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Abstract: Together, 316L steel, magnesium-alloy, Ni-Ti, titanium-alloy, and cobalt-alloy are commonly
employed biomaterials for biomedical applications due to their excellent mechanical characteristics
and resistance to corrosion, even though at times they can be incompatible with the body. This is
attributed to their poor biofunction, whereby they tend to release contaminants from their attenuated
surfaces. Coating of the surface is therefore required to mitigate the release of contaminants. The
coating of biomaterials can be achieved through either physical or chemical deposition techniques.
However, a newly developed manufacturing process, known as powder mixed-electro discharge
machining (PM-EDM), is enabling these biomaterials to be concurrently machined and coated.
Thermoelectrical processes allow the migration and removal of the materials from the machined
surface caused by melting and chemical reactions during the machining. Hydroxyapatite powder
(HAp), yielding Ca, P, and O, is widely used to form biocompatible coatings. The HAp added-
EDM process has been reported to significantly improve the coating properties, corrosion, and wear
resistance, and biofunctions of biomaterials. This article extensively explores the current development
of bio-coatings and the wear and corrosion characteristics of biomaterials through the HAp mixed-
EDM process, including the importance of these for biomaterial performance. This review presents
a comparative analysis of machined surface properties using the existing deposition methods and
the EDM technique employing HAp. The dominance of the process factors over the performance is
discussed thoroughly. This study also discusses challenges and areas for future research.

Keywords: hydroxyapatite; electro-discharge; biomaterials; coatings; corrosion; wear

1. Introduction

In material science, a biomaterial is characterized as a matter designed to take a
shape that is used, alone or as a part of complex method, to guide the direction of any
diagnostic or therapeutic technique by regulating interactions with components of living
systems [1]. Generally, biomaterials are different from ordinary materials as regards their
applications. Biomaterials constructed from the metallic materials were first introduced in
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1969 at Clemson University, Clemson, SC, USA. These materials are commonly applied
for manufacturing bio-implants such as dental, orthopedic, heart-valves, artificial-hearts,
and vascular-grafts that are routinely used to restore damaged tissues and living organs in
the body. Due to special applications of biomaterials, these materials must have excellent
biocompatibility, biofunctions, high mechanical strength, and superior resistance to wear
and corrosion [2–5]. Although there are three kinds of biomaterials, including metallic,
natural and synthetic polymers, and ceramics, available for biomedical applications, ap-
proximately 70–80% of bio-implants are made from metallic biomaterials, owing to their
high mechanical strength, stiffness, and long durability; as reported in the literature [4–7].
Table 1 shows the mechanical properties, biocompatibility, and corrosion resistance of com-
monly employed biomaterials in biomedical applications. Steel-alloy, titanium and its alloy,
magnesium and its alloy, cobalt-based alloy, titanium-zirconium based alloy, zirconium
and molybdenum-based alloy, and noble metallic alloys are known as metallic biomaterials.
An upward trend of metallic biomaterial utilization has been observed due to dramatic
increases in the aging population, bone diseases, and accidents [8–10].

Table 1. Mechanical characteristics, biocompatibility, and corrosion resistance of commonly used biomaterials [11].

Biomaterials Density
(gm/cm3)

Yield Strength
(Mpa)

Tensile Strength
(Mpa)

Elongation to
Break (%)

Elastic Modulus
(Gpa) Biocompatibility Corrosion

Resistance

Biodegradable materials:

Pure Mg 1.74–2 65–100 90–190 2–10 41–45

Excellent Poor

AZ31 (Mg-alloy) 1.78 185 263 15–23 45
AZ-91
(Mg-alloy) 1.81 160 150 2.5–11 45

WE43 (Mg alloy 1.84 170 220 2–17 44.2
Fe20Mn alloy 7.73 420 700 8 207
Fe35Mn alloy 6.36 230 430 32
Zn-Al-Cu (Zn
based alloy) 5.79 171 210 1 90

Non-biodegradable materials:

316L steel 7.9 190 490 40 200 Poor Moderate
Ti-6Al-4V 4.43 880 950 14 113.8 Fair Excellent
Ti-6Al-7Nb 4.52 800 900 10 105 Fair Excellent
CoCr20Ni15Mo7 7.8 240–450 450–960 50 195–230 Poor Excellent

Other natural and synthetic materials:

Synthetic HA 3.15 40–200 70–120 Excellent Poor
Alumina ceramic 4 400–580 0.12 260–410 Excellent Fair
Collagen 2.6–600 7.4–26.47 5–11.5 Excellent Poor
PLGA 1.30–1.34 3.8–26.6 13.9–16.7 5.7 Excellent Poor
PLC 1.145 8.37–14.6 68.45–102.7 22.8–28.3 281–686 Excellent Poor

Although the metallic biomaterials have higher mechanical strength compared to
other biomaterials, these materials are inappropriate to apply directly in the living body
due to their releasing toxic particles (Ni2+, V3+, Cr3+, Mo2+, and so on) and exhibiting poor
bioactivity [12–15]. Failure of 316L steel-based implants has been reported to occur because
of corrosion (41%), fatigue (25%), impurities (17%), wear (7%), and bacterial infection
(10%), which are surface dependent issues [16]. Surface modification is therefore proposed
as a key solution to resolve these limitations. The machined surfaces prepared by the
conventional machining processes such CNC milling, CNC lathe, turning, shaping, boring,
and so on do not ensure the biocompatibility and the sustainability of biomaterials [17]. The
existing surface coating technologies, such as chemical-vapor-deposition (CVD), physical-
vapor-deposition (PVD), sol-gel, plasma spraying, laser-surface-melting, electrochemical-
deposition, spray-pyrolysis, electrophoretic-deposition, dip-coating, and hybrid form of sol-
gel and dip coating, are capable of forming a biocompatible coating on the biomaterials [18];
whereas these techniques show some limitations, as they are incapable of forming a surface
without micro-cracks and thermal stresses, unable to form a nano-porous surface, and
unable to shape and form the coating simultaneously, as well as require high processing
cost [19].
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Powder mixed-electro discharge machining (PM-EDM) is a newly developed and
innovative manufacturing process which was first implemented in 1980. Researchers have
recently focused on enhancing the machining efficiency and the characteristics of modified
biomaterial surface through a novel process called PM-EDM, for commercial implementa-
tion [20–23]. During this process, suitable electrically conductive or moderate-conductive
particles are suspended in a dielectric liquid to improve the machining performance and
enhance the machined surface characteristics, which makes this process different from
the conventional EDM process [22,24–27]. Since the PM-EDM technique follows thermo-
electrical process like EDM, a huge temperature range, from 8000 ◦C to 12,000 ◦C, is
produced due to creating successive electrical sparks during the machining. Obviously,
the temperature generated during the operation is much higher than the fusing point
of the employed specimen, electrode, dielectric liquid, and additive powders, resulting
concurrent removal and deposition of the fused materials on the machined surface [28–30].
Hence, the outstanding capabilities of the PM-EDM technique include simultaneous ma-
chining capability and modification of the machined surface. This technique shows several
advantages over the conventional manufacturing process, including fabrication of complex
parts and machining of both the hard and brittle materials regardless of their thickness. The
machining performance relies on the corresponding parameters of the PM-EDM process,
including the current (A), pulse duration (µs), gap voltage (V), polarity, and added powder
concentration (g/L) [8,31–37]. Demand for the EDM technique has been created in indus-
tries due to an increase in dependence on using metallic biomaterials such as steel alloy,
titanium alloy, cobalt alloy, Zr-based alloy, and magnesium alloy with high mechanical
properties [8,9].

The modified surface responses, such as the coating properties, microhardness, and
resistance to wear and corrosion, significantly influence the biocompatibility, biofunctions,
and durability of the biomaterials [38–40]. Hydroxyapatite (HA) is considered a bio-ceramic
powder that is used to form a biocompatible coating on the machined biomaterial surface
to enhance the biological response because it serves Ca, P, and O [9,11]. Studies reported a
less than 2% bio-implant failure after following up for several years, assuring the clinical
success of the HA powder (HAp) in biomedical applications [41–47]. However, sudden
failure of HAp-based bio-implants was reported recently, due to deterioration resulting
from faster dissolution of the HAp under body fluid conditions as HAp is brittle in nature
and has poor crystallinity [47–52]. Researchers have been investigating the effects of a HAp
mixed-EDM process on modified surface characteristics over the last decade. Outstanding
progress in coating thickness, microhardness, biocompatibility, and corrosion resistance of
the treated metallic biomaterials has been claimed in recent studies applying HAp in the
EDM process [11,53–56].

