basis function parameters for 
convergence, and the adjustment of parameters was 

time-consuming. Khan et al. [58] used extreme learning 
machine (ELM) to predict human movement intentions, in 
which the hidden layer biased weights were randomly chosen, 
and the output weights were determined by a generalized 
inverse operation of the hidden layer matrix, so as to reduce 
the learning time. The MLAs-based intention estimation 
methods via physical signals are summarized in Table II. 

C. Discussion on MLAs-based recognition  

It is significant to understand patient movement intention 
during rehabilitation. As for physiological signals, especially 
sEMG, great progress has been made by applying MLAs into 
discrete classification to achieve high accuracy. However, 
discrete commands make the robot trajectory discontinuous. 
While continuous motion estimation based on ANN are 
necessarily required to make the robot move more smooth and 
safe. ANN shows strong nonlinear characteristics, and many 
NNs of different structures have been used to estimate 
continuous motion signals, such as angle and force/torque. 
However, the structure of the NN has a relatively large impact 

Types Methods 
Representative 
work 

Aims Signals  Prediction results 

Stochastic 
methods 

HMMs Ding (2011) 
Online prediction of human arm’s 
behavior 

Position of arm joints 
(shoulder, elbow, wrist) from 
motion capture 

Computational time is around 
0.04s with the threshold δ = 

0.9996 
HDBN 
 

Dirk (2011) 
 

Motion recognition on a data set of 
complex kitchen tasks 

Images from a monocular 
camera 

Average recognition rate of 
67.2% 

HHMM Zhu (2008) Daily activity recognition 
Inertial sensors attached to 
one foot and the waist 

Test accuracy: 98.3% 

Neural 
networks 

Supervised 
NN 

Ge (2011) 
Motion intention estimation for 
physical HRI 

Interaction force, position and 
velocity 

The desired mean-square 
error 10−8 

RBFNN Li (2014) 
Online motion intention estimation 
for human-robot collaborating 

Force/torque sensor 
Robot  moves toward human’s 
intended position  

ELM Khan (2017) 
Estimation of Desired Motion 
Intention when picking up a cup 
with upper limb exoskeleton 

Position, velocity and force 
data 

RMS Error = 4.2° with 

Standard Deviation = 6° 



  

on the estimation results, sometimes it is difficult to define a 
suitable network structure, and the determination of 
parameters also largely depend on the training data. Besides, 
NN currently has many shortcomings: low calculation speed, 
poor generalization capacity and local minimum [59]. 

Physical signals (including joint angle, angular velocity, 
acceleration, force, and torque, etc.) can be directly obtained 
by physical sensors. Stochastic methods or NNs are often used 
to approximate the kinematics and dynamics models of human 
limbs, so as to extract the patient motion intention. Stochastic 

method defines the intentions into several states, which is 
suitable for recognition of actions with small changes [60]. 
NNs possess excellent universal approximation ability to 
nonlinear and time-varying properties of human limb models. 
For both physiological and physical signals, MLAs will play 
important roles in nonlinear signal processing. However, the 
majority of current researches on MLAs still have certain 
limitations, which only work for specific tasks. Consequently, 
MLAs need to be further developed to cater for the 
characteristics of the signals to be processed, while the 
learning speed and accuracy of real-time intention estimation 
need to be improved. Deep learning, as current hot issue of 
MLAs, has been applied into EEG analysis [61, 62]. Due to 
the huge demand for patient samples and consumption of 
training time, new deep learning structures are expected to 

proposed to achieve faster and more accurate recognition. In 
addition, it’s an important area to estimate patient intention by 
combining multiple signals, which adopts appropriate MLAs 
according to the properties of different signals to enhance the 
reliable of intention recognition.  

IV. MACHINE LEARNING-BASED HUMAN-ROBOT 

INTERACTIVE CONTROL 

To facilitate personalized training, rehabilitation robots 
should be able to adjust the assistive trajectory or force 
according to the condition of patients, and guide the patient to 
move actively during exercise. Appropriate human-robot 
interactive control strategies are crucial to achieve motor 
function reconstruction for patients after stroke with 
rehabilitation robots. In rehabilitation, the robot compliance is 
also important which can adapt to the external constraint 
environment. The compliance can be passive or active [63]. 
Passive compliance uses specific compliant actuators to make 
the robot comply with environmental changes. Active 
compliance refers to the design of appropriate control 
strategies to adjust the contact force between the human and 
robot. By combining with advanced control theory, robots can 
be adjusted to cope with complex environments adaptively. 