Today, few research studies are available regarding the treated surface characteristics,
such as the microhardness, coating features, and wear and corrosion resistance of the
metallic biomaterials using the HAp added-EDM process, and the influence of the PM-
EDM process factors on the surface characteristics. In addition to this, there is a lack
of literature which illustrates in detail the importance of the modified surface response
for the biomaterials’ performance. Therefore, this review provides in-depth information
for the fundamental sciences regarding the issues to the researchers to use in further
studies. In this review article, a comprehensive analysis of the status of the coating features,
microhardness, and corrosion and wear behavior of the biomaterials using HAp added-
EDM is presented. Furthermore, the importance of the coating, wear, and corrosion
properties on the biomaterials’ performance are discussed thoroughly. In this study, a
comparative study on the treated biomaterials surface characteristics utilizing both the HAp
added-EDM and the existing coating techniques employing HAp is critically discussed.
The effects of the associated process parameters on the modified surface properties have
been reported thoroughly. The surface topography and morphology of the machined
surface have been demonstrated to evaluate the analysis. In this article, the challenges for
the PM-EDM process that may lead to future research are also summarized.
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2. Fundamentals of Surface Modification through the PM-EDM Method

The fundamental science of PM-EDM method is still in the research phase, owing to
the lack of in-depth clarification and the intricate nature of the associated variables. The
selected electrically conductive or moderately conductive powders are amalgamated in the
working liquid of the PM-EDM process. Figure 1 shows a model of the PM-EDM technique.

Figure 1. Schematic diagram of the PM-EDM technique reproduced with permission from ref. [57].

The schematic diagram describes the components and full set up of the PM-EDM
technique. When electrical potential ranging from 75 V to 350 V is applied, an electrical
magnetic field varying from 105 V/m to 107 V/m is created, retaining a tiny gap between
the specimen and the electrode. A plasma path resulting from ionization of the dielectric is
created. The plasma channel, electrically conductive in behavior, causes the ions to flow.
Due to the collisions of ions in the plasma channel, discrete electrical sparks occur in the
discharge channel, resulting in generation of high temperatures, ranging from 8000 ◦C
to 12,000 ◦C. Because of the elevated temperature, the surrounding particles from the
employed specimen, electrode, insulator liquid, and additive powders are fused and
eroded. The phase transformation of the added HAp particles with increasing temperature
produced during the EDM process are shown in Table 2.

Table 2. Hydroxyapatite powder (HAp) phase transformation with increasing temperature during
electrical discharge machining (EDM).

Temperature Range Phase Transformation Author

25–600 ◦C Vaporization of liquid absorbed (oil or deionized
water) during the process [11,58]

600–800 ◦C Decreasing carbon presence on the powder surface

800–900 ◦C Hydroxy-depleted layer covers the HAP which forms
oxyapatite (OA)

950–1400 ◦C
Hydroxyapatite is decomposed and converted into
β-TCP (tricalcium phosphate) and TTCP (tetra
calcium phosphate)

1120–1470 ◦C Tricalcium phosphate is changed to α-TCP which is
stable at high temperature.

1550–1630 ◦C This is the melting point of hydroxyapatite and tetra
calcium phosphate is still stable

1650 ◦C TTCP is melted and transferred into Cao compound.
TCP is still stable

1730 ◦C TCP is melted

>1750 ◦C Amorphous calcium phosphate (ACP) starts to form
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Since a very high temperature is generated during the PM-EDM process, the sus-
pended additives such as HAp, CNT, SiC and so on turn into different phases. Gaseous
bubbles are produced by the decomposed dielectric liquid, which take the eroded debris
away from the machining zone. Owing to the decrease in the compressive stresses on the
bubbles, they collapse. The mechanisms of the added particle movement and chain-like
formation during the machining are depicted in Figure 2.

Figure 2. Mechanism of the added particle movement and chain formation reproduced with permis-
sion from ref. [57].

The added particles are energized by the attached ions on their surfaces during the
discharge condition and pursue a zigzag movement due to the counter attractions of
the opposite charges. Owing to the generated magnetic effect and the charged particles
in the machining area, a capacitive effect is created, resulting in a chain-like connection
among the charged particles. As a result, the insulating strength of the dielectric liquid
is decreased. Furthermore, faster and uniform electric sparks are generated in the ma-
chining area resulting in an enhanced machining efficiency, such as the material erosion
rate [10,19,21,28,37,57,59,60]. The mechanisms of alloy formation and debris deposition
during the PM-EDM cycle are demonstrated in Figure 3.

Figure 3. Mechanisms of alloy formation and debris deposition during the powder mixed-EDM
(PM-EDM) process reproduced with permission from ref. [57].

The fundamental mechanisms behind the migration and deposition of the fused
materials that are assumed to occur during the PM-EDM technique by melting, chemical
reactions, and solidification processes are stochastic in behavior, since both the migration
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and the deposition of the eroded materials depend on the related parameters and physical
characteristics of the added powders, specimen, and electrode. During the machining, the
produced thermal energy is high enough to fuse both the electrode’s and the specimen’s
surface materials, the suspended powders, and the dielectric. Due to the retainment of a
tiny machining void and generating a very high temperature, more materials from both
the working-part and the electrode are melted and eroded rather than flushing them.
Consequently, some of the eroded debris are accumulated on the machined part. At the
same time, due to their going through the narrow discharge gap, the suspended particles
in the working liquid that serve as a coolant are partially melted and charged. The formed
chain like connections between the charged particles facilitate their rapid deposition on
the modified part due to electromagnetic forces, electrophoresis negative pressure, and
electrostatic forces. Moreover, the melted and charged particles are attracted by both the
ionized debris eroded from the electrodes and the tool surfaces, with the opposite tool
polarity leading to oxide formation due to chemical reactions among them. The formed
oxide alloys are deposited and solidified on the machined surface. The decomposed
working liquid serves C and OH, which creates carbides and oxide alloys. Some of the
chemical reactions that may occur during the carbide and oxide formation are mentioned
as follows.

Decomposition of HAp (above 15,550 ◦C):

Ca10(PO4)6(OH)2 → α− Ca3(PO4)2 + Ca4(PO4)2O + H2 +
1
2

O2

Chemical reactions during the oxides, carbides, and intermetallic alloy formation:

Ti + C → TiC

Ti + 2H2O (gas)→ TiO2 + 2H2

TiO2 + 3C → TiC + 2CO

Ni2+ + Ti2+ → NiTi

3Ti +
1
2

O2 + Ca3(PO4)2 → 3CaTiO3 + 2P

3Cr3+ + 2C → Cr3C2

Moreover, intermetallic compounds are produced on the machined substrate due
to agglomeration of the molten and the charged materials. The cooling process solidi-
fies the molten materials and reconstructs the metallic compounds during the duration
of the discharge breakup, which proceeds from the start of the recast layer or coating
formation process. However, a rapid cooling process results uneven shrinkage of the
formed metal alloys, causing residual stress and micro-crack formation. The gases, such
as hydrogen, nitrogen, oxygen, and so on, that are produced during the solidification
process are released from the machined surface, resulting nanopores and foamy shaped
surface [11,34,48,57,60–62].

3. Importance of Hydroxyapatite-Based Coatings’ Characteristics on the
Biomaterials’ Performance
3.1. HAp and Its Influence on the Response of Machined Biomaterials

Biocompatible coating is a crucial prerequisite for biomedical applications, as it pro-
vides a stable condition for recovery of the injured tissues by interacting with different
naturally formed bioactive materials. The HA formulated by Ca10(OH)2(PO4)6 is a source
of Ca, P, H, and O, which are the inorganic elements resembling bone. Since HAp has
excellent adaptation to in vivo and in vitro aspects, it possesses superior biocompatibility
and osseointegration, which lead to regeneration of the hard tissues. Compared to other
bio-ceramics, the abatement potentiality of both the flammable impacts and the adverse
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chemical reactions in the body by utilizing the HAp-based coating is higher [9,48,62–65].
Consequently, a HAp-based coating is proposed as a perfect candidate for enhancing
the biocompatibility, mechanical characteristics, and corrosion resistance of biomaterials.
Although HA-based ceramic exhibits a lower Young’s modulus, similar to bone, compared
to metallic biomaterials, bio-implants made from HA-based ceramics have proven to be
inappropriate for load-bearing conditions because of their poor crystallinity and brittle-
ness [11,40,48,66–69]. Therefore, HAp is utilized as additive powders for the purpose of
coating formation, and which promotes both the mechanical and the biological properties
of the biomaterials. The HAp-based coating requirements approved by the FDA, USA
are summarized in Table 3. The addition of HAp in the EDM process has been reported
to improve the coating properties, hardness, and wear and corrosion resistance of the
modified biomaterial [9,56,70–72].

Table 3. HAp coating requirements approved by the food and drug administration (FDA) [11].

Factors Requirement

Density 2.98 g/cm3

Heavy metals <50 ppm
Ca-P ratio >1.67

Phase purity >95%
Crystallinity >62%

Coating thickness not specified yet
Shear strength >22 MPa

Tensile strength >50.8 MPa

For instance, Chander et al. [70] confirmed the formation of oxide and carbide alloys
on the modified Ti-based alloy through the HAp mixed-EDM method, which enhanced the
coating thickness, microhardness, and corrosion behavior of the treated biomaterial. In the
research work by Gurpreet et al. [73], the amalgamation of HAp in the working fluid of
the EDM method increased the microhardness of the altered 316 L surface by 160%. In the
study by Chander et al. [56], the corrosion resistance and microhardness of the machined
Mg-alloy were increased by 90.85% and 1.5 times, respectively, while machining using an
HAp mixed-EDM process. Al-Amin et al. [74] ensured a uniform coating on a machined
316L steel surface having a thickness of 15.295 µm through the HAp added-EDM process,
which gave excellent biocompatibility and corrosion resistance.

3.2. Influence of Coating Phase and Thickness on Biomaterial Performance

Due to insufficient biological responses and the release of toxic elements (Cr, Co,
Ti, V, Al, Mo, Fe, Ni, and so on) from attenuated metallic biomaterial surfaces, caused
by wear and corrosion actions, these biomaterials are inappropriate for being inserted
in the living body directly [19,75,76]. As a consequence, coating the surface with bio-
ceramic elements is proposed as an effective method to ensure low degradation of the
metallic biomaterials by protecting them from wear and corrosion propagation [77]. An
effective hydroxyapatite-based coating can improve bone formability, host responses,
microhardness, and resistance to wear and corrosion [78–86]. Both the crystalline and the
amorphous phase-based coatings of biomaterials influence the biocompatibility, mechanical
properties, and corrosion behavior, which were discussed thoroughly in the previous
literature reports. Coatings with a high amorphous phase ensure an improvement in the
mechanical characteristics, including the microhardness and fatigue strength, whereas
layers with high crystalline phase possess a robust coating adhesion strength, which
improves the durability of the biomaterials. Moreover, because of amorphous phase
in the machined coating, the hardness and the coefficient of friction are observed to
improve, causing an improvement in wear resistance property of the biomaterials [87].
The amorphous nano-crystalline phase formation in the coating exhibits poor corrosion
potential because of the nano-crystalline phase, which leads towards corrosion propagation,
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whereas partially crystalline-based layers have been reported to have a higher corrosion
resistance compared to fully amorphous coatings [87–89]. In crystalline-based coatings, the
chemical inhomogeneity of the alloys with galvanic coupling actions is observed, causing
a low corrosion resistance. On the other hand, an amorphous coating ensures chemical
homogeneity of the alloys, which attenuates the galvanic action, resulting in high corrosion
resistance. In addition to this, a reduction of the solvent concentration of the corrosion-
resistant particles is observed in crystalline-based coatings, resulting in lower corrosion
resistance, which is increased when synthesizing the amorphous alloys [87]. Hence, the
coatings with a crystalline phase embedded in the amorphous phase have been proposed to
enhance the resistance to corrosion in different applications [87,89]. Numerous approaches,
such as HVOF, HVAF, plasma spraying, and laser processing, are utilized to ensure the
amorphous phase formation in the coating, and employing different additives, including
Zr, Fe, Cr, Mo, Al, Ni, and Cu, which are recognized as the amorphous alloys [88,90–97].
Coating thickness is regarded as a critical factor influencing the biomaterial performance.
Coating adhesion strength is considered another critical factor that is increased with
decreasing the coating thickness, because of storing few residual stresses and increasing the
compressive stress in the formed coating. The residuals stresses are produced in the coating
due to rapid quenching and impinging of the melted materials during the EDM process,
and are decreased with a declining layer thickness [87,98]. Degradation of the fatigue
stiffness of the biomaterial is also observed due to increasing the recast layer thickness [99],
whereas a high fatigue strength with excellent biocompatibility of the biomaterials was
reported to be attained with the formation of a thin recast layer and stable oxide alloys in
the coating [100].

3.3. Influence of HAp-Based Coatings on the Modified Biomaterial Response

Optimization of the oxide-based coating thickness is proposed to be effective for
controlling the corrosion rate of Mg alloys [101]. The mechanical characteristics, including
hardness and strength of the cold sprayed Ti-6Al-4V layer are improved with increasing
the thickness of a Ti-6Al-4V-based coating. Moreover, the flexural stresses of the coat-
ings decrease with increasing coating thickness because of interparticle failure, unable
to conform with large stress concentrations [102]. A thin film, consisting of hard nitride
prepared by the reactive magnetron sputtering method, facilitated the enhancement of
the resistance to wear of modified metallic biomaterials [98,103]. It was reported that
the corrosion resistance of the coated stainless steel through the hydrothermal deposition
technique improved with increasing the ZrO2-based coating thickness [104]. Further-
more, another study showed that a polyester based-coating prepared by the dip coating
technique improved the resistance to corrosion of Mg alloy when increasing the coating
thickness [105]. Lynn and Duquesnay [106] studied the impact of HA-based layer thickness
on the fatigue strength of a Ti-6Al-4V alloy deposited by the plasma spray process. In
this study, a HA-based coating thickness ranging from 0 to 100 µm did not exhibit an
impact on the fatigue strength, whereas an increment of the coating thickness to 150 µm
decreased the performance. Aksakal et al. [107] investigated the HAp-based substrate
thickness effect on the corrosion behavior of both coated 316L steel and Ti6Al4V by the
sol-gel technique. In this study, a coating thickness of 72 µm for the coated 316L steel
showed the minimum corrosion resistance, while a HAp-based layer thickness of 40 µm
for the coated Ti alloy revealed the maximum corrosion resistance. It was also noted that
both the adhesion strength and resistance to corrosion of the treated surfaces reduced
with augmenting the coating thickness [106]. In the work by Naofumi et al. [108], the
optimal layer thickness of CaTiO3 was determined to investigate the bone tissue response.
The CaTiO3-based coating was prepared utilizing the magnetron sputtering technique. A
CaTiO3-based coating thickness of 50 nm showed high biocompatibility and bone regen-
eration, while a CaTiO3-based coating thickness of below 50 nm was inferior regarding
the tissue responses. Furthermore, a CaTiO3-based coating thickness of 50 nm had a crys-
talline phase, which would be required to enhance the Ca-P formation on the titanium
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substrate, because of showing a low dissolution of CaTiO3 film, but a coating thickness
of below 50 nm was not crystallized with perovskite-type CaTiO3 [107,108]. Moreover,
degradation of the coatings showing low crystallinity was reported to occur rapidly in the
living body, which led to use of a thinner film to resolve these problems [109,110]. The
recommended commercial HAp-based coating thickness prepared by the plasma spray
technique is around 50 µm, even though the coating is assumed to deteriorate rapidly due
to the dissolution process [107,111].

The recast layer on the treated biomaterials generated by the PM-EDM process com-
prises three substrates, including a topmost, middle, and base layer. The uppermost portion
is typically a very stiff layer, owing to the presence of carbide and intermetallic alloys that
are known as a carbide-based substrate. The middle substrate consists of the intermetallic
compounds and different types of oxide alloys, which are produced during the machining
causing a nanoporous, nanostructured, highly resistant to corrosion, and biocompatible
coating formation. The last section is considered a heat-affected region, which is generated
during the operation because of the heating and cooling process. The heat affected zone
(HAZ) is known to be the non-melted region of the substrate which, as a result of being
exposed to high temperatures, has alterations of the material properties [112]. Figure 4
shows the formed recast layer and practically obtained layer during the PM-EDM process.
Furthermore, thermal stress is induced in the heat-affected zone due to the thermal mis-
match, resulting in mechanical failure [102]. Bui et al. [113] synthesized an antibacterial
layer on the treated titanium alloy with the application of nano-Ag powders using the EDM
technique. The formed Ag-based coating with a thickness of 2.49 µm improved the micro-
hardness of the coated surface to 528.39 HV. Chander et al. [114] explored the enhancement
of modified Ti-35Nb-7Ta-5Zr β-Ti surface characteristics, which was machined through the
nano-silicon particles mixed-EDM method. Due to the oxides such as TiO2, TiC, Nb2O5,
SiO2, SiC, and ZrO2 formed in the produced recast layer having a thickness of 15–20 µm,
an improvement in biocompatibility, microhardness, corrosion and wear resistance of the
modified surface was noticed. In the research conducted by Chander et al. [79], owing
to a 15-µm thick recast layer comprised of carbide and oxide, a stiff layer of 1080 HV
and high biocompatibility was reported. Aliyu et al. [54] confirmed an improvement in
coating adhesion strength and biocompatibility of treated Zr-based bulk-metallic-glass
(BMG) due to formation of Ca, P, O, ZrO, and CaZrO3 in the coating with a thickness of
23 µm, when HAp was suspended in EDM-oil. However, a thick recast layer was reported
to increase the thermal and residual stresses, which may reduce the coating adhesion and
cause mechanical malfunctions [87,98,102].