 
TABLE III.  NEURAL NETWORK-BASED ADAPTIVE INTERACTIVE CONTROL METHODS 

 
A. Neural Network-Based Adaptive Interactive Control  

Adaptive functional training allows controller parameters 
or task difficulty index to be modified according to patient's 
performance, rather than imposing a predetermined mode. The 
adaptive algorithm can feed back the output of control system 
to the input and change it with certain rules to overcome the 
difficulties caused by uncertainty of the time-invariant model. 
Huang et al. [64] developed an adaptive impedance control 
scheme for a constrained robot to achieve asymptotic 
convergence of the robot’s position tracking error and the 
boundedness of constraint force error. Choi  et al. [65] adopted 
adaptive admittance control to select the task and set the task 
difficulty adaptively according to patient's previous data. 

Adaptive control methods can revise the assistive trajectory or 
force according to patient's performance, thus making the 
interaction between robot and human safer and compliant. 
However, because of the individual differences, such as arm’s 
length and range of motion, impedance parameters are still 
tentative and cannot be easily extended to other participants.  

Human-robot interactive control schemes incorporating 
MLAs (such as NNs) have been introduced to rehabilitation 
robots recently. In Table III we summarize the NN-based 
adaptive impedance control methods. Tsuji et al. [66] used 
ANN to establish an adaptive training system based on human 
characteristics, utilizing a NN to adjust the control parameters 
to cope with individual differences. Kiguchi et al. [67] further 
proposed a hierarchical neuro-fuzzy impedance controller for 

Control method 
Representative 
work 

Aims Control results 

Adaptive impedance 
control 

Huang  (2004) Position/force tracking adaptively tuned with 
position error 

Positions converge to desired values with force errors 
bounded, torques in reasonable ranges 

Adaptive admittance 
control 

Choi (2009) Adaptive task scheduling and adaptive 
modification of difficulty 

The simulations with different difficulties successfully 
followed the desired model 

Adaptive impedance 
control based on ANN 

Tsuji (2005) Tracking control using one NN to adapt 
individual differences and identifying 
nonlinear characteristic 

Adaptive adjustment of the parameters to improve the 
effectiveness of the tracking performance 

Hierarchical neuro- fuzzy 
adaptive impedance 
control 

Kiguchi  
(2008) 

Adapt to physical and physiological condition 
of any user to realize the desire motion 

The exoskeleton system effectively assists the 
upper-limb motion with the activation levels of the EMG 
signals reduced 

Adaptive impedance 
control based on 
EDRFNN 

Xu (2011) Regulate desired impedance between robot 
and impaired limb in real time 

EDRFNN controller has good position tracking 
performance even in the presence of variable assistive 
force 

Adaptive impedance 
controller based RBFNN 

Khan (2015) Extraction of desired motion intention  and 
development of impedance control for 
assistance 

Asymptomatic tracking of desired reference impedance 
model 



  

a robotic rehabilitation system, in which the desired 
impedance control parameters were regulated by the EMG 
signals of limbs. Xu et al. [68] developed an adaptive 
impedance controller based on evolutionary dynamic fuzzy 
neural network (EDRFNN) to regulate the desired impedance 
between robot and impaired limb in real-time according to 
physical recovery condition. Khan et al. [69] proposed an 
adaptive impedance controller based on RBFNN for the upper 
limb dynamic exoskeleton to follow human movement 
actively. Meng et al. [70] proposed a robust iterative learning 
feedback tuning technique for repetitive training control, 
which can learn from previous control data to adjust controller 

parameters. Ai et al.[71] further proposed high-order 
model-free adaptive iterative learning controller to achieve 
fast convergence speed. NN-based intelligent controllers 
possess superior performance because they can adapt to 
patients through learning. However, due to the inevitable NN 
reconstruction error, the control trajectory is limited to unified 
ultimate bounded stability [72]. Furthermore, there will be a 
trade-off between the robot impedance and the tracking 
accuracy. It is necessary to develop an advanced controller by 
combining with MLAs which can automatically adjust the 
control criteria for different training tasks.  