Figure 4. Structure of the modified surface layer: (a) illustration of layer, (b) obtained layer using the PM-EDM technique
(reproduced with permission from ref. [74]).
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4. Influence of Wear Behavior and Microhardness on Biomaterial Performance

Wear is an important surface property which assists in determining the proper bio-
material selection and bio-implant design. To control and ensure long-term sustainability
of the metallic biomaterials, the wear property is considered a major issue that causes
materials’ removal from the eroded surfaces while undergoing relative sliding between
two or more acting surfaces [79,115,116]. For the synovial joints including entire hip joints,
knee, shoulder, and orthopedic implants, wear is considered as a critical issue, because of
undergoing critical loads during regular movements, which depend on several parameters,
such as material selection; coefficient of friction; contact stress; and surface characteristics,
including roughness, hardness, and wettability (lubrication). Localized nano-regions of
strong plastic deformation, nano-spall, and the attached spherical elements define the
fretting wear that creates tiny and deep cracks on the acting surface, resulting in fatal
metallic biomaterial failure [117–119]. The mechanisms of biomaterial wear propagation
for different conditions are depicted in Figure 5.

Figure 5. Mechanisms of biomaterial wear behaviour in different conditions (reproduced with permission from ref. [120].

This figure provides information regarding the wear propagation when the implanted
biomaterial is introduced to a high load, abrasive and corrosive fluids, high sliding speed, a
high temperature in the presence of air, and large size debris. Microhardness is another sur-
face property influencing the wear resistance of the biomaterials, but few previous studies
have reported an increase in wear resistance due to improving the surface wettability (lu-
brication) rather than the hardness [121–124]. The coefficient of friction of a surface, which
is defined as a function of the ratio of the friction forces and the normal loads, depends on
not only these factors but also on the material characteristics and surface roughness. An
improvement in the wettability of the biomaterial surface enhances the lubrication action,
decreasing the friction coefficient and increasing the wear resistance [125,126], whereas
a rough surface results in an inferior wear resistance, along with a large coefficient of
friction [127]. A decline in wear rate is found with a high microhardness and low friction
coefficient due to offering a high normal load [123,125]. A high resistance to wear and low
friction coefficient are therefore preferable for implants. A greater strain hardening was
also proposed to have an impact on improving wear resistance behavior [128,129]. The
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biomaterial surface therefore must be hard enough to resist the occlusion forces. A modified
surface having a hardness of less than 125 kgf/mm2 (HV) was reported to have a high
tendency to wear the teeth, while a surface having a hardness greater than 340 kgf/mm2

(HV) was reported to wear the opposing surfaces [130]. Although the mechanism of
wear propagation is complicated, the knowledge of modified surface microstructure was
proposed as an essential aspect for predicting the mechanisms of wear propagation. The
tribological behavior of a metallic alloy is believed to be governed by the properties of the
counteracting surfaces. Moreover, the environment, such as the wetness and dryness, in
which two surfaces interact by sliding governs the tribological performance. The operating
environment fundamentally determines the implant wear generation, such as the acting
loads and characteristics such as one-way slipping, reciprocating, spinning, impact-loads,
momentum, and temperature. In recent studies, the presence of a large amount of hard
carbides in the formed coating on a Cobalt-based alloy was reported as a source of wear
propagation [86,122,131–133].

Mechanical wear is proposed to be the primary cause of degradation of biomate-
rials during the wear process. The fundamental wear mechanisms of implant degra-
dation are identified as abrasion, adhesion, fatigue, and corrosion. In addition, a third
body wear is caused by the hard-eroded debris resulting from the reduction of wear
resistance [79,122,134,135]. As implants can protect against wear damage in dry environ-
mental conditions, the tribological performance of biomaterials are therefore measured in a
simulated body fluid condition. After the implantation of implants in the body, they have
to tolerate various harsh environments, such as high salinity, organic elements, acids, and
fluorides, depending on the application. Consequently, an oxide-based coating deteriorates
in these conditions, and the implants experience extreme breakdown with escaping metal
ions, due to an inability for re-passivation. During wear propagation, the amount of overall
mass loss is calculated by the sum of elemental loss occurring from both the mechanical
wear and the wear accelerated corrosion; however, the wear accelerated corrosion forms a
small percentage of the total amount [117,122,136,137]. Wear which is the primary cause of
the implant failure has a great influence on the biomaterial performance when these are
inserted into the human body [130]. Due to the wear process, the metallic debris having a
size of less than 0.05 µm are ejected from the articulating surfaces of the inserted metallic
biomaterials, which can vary based on the applied materials [86,138,139]. The eroded debris
act as foreign particles, which can be dissolved in the body, resulting in inflammatory re-
sponses with the formation of pseudo-tumors, implant loosening, osteolysis, periprosthetic
bone destruction, hypersensitivity (metal allergy), and carcinogenicity. The wear behavior
therefore reduces the biological response and life period of bio-implants, which may result
in revision surgery. Most importantly, around 4–5% of bio-implant failure, inserted within
6–7 years, has been reported to be due to wear debris generation [138,140–145].

5. Importance of HAp-Based Coatings for the Microhardness and Wear Behavior
of Biomaterials

To resolve these problems, researchers are concentrating on alteration of the bioma-
terial surface to obtain a surface with the attributes of high biocompatibility, corrosion
and wear resistance, and good mechanical characteristics. An appropriate coating forma-
tion not only enhances the wear resistance but also increases the soundness of the joints
implanted. Furthermore, the wear and coefficient of friction decrease when applying an
appropriate coating method, and the surface hardness and lubrication are improved as
well [86,125]. Yuichi et al. [146] explored the influence of delamination of an HAp-based
coating prepared using the plasma spray method on the fretting wear. An improvement
in the wear behavior of the HAp-based coating was recorded due to delamination, which
increased the relative slip amplitudes. Melanie et al. [147] investigated the impact of an
HAp-based coating on the resistance of wear element migration caused by releasing the
wear particles in the body and osteolysis. A significant improvement in the prevention of
migration of the interfacial wear particles was reported, which resulted in a reduction in
the osteolysis effects. In the research work of Reza et al. [148], the friction coefficient of a
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HAp-based coated Ti-6Al-4V surface using the thermal plasma spray technique showed a
downward trend, which caused a high wear resistance. Furthermore, the fatigue behavior
of the coated surface was improved. However, the application of HAp-based coatings
was recently claimed to be limited, as it contributes to poor mechanical characteristics
such as wear resistance, fatigue, microhardness, and rapid dissolution behavior, which
led to the addition of reinforcement additives such as Sr, CNT, TiO2, Al2O3, and so on to
HAp [148–151].

Gurpreet et al. [152] explored the microhardness and wear behavior of coated 316L
steel prepared through the TiO2 mixed-EDM process. The results showed an increase in
microhardness by 233% and a superior wear resistance that was increased by 80%. The
formation of titanium perovskite on a modified Ti-6Al-4V surface prepared using the
calcium chloride mixed-EDM process resulted in a high surface hardness. However, the
presence of titanium perovskite in the coating reduced gradually with an increased coating
depth [153]. Preethkanwal et al. [154] explored the surface characteristics of the machined
Ti alloy through the HAp added-EDM process. A decline in wear-rate was observed
because of both oxide and carbide formation. The microhardness of a treated β-phase
titanium alloy surface utilizing HAp in the EDM process was improved to 1275 HV [70]. A
maximum microhardness value of 80.7 HRC was estimated due to the generation of ZrC,
ZrO, CaTiO3, and TiC on the machined surface of Zr-based BMG when HAp was added to
the working liquid of the EDM operation [71]. The wear-rate of a treated Mg alloy declined
by 90.85% due to the formation of a HAp-based coating through the PM-EDM technique,
which was 0.07 mm/year. The treated surface microhardness improved to 234 HV, i.e.,
1.5 times greater than the parent material [155].

6. Influence of Corrosion Behavior on Biomaterial Performance

Corrosion is basically an electrochemical process that is characterized as an irreversible
material degeneration because of the chemical reactions occurring between the material
and its environment. The corrosion behavior of metallic biomaterials is widely measured
for quality assurance and failure analysis, because the functionality, sustainability, and
biocompatibility of biomaterials rely on their corrosion behavior. It has been suggested
that “the more corrosion resistance, the more biocompatible” [38,79,117,156]. Implanted
biomaterials have been recently claimed to start physical decay within 12–15 years, caused
by electrochemical reactions, although most metallic biomaterials have a high corrosion
resistance [38,156,157]. Therefore, corrosion is regarded as an important factor for the
designing and selection of biomaterials for biomedical applications. The inserted implants
confront challenges regarding their corrosion behavior, owing to electrochemical reactions
due to the presence of aqueous liquids in the body. Chloride, pH-levels, and dissolved-
oxygen are the most significant factors of body fluids that affect the corrosion behavior
of metallic implants. In body fluids, key cations contain ions such as potassium, sodium,
hydrogen, magnesium, and calcium. On the other hand, important anions include the ions
made of hydroxide, chloride, sulfate, bio-carbonate, and phosphate. The most influential
factors that affect the corrosion behavior of all metallic implants are the dissolved salts.
The temperature and pH level of the body fluids also affect the electrochemical process.
An increment of the body fluid temperature stimulates electrochemical reactions, resulting
in a high corrosion rate. A decline in the pH level of the surrounding body fluid may cause
the localized corrosion of biomedical devices [38,115,158,159]. Figure 6 shows the basic
types of corrosion behavior induced in biomaterials.
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Figure 6. Basic types of corrosion behaviour induced in biomaterials.

The different types of corrosion mechanisms that are pertinent to recent metallic bio-
materials include pitting, galvanic, uniform, stress cracking, crevice, fatigue, intergranular,
and fretting corrosion. Figure 7 demonstrates the mechanism of mechanically induced
crevice corrosion in implants.

Figure 7. Mechanism of mechanically induced crevice corrosion in the implants (reproduced with
permission from ref. [160].

This Figure 7 illustrates the destruction of the passive oxide film and activation
of corrosion when implanted bio-implants are experiencing cycling loads and crevice
geometry. Due to oxide film fracture, the particulate debris are released into the body.
Though the fractured film reforms the passive oxide film by reacting with body water, it
is destroyed due to the pH conditions of the body fluids. Pitting corrosion is localized
corrosion which occurs due to the presence of dissolved salts [115,120,157,160,161]. Figure 8
shows the impact of pitting corrosion on a neck stem device made from Ti-6Al-4V.
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Figure 8. Effect of pitting corrosion on a neck stem device made from Ti-6Al-4V (a,b) showing pits
formation, (c) displaying deep pits formation, and (d) material erosion due to corrosion (reproduced
with permission from ref. [160]).

Figure 8a–d demonstrates the surface morphology when implanted biomaterials
experience pitting corrosion. A destruction of the passive oxide film with shallow and
deep pits is observed in Figure 8a–d. The quantity of the eroded elements caused by the
corrosion can be calculated using Faraday’s Law [38]. Due to the occurrence of corrosion,
debris such as Ni, Co, V, Al, Cr, and so on, eroded from the metallic implant’s surface,
are released into the body causing alterations to cell performance, biological responses,
a shortened lifecycle of the biomaterial, bone loss, implant loosening, toxicity, allergic
effects, inflammation, and premature implant failure [15,64,159,162–165]. An excessive
presence of Fe particles in the blood causes liver failure, long-term organ damage, and
damage to lipids, DNA, and proteins [166,167]. High quantities of Cr and Co in the human
body result in hemolysis and muscle fatigue [165]. In summary, the corrosion phenomena
from metallic implants may have three effects on body tissues: (1) electrical currents can
influence cell behavior, (2) altering the chemical environment, and (3) the metal ions can
influence the metabolism of cells [38,168]. Table 4 summarizes the influence of released
debris from biomaterial surfaces on biological responses after corrosion and wear occur
inside a living body.

Table 4. Influence of released debris from biomaterials on biological responses during corrosion and wear.

Biomaterials Application Released Debris Effects Ref.

316L SS
1. Entire hip replacement

Cr, Ni, Co, Fe, and Mo
1. Altering cell performance [167–175]

2. Supporting devices (plates
and screw) 2. Allergic effects

Pure Mg 1. Biodegradable implants
for orthopedic Mg (no toxic effect) 3. Inflammation due to toxicity

Mg alloys Zn, Mn, and Ca (no toxic
effects) 4. Immature implant failure

Cobalt alloys 1. Full joints replacement
Ni, Co, and Cr

5. Bone loss
2. Dental implants 6. Implants loosening

Ti alloys
1. Cup and stem of total hip
replacement Al, Ti, V, Mo, and Fe

7. Liver failure and organ damaged

2. Different fixed devices 8. Hemolysis and muscle fatigue

Ni-Ti
1. Surgical instruments

Ni and Ti
9. Revision of surgery

2. Bone plates and Stents 10. Damaged of DNA and proteins
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7. Importance of HAp-Based Coatings for the Corrosion Behavior of Biomaterials

To improve corrosion resistance, the introduction of surface coatings to biomaterials
utilizing bio-ceramic nano-powders is considered an effective solution. The researchers
who are working in this field have focused on developing several surface modification
techniques to create superior bioactive surfaces and enhance the mechanical characteristics
of biomaterials [157,163,169]. Sarbjit et al. [176] investigated the hardness and corrosion
properties of treated 316L stainless-steel using both HAp and HAp/TiO2 with the high
velocity flame spray technique. The results showed an increase in both the microhardness
and corrosion resistance of the HAp-based coating, whereas the HAp/TiO2-based layer
outperformed it in both areas. Dunne et al. [171] examined the impact of an HAp-based
coating on the corrosion rate of an Mg alloy using the blast coating method. A low corrosion
rate with crystalline phase was reported for the HAp coated surfaces, but not the uncoated
surfaces. Hortensia et al. [172] conducted a comparative research work on the nature of the
corrosion of HAp and TiO2-HAp-based coatings on a Ti alloy prepared through the high
velocity oxygen fuel (HVOF) technique. The outcome exhibited damage to the HAp-based
coating due to its dissolution when it was immersed in the simulated body fluid (SBF),
but the addition of TiO2 particles to the HAp resulted in the creation of active protection
against the corrosion. Gao et al. [173] explored the corrosion and bioactive properties of an
Mg alloy which was modified through applying HAp in the plasma-spray technique. The
modified surface provided a higher corrosion resistance and bioactivity compared to the
uncoated Mg alloy. Durairaj et al. [174] synthesized a HAp-based layer on both a Ti alloy
and an Mg alloy by the electrodeposition method. The degradation and corrosion rate were
lower for both the treated alloys compared to the untreated specimens. The bio-growth
of an Hap-coated Mg alloy was promising, but for an Hap-coated Ti alloy, the bio-growth
was not significantly improved. However, the morphological tests after completing the
corrosion experiments using the SBF verified the formation of multiple cavities and pores
on the HAp-based coatings. The mechanism of pore formation during the potentiodynamic
polarization technique with Hanks’ solution follows two processes: (i) the formation of
H+ ions on the implant surface, and (ii) the acidification of the medium by producing
H+ ions that dissolve the HAp and form larger pores [64]. Hence, to resolve these issues,
researchers around the world have recently been attempting to amalgamate reinforcement
agents such as CNT, Nb, Ag, Sr, Fe3O4, Si, Mg, and so on with HAp to prevent this
manner of dissolution, which significantly improves the mechanical properties, including
the microhardness, wear resistance, and corrosion resistance [39,174,175,177–179].

Chander et al. [70] explored the properties of treated Ti alloy surfaces prepared through
the HAp added-EDM process. A formed biocompatible layer comprising oxides showed
a higher corrosion resistance for the modified surfaces with excellent biocompatibility
compared to the untreated specimens. In the research work by Preetkanwal et al. [154], a
low corrosion value of 0.1146 mm/year was observed when machining a Ti alloy using a
nano-HAp mixed dielectric in the EDM technique. Razak et al. [180] studied how to develop
a formula for controlling the corrosion rate of an Mg alloy applying zinc powders in the
EDM method. In this research work, corrosion values ranging from 0.000183 mm/year to
0.001528 mm/year were obtained when 2 g/L zinc was added to the working fluid of the
system. Chander et al. [56] synthesized a nano-HAp-based coating on an Mg alloy through
the PM-EDM method. In this research, the corrosion rate of the coated Mg alloy declined
by 90.85%, ranging between 0.82 mm/year and 0.07 mm/year due to formation of a stable
protective layer consisting of intermetallic compounds and oxides.

8. PM-EDM Process Variables Affecting the Treated Surface Properties

Due to the dynamic nature of the PM-EDM system, the interpretation of the inter-
actions and effects of factors on the treated surface properties are difficult. The process
factors are divided into the electrical and non-electrical factors on which the machined
surface characteristics depend. Current, applied voltage, pulse-on duration, and pulse-off
duration are the most influential electrical variables, while the non-electrical input vari-
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ables include the physical properties of the tools, working liquid, particle size, and the
amount of powder added [11,23,181–188]. Considering that a PM-EDM system is complex
in nature, optimization of the process factors is required to obtain the optimum responses.
A summary of the influence of process factors on the machined surface properties is given
in Table 5.

Table 5. Summary of the effects of the process factors on the treated surface properties.

Biomaterials Electrode Added Powder Effects on Modified Surface Properties Ref.

Ti alloys

Copper HAp Wear resistant increased by 82% with increasing HA
powder concentration. [154]

Graphite HAp/CNT Surface integrity improved while applying a
higher current [72]

Pure Ti HAp
A coating thickness of 9 µm with microcracks, three
times higher microhardness, and Ca:P of 13 were
obtained with a lower addition of HA powder.

[189]

Pure Ti HAp

A three times higher microhardness, higher corrosion
resistance and biocompatibility, and a coating of 7 µm
with crack free surface were observed with greater
powder addition and current application

[70]

Zr-based alloy

Pure Ti HAp

A thickness of approximately 27.2 µm, a higher
deposition rate, and higher microhardness and
biocompatibility were measured with increasing HAp
quantity and decreasing discharge energy

[54]

Pure Ti HAp
Lakargiite at 50% and a rise of microhardness to around
42% were observed with a lower current and higher
pulse on time and powder concentration.