TABLE IV.  REINFORCEMENT LEARNING-BASED INTERACTIVE CONTROL METHODS 

 

B. Reinforcement Learning-Based Interactive Control  

Agent

Environment

state reward action

tS tR tA

1tR 

1tS   
Fig. 3.  Structure of typical reinforcement learning scheme 

Reinforcement learning (RL) is a branch of machine 
learning, which focuses on goal-directed learning from 
experience. As shown in Fig. 3, the state signal represents the 
state of agent such as the Cartesian position of robot, the 
action signal describes the influence of the agent to the 
environment, and the reward signal gives positive or negative 
feedback to the agent [73]. The principle of RL is to find out a 
suitable policy to maximize the reward function generated by 
agent when interacting with the environment by trial-and-error 
search policy. Thus, incorporating RL into robot control can 
improve control performance and provide a new way towards 
the optimization decision of a complex system with unknown 
model. Actually, RL-based control methods have been applied 
to interactive control of robotic arms, such as the biological 
arm  control [74], robotic arm navigation [75], and robotic arm 
tracking control with uncertainty [76]. 

In recent years, RL has been applied to intelligent control 
of manipulators in HRI scenarios. Some representative works 
of RL-based control schemes are demonstrated in Table IV. 
Taking the actor-critic as an example, such a typical RL 
algorithm integrates value-based method with policy gradient. 
Actor is a policy function used to generate actions and interact 
with the environment; and the critic is a value function used to 
evaluate the performance of the actor and guide the next stage 
of the actor. Byungchan et al. [77] combined impedance 
control with RL based on equilibrium point control theory to 
determine the impedance parameters for contact tasks, in 
which the state vectors were the joint angles and velocities, the 
action vectors changed the stiffness matrix in Cartesian space 
and the rewards were designed to minimize  two performance 
indexes. The optimal impedance parameters were searched 
through episodic natural actor-critic (eNAC) algorithm based 
on the recursive least-squares filter. Pane et al. [78] 
established input compensation and reference compensation 
methods with actor-critic method to promote the performance 
of the nominal tracking controller. Each joint of the 6-DOF 
robot arm was equipped with an actor-critic compensator to 
reduce the number of learning parameters and simplify the 
model of learning algorithm. Meng et al. [79] proposed an 
adaptive inverse optimal hybrid control (AHC) algorithm 
combining inverse optimal control and actor-critic learning to 
provide global asymptotically tracking for unknown nonlinear 
robots with uncertain human dynamics. 

Control method 
Representative 
work 

Aims Function of Reinforcement learning 

Impedance control using 
eNAC algorithm 

Byungchan  
(2010) 

Motor skill learning for robotic contact 
tasks 

Determine the impedance parameters and optimize the 
performance of the contact task 

RL-based input and 
reference compensation 

Pane (2019) Precise reference tracking on a 6-DOF 
robotic manipulator 

Compensate unmodeled aberrations to enhance the 
performance of nominal tracking controller 

AHC based on actor-critic  Meng (2014) Assist person to achieve functional task on 
assisted-as-needed principle 

Evaluate the patient’s performance and change its 
assistance/resistance automatically 

Adaptive impedance- based 
control combining with IRL 

Hamidrezaet  
(2016) 

Assist human to perform a task with 
minimum workload demands 

Transform the problem of finding the optimal 
parameters of robot impedance model into a LQR 
problem and solve LQR problem 

Variable impedance control 
based on model-free RL  

Li (2019) Control the contact force accurately in the 
unstructured environment 

Predict the uncertainties of the states and search the 
optimal control strategy and regulate the target stiffness 
and damping directly 

Variable admittance control 
based on fuzzy Sarsa (λ) 
learning 

Wang (2019) Surgical arms adjusted manually to their 
expected configuration before 
robotic-assisted surgery 

Acclimatize various operating characteristics through 
enough online learning 



  

Apart from actor-critic framework, other RL methods have 
also been applied to the manipulator interaction controller. 
Hamidrezaet et al. [80] built an intelligent interaction system 
which adjusted the robot behavior automatically to help 
people accomplish cooperative tasks. The optimization of 
robot impedance parameters was transformed into a linear 
quadratic regulator (LQR) problem, which was then solved by 
integral reinforcement learning (IRL). Li et al. [81] proposed a 
variable impedance controller with model-based RL algorithm 
to enable the robot to learn the parameters effectively and 
control the contact force accurately in an unstructured 
environment. Wang et al. [82] proposed a new strategy based 
on fuzzy Sarsa (λ) learning algorithm for surgical assisting 
robots, and incorporated it into the virtual parameter 
adjustment strategy to complete the operation in physical HRI.  