[9]

316L SS

Copper HAp
Biocompatibility was enhanced due to oxide and
intermetallic alloy formation with higher
discharge current

[190]

Copper HAp Microhardness increased by 160%, bioactive alloys
were found. [73]

Mg alloys

Mg-Ca HAp

Microhardness and wear resistant were enhanced by
1.5 times and 90.85%, respectively, biocompatibility
increased significantly due to oxide formation, and
coating thickness improved with increased
powder addition

[56]

Mg-Ca HAp
Deposition rate increased with more powder addition,
initially RLT decreased, while it increased with greater
addition of HAp.

[53]

8.1. Effect of Non-Electrical Parameters on the Modified Surface Characteristics

The amount of added powders and the size of particles are vital factors which influ-
ence the altered surface quality. A rise in layer thickness of the modified part is obtained at
a high concentration of added powder, since the deposition rate rises during machining.
However, a much thicker coating contributes to poor adhesion bonding, due to reducing the
compressive stress in the coating, leading towards wear propagation. Moreover, both cor-
rosion and microhardness were observed to be augmented with the subsequent mixing of
more additive, due to the oxide and carbide formation during machining [9,11,74,191,192].

The dielectric fluid is considered another vital factor influencing the performance of
the EDM process. Dielectric fluids, including EDM oil, mineral oil, kerosene oil, deionized
water, and distilled water, are commonly employed in different EDM applications. Basically,
micro-EDM and wire-cut EDM use deionized water and distilled water, whereas die-sink-
EDM employs EDM oil, mineral oil, and kerosene. Deionized water and distilled water
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show some limitations when utilized for biomedical applications due to being prone to
higher corrosion rates compared to mineral oil, EDM oil, and kerosene. Mineral oil, EDM
oil, and kerosene provide a higher microhardness of the treated specimen than deionized
water because of carbide formation. Furthermore, a thicker recast layer has been reported
with application of oil-based dielectrics instead of water-based dielectrics, due to having a
lower specific heat and higher electrical resistivity, decreasing the machining gap and poor
flushing [57,191,193,194].

8.2. Effect of Electrical Factors on Modified Surface Properties

An increase in peak current provides a large amount of electrical energy in the system,
which causes further fusing and vaporization. A high application of current induces further
melting, migration, and deposition of the melted debris, resulting in the formation of a
thick substrate during machining. Due to the surface alloying caused by the application
of a high discharge current, a hard surface is observed. Moreover, the microhardness of
the treated surface is elevated due to the accelerated heating and cooling processes at high
current application, although surface alloys are not formed. A rise in the migration and
deposition of the melted debris is displayed with high current application, confirming the
carbide and oxide formation on the machined part, which contributes to enhancing the
biocompatibility and corrosion and wear resistance; though micro-cracks, residual stresses,
and a reduction of compressive stresses may be noticed [54,57,70,74,182,195]. Followed by
the peak current, an increase of pulse-on duration supplies more electrical energy to the
plasma channel due to applying sparks for a long period. Consequently, more materials
from the employed tools, dielectric fluid, and added powders are eroded and deposited on
the machined surface, causing hard and thick recast layers [53,182,196–198].

The applied voltage is from about 50 to 300 volts for the PM-EDM system because
a high potential voltage is not appropriate for high-precision machining. The potential
voltage affects the spark size and removal of the materials. An augmentation in coating
thickness and deposition rate is found at high potential voltage applications, but these
decline at too large a voltage application [57,182,199].

Pulse-off duration is another crucial electrical factor because its proper selection
ensures stable machining. Although a long pulse-off duration is preferred due to allowing
more flushing of the produced debris from the machining gap, it may cause overcooling
of the eroded debris, resulting in a thick recast layer. On the other hand, the application
of short pulse-off durations causes unstable machining, due to the occurrence of short
circuits [11,182].

9. Current Surface Coating Techniques for the Biomedical Applications

HAp-based coating stability is a critical consideration for potential bio-implants, since
phosphate–calcium is the most abundant substance in both bone and the teeth and produces
bioactive responses. Various surface treatment methods that are currently used for coating
purposes affect characteristics of the HAp-based layer including the mechanical strength,
wear and corrosion resistance, and biological performance by processing the coating with
a high sintering temperature [17,18]. A comparative study of HAp-based coating thickness,
microhardness, and wear and corrosion resistance using various methods is presented
in Table 6.
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Table 6. Comparative study on HAp-based coating thickness, microhardness, wear and corrosion resistance through
different surface modification methods.

Method Materials Layer
Thickness Microhardness Corrosion Resistance Wear Resistance Ref

PM-EDM

Ti alloys 18–20 µm Increased by
3 times Increased NM [70]

Ti alloys NM NM Increased Reduced by 82% [154]

Mg alloy 15–18 µm Increased by
150% Increased by 90.85% NM [56]

Plasma spray

Mg alloy 9 µm NM Increased NM [171]
Ti alloys NM 277 HV Increased NM [200]
Ti alloys NM 339 HV Increased NM [170]
Ti alloys 185–200 µm 137 HV Increased NM [201]

Electrophoretic
Mg alloy 70 µm NM Increased NM [202]
Mg alloy 25–40 µm NM Increased by 30.84% NM [203]

NiTi 7 µm NM Increased by 50 times NM [204]

Sol-gel
316L SS 250 µm NM Increased NM [205]

Mg alloy 10.2 µm NM Increased by 40 times NM [206]
316L SS 1.6 µm 459 HV Less increased NM [207]

Dip coat Ti 30–40 µm 232 HV NM NM [208]
Ti alloys 17.52 µm NM Increased NM [209]

Biomimetic Ti alloys Thin 327 HV Less increased NM [170]

Note: NM-Not mentioned.

The methods of deposition are divided into two categories: chemical and physical
depositions. The thermal spraying method, laser surface alloying, spray pyrolysis tech-
nique, sputtering process, pulse laser deposition, and laser melting deposition are the
physical alteration techniques, while the chemical modification techniques include the
following: sol-gel, hot pressing, dip coating, electrochemical method, electrostatic spray,
and electrophoretic [17–19,48]. The plasma-spray coating method is widely used in the
biomedical industry, synthesizing the Ca-P based coating on the biomaterials by spraying
melted HAp and using an electric arc [15,200,210–215]. Gao et al. [173] explored the nature
of corrosion and biological responses of an HAp-coated Mg alloy prepared through the
plasma-sprayed technique. The HAp-based coating showed a low corrosion rate with
excellent bioactivity due to the formation of β-Ca3(PO4)2, which is the converted form of
the HAp. Moreover, the obtained coating was hydrophilic in nature. Although the coating
deposition rate was comparatively higher in this process, a high deposition involves an
intensive amount of heat application during the operation, resulting in alteration of the
HAp alloying phases [211,212,216]. The sol-gel deposition process is another common
technique for surface modification that follows a simple procedure and enables coating the
complex shapes of metallic biomaterials [206,207,217–219]. Sarbjit et al. [205] synthesized a
HAp-based layer on a 316L stainless steel through the sol-gel method. The obtained coating
thickness of about 250 µm showed high corrosion resistance and excellent bioactivity. It
has already been proven by previous studies that an improved hardness and corrosion
resistance can be obtained by the sol-gel process, though the formation of a porous surface
with this process can be very difficult to manage [220]. The biomimetic process can prepare
a thick and porous coating with improved morphology compared to other techniques [221].
Shalinder et al. [170] made a comparison of HAp-based coatings formed through both the
plasma spray and biomimetic methods. The plasma sprayed HAp method produced a
thick coating and showed a higher microhardness and corrosion resistance compared to
the biomimetic process. The dip coating technique follows steps such as dipping, with-
drawal, and drying, and shows various advantages, such as low installation cost, ease
of working, capability for complex coatings and shape, uniform layer, and low working
temperature [208,222–224]. Faiz et al. [209] explored the characteristics of an HAp-based
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modified surface of a Ti alloy made using the dip-coating technique. The modified surface
had a high corrosion resistance and biocompatibility. The electrochemical deposition (ECD)
process operated at a moderate temperature is one of the coating techniques available in
the biomedical industries that can form a homogeneous coating and perform rapid coating
deposition [143,203,204,225–227]. Saadati et al. [202] prepared an HAp-based coating on
Mg-4Zn-4Sn-0.6Ca-0.5Mn alloy using the electrophoretic coating technique. The obtained
coating thickness of more than 100 µm showed an enhancement in corrosion resistance for
the coated samples. Although both the physical and chemical coating methods have some
advantages, they also have some limitations in the issues, such as coating process, coating
strength, coating compounds, porous coating, wear and corrosion behavior, and cost of
production [11,48]. A comparative study regarding the advantages and disadvantages of
the existing coating methods with the PM-EDM technique is shown in Table 7.

Table 7. Comparative study between commonly used coating techniques and the PM-EDM method [11,19,48].