C. Discussion on MLAs-based control 

Rather than performing monotonous tasks repeatedly like 
industrial robots, rehabilitation robots interact with human and 
provide suitable assist trajectory or force according to the 
conditions of patients. It is still a rigorous problem to 
implement autonomous control of rehabilitation robots. 
Intelligent control combined with MLAs empower robots the 
ability of learning, which is potential to handle this problem. 

NN-based adaptive controller allows the rehabilitation 
robots to find the optimal control parameters through training 
and learning from patient's data, and NN can cope with the 
nonlinearity of robot dynamics and the uncertainty of patient's 
limb movement [83]. However, the interactive objects of 
rehabilitation robots are patients instead of inanimate objects, 
which needs a high requirement for safety and instantaneity. 
In addition, the properties of each patient are unique, including 
basic physical parameters of the body such as length of arm 
and height, the recovery speed of different patients. New ideas 
and methods (such as data augmentation and optimization 
technologies) need to be proposed to tackle the deficiencies of 
NN-based adaptive controller, e.g. insufficiency of sample and 
slow calculation speed, to improve the safety and instantaneity 
and achieve personalized rehabilitation. 

RL controllers are proposed by learning from experience, 
which try to develop an optimal policy to maximize reward by 
adjusting action to environment. Nonetheless, RL controllers 
are not yet mature to satisfy researchers’ expectation [84]. 
There are not many applications of RL algorithms in upper 
limb robotic rehabilitation, and most of them are still in 
simulation stage. In addition, the structure of RL controllers 
also need further development and improvement. It’s time- 
consuming to define suitable reward function to avoid 
unexpected goal, and the cost of trial-and-error search is too 
high. Even so, we are looking forward to new technologies to 
settle the weaknesses of RL controllers, such as bionics, 
optimization, simulation, and digital twin technology.  

V. MACHINE LEARNING-BASED QUANTITATIVE ASSESSMENT 

The decline of motor function caused by stroke will greatly 
reduce the patient's muscle strength and agility, including 

paralysis, loss of motor coordination, abnormal muscle tone 
and loss of somatosensory and so on [85]. Through clinical 
evaluation, physiotherapists can track the patient's recovery 
progress and customize the training schemes. One of the most 
common assessment methods is performed by experienced 
experts using chart-based standard clinical tests. Fugl-Meyer 
Assessment (FMA) [86] is a popular test to evaluate upper 
limb motor function for patients after stroke. It involves 33 
tests for various joints such as shoulders/elbows/forearms, 
wrists, hands, and exhibits high inter-rater and intra-rater 
reliability. Other scales, like Wolf Motor Function Test 
(WMFT) [87] and Motor Activity Log-30 (MAL) [88], have 
similar functions. However, these scales can only output a 
rough score, which cannot reflect patients’ specific recovery 
conditions. In addition, the whole evaluation process is under 
therapist's guidance, which are time-consuming, complicated 
and labor intensive to complete a set of tests. 

Robotic rehabilitation system can quantitatively record 
medical data reflecting the pathological characteristics of the 
affected limb, and make scientific assessments of the motor 
function. There are some common measurement methods for 
quantitative assessment. Inertial sensors[89] and physiological 
sensors are usually mounted on people through wearable 
devices to record the kinematics data or biological signals; 
mechanical measurement systems[90] monitor movement or 
interactive force/torque using sensors installed on the robot, 
and image processing system[91] focuses on the evaluation of 
coordination between joints through cameras or motion 
capture systems.  

The prerequisite for quantitative evaluation is to set up an 
appropriate correlation between patients’ data and the clinical 
assessment scale indicators. Zariffa et al. [92] used multiple 
linear regression to identify the relationship of sensor data and 
the manual clinical assessment scales to search combination of 
predictors with highest correlation; Zollo et al. [93] adopted 
linear regression analysis to explore the connection of data 
from wearable sensors with clinical scales to find the most 
relevant variables to limb movements.  