Method Layer Thickness Advantages Disadvantages

Dip coating 2–0.5 µm
Lower processing cost; possible complex

shape coating with porous facility;
quick deposition

Crack formation due to employing elevated
sintering temperature; amorphous CaP coating

formation due to mismatch between heating
and cooling

Sol-gel 0.1–0.8 µm

Lower processing cost; possible complex
shape coating with higher purity; lower

operating temperature; higher
cell adhesion

Expensive raw materials; low wear resistance
due to higher porosity formation;

higher permeability

Plasma spraying 30–200 µm Less cost; higher coating rate; reduced risk
of coating degradation; easy to operate

Non uniformity in coating density; Phase’s
transformation due to high temperature;

relatively lower adhesion strength; rapid cooling
causes cracks; producing amorphous composites;
synchronous establishment of biological agents

is impossible

PM-EDM 3–65 µm

Can shape and coat simultaneously; can
create porous and biocompatible coatings;

higher adhesion strength; excellent
corrosion and wear resistance; crack free

surface possible; can obtain higher
precision machining; inexpensive;

excellent biological responses; research
on-going process.

Can only cut conductive materials; cracks and
craters are observed due to the high intensity of

energy and poor flushing; lower machining
efficiency; HA phases may be transformed due
to elevated temperature; difficult to understand

the deposition process; challenging to obtain
uniform coating thickness; research

on-going process.

Micro-arc oxidation 3–30 µm
Easy to control; inexpensive;

environmentally friendly process; can coat
complex geometries

Proper electrolytes required; considered a
pre-deposition technique

High-velocity-oxy fuel
spraying 30–200 µm High coating rates; enhanced wear and

corrosion resistance and biocompatibility

High temperatures cause non-stoichiometric and
amorphous compounds; simultaneous

incorporation of biological agents is impossible;
crack propagation; line of sight technique

Electrochemical
deposition 0.05–0.5 mm

Complex coating shapes possible; lower
cost to operate; significantly uniform layer

thickness possible

Poor coating adhesion strength; developing
stress in coatings; difficult to control parameters

Pulse laser deposition 0.05–5 µm

Layers with amorphous crystalline phases;
can produce an extensive range of
multi-stages substrates by different

materials; thick and porous substrates
with excellent adhesive strength

Line of sight process; expensive; elevated
temperature prevents simultaneous

incorporation of biological factors; lack
of uniformity

10. Critical Analysis of the Effects of HAp on the Treated Surface Properties
through PM-EDM

Regarding surface treatment of the widely employed biomaterials such as alloy steel,
titanium alloy, cobalt alloy, and magnesium alloy using the PM-EDM processes, there are
few literature studies available online as it is a newly developed trend in biomedical appli-
cations. In the research work by Gurpreet et al. [73], a high microhardness of 877.60 HV
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was calculated corresponding to a 28 A current, pulse-on period of 120 µs, and 15 g/L HAp
concentration, which was improved by 160% compared to the untreated 316L steel. Thus,
the HAp mixed dielectric medium showed a direct effect on the microhardness. Chander
et al. [56] analyzed the surface properties of an Mg alloy, which was modified using the
nano-HAp mixed-EDM technique. With the addition of HAp in the EDM process, the
analysis demonstrated an improvement in corrosion resistance and microhardness of the
treated surface by 90.85% and 1.5 times, respectively. Furthermore, due to the development
of intermetallic oxides, an augmentation in the machined surface biocompatibility was
noticed. In this study, a thick layer of 15–18 µm was formed at a HAp concentration of
20 g/L. However, the increase of HAp to 20 g/L may have resulted in the immediate
settling of the HAp during machining [11], and a thick layer reduces the compressive
stresses, resulting in inferior adhesion of the coating and wear resistance [48,74,87]. Chan-
der et al. [53] analyzed the influence of the process factors on machined Mg alloy surface
responses using the HAp added-EDM method. In this experiment, multi-objective particle
swarm optimization (MO-PSO) was employed to optimize the related process variables,
such as the HAp concentration, current, pulse-on duration, and pulse-off duration, thus,
obtaining the optimum values for the machined surface properties, including the rough-
ness, microhardness, and layer thickness. With an application of 5.28 g/L HAp, 3.48 A
current, pulse-on duration of 40.33 µs, and pulse-off duration of 109.29 µs, the optimum
performance with a 246 HV microhardness and 11.85 µm recast layer thickness was ob-
tained. However, by employing a long pulse-off duration, a thick recast layer was created
that may have led to the mechanical malfunction of the modified biomaterials [19,74,228].
With the addition of a small amount of HAp, the recast substrate thickness decreased,
which then increased due to applying an HAp amount of more than 3–4 g/L [189]. Fur-
ther increasing the HAp quantity to above 5 g/L confirmed the greater HAp presence
in the machining void, followed by an improvement in deposition rate. The formation
of carbides and oxides was observed with an increase in both the added-HAp and the
current, resulting in an improved microhardness and corrosion behavior. Nonetheless, the
presence of more hard carbides may be a source of wear propagation [87,229]. Preetkanwal
et al. [154] explored the treated surface characteristics of a titanium alloy prepared utilizing
the nano-HAp suspended-EDM technique. The surface modified using the HAp exhibited
a decline in wear rate of 82% (68 µm) compared to the untreated sample and an increase
in bioactivity due to the formation of TiO2, VSi2, (Ca3(PO4)2), TiC, and CaTiO3 with the
nanopores. Furthermore, the HAp-based surface revealed a corrosion potential value of
−0.0692 mV, resulting in a low corrosion value of 0.1146 mm/year, although the influences
of the associated parameters on the wear and corrosion behavior were not illustrated.
The obtained HAp-based coating thickness was not measured, which is considered an
important factor for both the corrosion and wear behavior.

Shih-Fu and Cong-Yu [189] the evaluated the impact of the HAp suspended-EDM
process on the surface morphology of a treated titanium alloy. A thin layer of 9 µm
was measured when mixing 5 g/L HAp in the dielectric liquid. A mathematical mode
of the recast layer thickness was designed as a function of the HAp quantity, which
was increased by adding a further 5 g/L of HAp. The treated surface microhardness
was enhanced by three times compared to the untreated substrate, due to increasing the
HAp concentration [189]. Chander and Uddin [70] analyzed the surface properties of a
treated Ti alloy prepared using the HAp added-EDM technique. An increase of the HAp
concentration improved the oxide and carbide deposition on the modified surface, resulting
in a three-fold improved microhardness and high corrosion resistance and biocompatibility.
The measured layer thickness of 7 µm at a HAp quantity of 5 g/L was smaller than the
obtained coating thickness of 10 µm at a 0 g/L powder addition, although increasing the
HAp concentration to 15 g/L augmented the thickness to 18–20 µm as greater trapping of
the added powders resulted from shortening the gap distance. Aliyu et al. [54] synthesized
a HAp-based coating on a zirconium-based bulk metallic glass (BMG) through the PM-
EDM method. In this study, due to the formation of CaZrO3, ZrO2, Ca5(PO4)3OH, TiC,
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and ZrC, the modified surface exhibited an increase in both hardness and biocompatibility.
The coated surface revealed a coating thickness of approximate 27.2 µm with an increase in
the added powder concentration and a decrease in the discharge energy. The influence of
the current, pulse-on duration, and HAp concentration on the surface morphology of the
machined Zr-based BMG is shown in Figure 9.

Figure 9. Influence of current and HA powder concentration on the modified surface morphology
(a–l) showing microcracks, micropores, shallow craters, and nanostructure formation (reproduced
with permission from ref. [54]).

Figure 9 shows the formation of nanopores, shallow craters, and microcracks on
the coated BMG surface through the HAp mixed-EDM process at different machining
conditions. A nanoporous and lakargiite (CaZrO3)-based coating on BMG was synthesized
by Aliyu et al. [9], while mixing HAp in the dielectric. Owing to the formation of ZrO,
ZrC, TiC, and CaTiO3, the microhardness of the treated surface was improved by around
42%. An increase in microhardness of the modified surface of the bulk metallic glass was
found in this research when applying a low current and both a high pulse-on time and
powder concentration in the process. Alamin et al. [74] synthesized a uniform thin recast
layer on a modified 316L steel surface using HAp mixed-EDM process, which is crucial
for enhanced corrosion resistance and biocompatibility. In this study, uniform coatings
were obtained corresponding to all the parameters settings, which were achieved for the
first-time using the HAp added-EDM process. A largest coating thickness of 15.294 µm was
obtained, corresponding to a peak current of 10 A, pulse-on duration of 16 µs, and HAp
concentration of 15 g/L, whereas the lowest coating thickness of 6.22 µm was recorded at
a 5 A peak current, 8 µs pulse-on duration, and 10 g/L HAp amount. Table 8 reports a
summary of the current developments of obtained layer thickness, microhardness, wear
and corrosion behaviours using the HAp mixed-EDM process.
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Table 8. Current status of layer thickness, microhardness, and wear and corrosion resistance using the HAp-mixed PM-EDM
process.

Biomaterial Layer Thickness Microhardness Corrosion
Resistance

Biological
Responses Wear Resistance Ref

Zr-based alloy 27.2 µm Increased NM Increased NM [54]
NM Increased by 42% NM Increased NM [9]

Ti alloys

18–20 µm 3-fold increased Increased Increased NM [70]
9 µm 3-fold increased NM Increased NM [189]
NM NM Increased Increased Decreased by 82% [154]

20–50 µm NM NM NM NM [55]

Mg alloys 11.85 µm 246 HV Increased Increased NM [53]

15–18 µm Increased by 1.5
times

Increased by
90.85% Increased NM [56]

316L SS NM Increased by
160% NM Increased NM [73]

11. Challenges, Followed by Areas for Future Research

Nowadays, there are few published works available which provide a clear conceptu-
alization regarding the mechanism of recast layer formation using the PM-EDM process.
As a matter of fact, the modified surface properties, such as a uniform thickness of coat-
ing, phases of coating, microhardness, and wear and corrosion behavior using the HAp
mixed-EDM technique have not been elaborated in detail because few studies have been
produced over the last few decades. Furthermore, few research has showed the correlation
between the associated factors of the PM-EDM process and the machined surface proper-
ties, resulting in a lack of knowledge regarding these aspects. Hence, these aspects should
be investigated in detail.

There are so many research areas remaining regarding the HAp suspended-EDM
process. Researchers are focusing on the HAp-based coating thickness, Ca-P ratio, and
phase transformation during the machining. The challenge is to achieve a uniform thin
recast layer with homogeneous alloying, which leads to a rise in the compressive stresses
and a decline in the residual stresses. It is also very challenging to ensure a proper
distribution of the produced oxides and carbides on the machined part. Moreover, a
large amount of heat is generated during the PM-EDM operation, resulting in phase
transformation of the HAp and the HAp-based alloys, which leads to a poorly modified
surface quality regarding the mechanical characteristics, biological response, and tribo-
corrosion behavior. To ensure a proper distribution of the added substances in the coating
and enhance the mechanical properties of the HAp-based layer, the HAp should be doped
with other additives; leading to another challenge during the machining, as the doped
HAp contributes a high molecular weight, resulting in a difficult to prevent quick-settling
tendency. Furthermore, a proper combination of crystallinity and amorphous phases in the
coating should be ensured.

The corrosion behavior of biomaterial is another important concern on which the
stability and biological responses rely. It has been confirmed from the literature that the
HAp-based coating may dissolve in an SBF environment, which leads to the addition of
the reinforcement additives to the HAp to improve the corrosion resistance. Therefore,
proper selection of additives is another challenge for future researchers. Furthermore, due
to applying a high discharge energy during machining and having a low heat conductivity
of the HAp, micro cracks develop in the HAp-based coating after solidification and the
crystallinity of the added-HAp may be changed, resulting a high corrosion rate.

The wear behavior of biomaterials is regarded as an important mechanical property,
which may cause mechanical failure of inserted implants. This property may depend
on the design, manufacturing process, coating surface quality, coating alloying, and so
on. During the PM-EDM process, a very high temperature, ranging from 8000 ◦C to
12,000 ◦C, is created, which may cause the creation of residual stresses in the coating. These
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stresses may make the implant surface prone to wear. Estimating the residual stresses
from the developed layer is another challenge. The surface roughness and the wettability
of modified layer are important factors for the introduction of wear. The challenge lies
in obtaining the proper roughness and wettability of the modified surface to improve
the wear resistance. Presently, there is no established mathematical relation between the
microhardness and the wear behavior. Therefore, a clear relationship between them should
be established to resolve this issue. Figure 10 summarizes future research areas regarding
HAp-based coating using the PM-EDM process.

Figure 10. Summary of future research areas.

To resolve the aforesaid limitations of HAp-based coating, a suitable additive, having
a high electrical and heat conductivity, should be added to the HAp mixed dielectric fluid
during the EDM process to act as a reinforcement agent. Carbon nanotubes (CNT) yielding
graphene (C) are recommended as a suitable additive and are considered the strongest
materials in the world nowadays. The CNT offers outstanding mechanical, thermal,
and electrical properties. For instance, it is 100 times stronger compared to steel alloys.
Moreover, it has a high Young’s modulus of 1 TPa, a strength to weight ratio 500 times
greater than aluminum, and a strain 10% higher than any other material. It offers a higher
electrical conductivity, at 109 A/cm2, than that of copper, at 106 A/cm2. It even possess a
high thermal conductivity of 3320 W/mK [230,231]. From a biocompatibility point of view
regarding CNT, most studies delivered positive feedback, although a few investigations
suggested checking its cytotoxicity before using it in the biomedical applications, because
of the presence of Ni, Fe, and Al in CNT [232,233]. As the CNT has a small specific gravity
and larger dynamic shape factor than a spherical shape [59], it can uniformly mix with
EDM oil and disperse through the machining gap, resulting the removal of microcrack
formation from the HAp-based coatings caused by uniform heat transfer during the cooling
process. Moreover, a thin, uniform coating may be formed using CNT due to improving
flushing of the produced debris and their scouring effects.

12. Summary

The biological functions and the characteristics of modified surface are proposed as
the key factors for long-term implementation of bio-implants in the human body. HAp-
based coatings have been required to ensure the biocompatibility and the biofunctions of
biomaterials, which results excellent osseointegration and faster growth of the hard tissues.
Furthermore, in previous literature it has been reported that the treated surface charac-
teristics, such as the coating thickness, microhardness, and wear and corrosion resistance
were improved using the HAp added-EDM process. However, the literature reported the
dissolution of HAp-based coatings in the SBF solution, leading to the incorporation of
other additives with HAp. Though the existing coating techniques have some advantages,
the PM-EDM technique shows some advantages over the conventional methods, as it is



Materials 2021, 14, 3597 24 of 33

(a) able to form and coat concurrently; (b) does not require preparing the surface before
machining; (c) capable of forming carbides and oxides on the machined part; (d) capable of
forming a nano-porous layer; and (e) able to improve the surface microhardness and wear
and corrosion resistance; and thus may be a potential candidate in the field of processing
biomedical devices.

Based on the recently published research works, this article provides a critical analysis
of the effects of HAp addition to the EDM process and the associated process factors on the
surface characteristics of biomaterials. This study thoroughly highlights the PM-EDM pro-
cess mechanism and the importance of HAp for enhancing the biological responses and the
surface properties, such as the coating thickness, microhardness, and wear and corrosion
behavior. Furthermore, a comparative study of the modified surface characteristics using
both the HAp added-EDM method and other existing methods was critically reported. In
this review, the feasibility of the HAp mixed-EDM process for biomedical applications
was compared with the other conventional coating techniques. A machined surface mor-
phology and topography were depicted to validate the analysis. A few literature studies
regarding HAp-based coating phase transformation and the wear and corrosion behavior
using the PM-EDM method have recently been produced, which contribute to the research
areas for future researchers.

Author Contributions: Conceptualization, M.A.-A. and A.M.A.-R.; methodology, M.A.-A.; software,
M.D.; validation, S.R., A.b.M. and H.M.T.; formal analysis, M.A.-A.; investigation, D.R.U.; resources,
M.H.S.; data curation, M.A.-A.; writing—original draft preparation, M.A.-A.; writing—review and
editing, S.A.; visualization, M.D.; supervision, A.M.A.-R.; project administration, A.M.A.-R.; funding
acquisition, A.M.A.-R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Malaysian Ministry of Higher Education Fundamental
Research Grant Scheme (FRGS/1/2020/TK0/UTP/02/39) and Joint Research Project between Uni-
versiti Teknologi PETRONAS–University of Jeddah–University of Leeds–Fetta Sdn Bhd (Cost center:
015ME0-219).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their heartfelt gratitude and appreciation to Malaysian Min-
istry of Higher Education Fundamental Research Grant Scheme (FRGS/1/2020/TK0/UTP/02/39)
and Joint Research Project between Universiti Teknologi PETRONAS–University of Jeddah–University
of Leeds–Fetta Sdn Bhd (Cost center: 015ME0-219) for providing research fund. Authors also ac-
knowledge the supports provided by the Department of Mechanical Engineering, UTP.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [CrossRef]
2. Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants: A

review. Prog. Mater. Sci. 2009, 54, 397–425. [CrossRef]
3. Navarro, M.; Michiardi, A.; Castaño, O.; Planell, J.A. Biomaterials in orthopaedics. J. R. Soc. Interf. 2008, 5, 1137–1158. [CrossRef]
4. Mahajan, A.; Sidhu, S.S. Surface modification of metallic biomaterials for enhanced functionality: A review. Mater. Technol. 2017,

33, 93–105. [CrossRef]
5. Winkler, T.; Sass, F.A.; Duda, G.N.; Schmidt-Bleek, K. A review of biomaterials in bone defect healing, remaining short-comings

and future opportunities for bone tissue engineering: The unsolved challenge. Bone Jt. Res. 2018, 7, 232–243. [CrossRef] [PubMed]
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