It is important for quantitative evaluation to automatically 
rate and judge patients’ states of weakness. MLAs are 
competent for this task due to their superior data processing 
and multi-objective decision making abilities. Silvia et al. [94] 
used random forest (RF) algorithms to estimate the scores of 
FMA through wearable sensor data. Tahir et al. [95] proposed 
an activity recognition system based on gyroscope sensors, 
and used PCA to exclude redundant features. Different 
classifiers such as probabilistic neural network (PNN), k 
nearest neighbor (KNN) and SVM were used to assess 
walking activities. Yu et al. [96] designed quantitative 
evaluation framework for remote rehabilitation, which is 
composed of two accelerometers and seven flex sensors to 
monitor the motor function of upper limb, and established an 
ensemble regression model based on ELM to map kinematics 
and kinetics data to FMA scores. Some work obtains 
kinematics data indirectly through image information. Ilktan 
et al. [97] used RGBD cameras to monitor the rehabilitation 
training, and the observable nodes of Bayesian network was 



  

built to learn the image features to predict motion and posture. 
Otten et al. [98] proposed a framework for automatic upper 
limb movement assessment using low-cost Kinect sensor to 
collect movement data, and then adopted SVM to grade the 
patient's upper limb motor function. Liao et al. [99] proposed a 
framework based on deep learning to automatically assess the 
quality of rehabilitation training, containing quantitative 
movement indicators, scoring functions, and a deep neural 
network model to quantify movement scores. 

Robot-assisted rehabilitation system can measure the 
subject’s data throughout the treatment process, make motor 
function assessment, and provide feedback to the therapists 
and patients. Quantitative evaluation can not only improve the 
reliability of determining states of patients, but also will 
greatly reduce the time required to assess patients' movement 
ability. Quantitative rehabilitation assessment methods rely 
heavily on machine learning methods. The correlation 
between patient data and medical scales need to be built 
through multiple linear regression or other algorithms to select 
characteristic variables. Automatic scoring is a core part of 
quantitative evaluation, and MLAs such as NN and SVM are 
very appropriate for this task. Nevertheless, due to the variety 
of patient data, the inter-cross and intra-cross analysis 
methods also pose great challenges to MLAs. Besides, many 
medical indicators are difficult to quantify due to complex and 
changing motor symptoms, and quantitative assessment 
methods have not been widely used in clinical rehabilitation, 
so advanced technologies are needed to analyze medical 
indicators more deeply to digitize them. After accumulating 
sufficient patients’ data and their evaluation results, a 
rehabilitation evaluation knowledge library can be established 
based on MLAs so as to automatically evaluate the state of 
recovery during robot-assisted rehabilitation.  

VI. CONCLUSION 

In the past few decades, upper limb rehabilitation robots 
and machine learning methods have shown encouraging 
effects and efficiency in clinical rehabilitation. This article 
reviews the robot-assisted upper limb training schemes and 
how MLAs can be applied to motion intention recognition, 
human-robot interactive control and quantitative assessment 
of motor functions in rehabilitation. Robotic rehabilitation has 
increasingly emphasized the importance of patient’s active 
participation, which can strengthen the central nervous system 
and promote recovery by recognizing the intention of patients 
based on MLAs to promote the training of basic skills, 
mobilizing the patient’s willingness to actively exercise. 
Furthermore, it’s necessary for rehabilitation robot to ensure 
the smoothness and flexibility during human-robot interaction 
process. MLAs-based controllers are able to adjust the 
parameters adaptively to satisfy the individual differences of 
patients. In addition, MLAs can play important roles in 
developing comprehensive evaluation methods to provide 
patients with objective, quantitative and timely evaluation and 
assessment. Machine learning methods can promote the 
feasibility and intelligence of rehabilitation robots. Future 

intelligent rehabilitation robots are expected to analyze and 
learn the data during patients' recovery process through 
machine learning to realize intelligent recognition of patients' 
movement intention, amalgamate RL with HRI control to 
implement self-adjusting and autonomous control strategy, 
combine big data in the rehabilitation process with medical 
theories to establish a professional rehabilitation knowledge 
library to accomplish intelligent assessment.  
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