
Vol.:(0123456789)

Bulletin of Earthquake Engineering (2022) 20:3195–3213
https://doi.org/10.1007/s10518-021-01191-0

1 3

S.I. : SOIL-STRUCTURE INTERACTION EFFECTS ON THE DYNAMICS 
OF STRUCTURES

Fast simulation of railway bridge dynamics accounting 
for soil–structure interaction

P. Galvín1,2  · A. Romero1 · E. Moliner3 · D. P. Connolly4 · M. D. Martínez‑Rodrigo3

Received: 5 March 2021 / Accepted: 27 July 2021 / Published online: 3 August 2021 
© The Author(s) 2021

Abstract
A novel numerical methodology is presented to solve the dynamic response of railway 
bridges under the passage of running trains, considering soil–structure interaction. It is 
advantageous compared to alternative approaches because it permits, (i) consideration 
of complex geometries for the bridge and foundations, (ii) simulation of stratified soils, 
and, (iii) solving the train-bridge dynamic problem at minimal computational cost. The 
approach uses sub-structuring to split the problem into two coupled interaction problems: 
the soil–foundation, and the soil–foundation–bridge systems. In the former, the founda-
tion and surrounding soil are discretized with Finite Elements (FE), and padded with Per-
fectly Match Layers to avoid boundary reflections. Considering this domain, the equivalent 
frequency dependent dynamic stiffness and damping characteristics of the soil–foundation 
system are computed. For the second sub-system, the dynamic response of the structure 
under railway traffic is computed using a FE model with spring and dashpot elements at 
the support locations, which have the equivalent properties determined using the first sub-
system. This soil–foundation–bridge model is solved using complex modal superposition, 
considering the equivalent dynamic stiffness and damping of the soil–foundation corre-
sponding to each natural frequency. The proposed approach is then validated using both 
experimental measurements and an alternative Finite Element–Boundary Element (FE–
BE) methodology. A strong match is found and the results discussed.
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1 Introduction

The response of railway bridges is strongly affected by soil–structure interaction (SSI), 
especially under resonance conditions (Romero et  al. 2013). Radiation and material soil 
damping influence the modal parameters and usually mitigate the structural vibration lev-
els. However, the interaction between the sub-structure and the soil is seldom considered in 
numerical models when solving the dynamic problem. In order to predict realistically the 
vibrational response of bridges under railway traffic, or to asses the structural integrity for 
new operational situations, SSI should be considered. In the design of new structures this 
may lead to optimized alternatives and in the case of existing ones, it will permit to assess 
the bridge performance when facing operational challenges (e.g. increase in the speed or 
capacity of services) and improve model calibration procedures.

Several researchers have investigated the dynamic response of the bridge accounting for 
SSI. The soil surrounding the bridge foundations can be modelled applying the Boundary 
Element method (Domínguez 1993) or the FE method adding non-reflecting boundaries 
(Lysmer and Drake 1972). Galvín and Domínguez (2007) studied the vibrations induced 
by high-speed trains crossing a curvlet-type railroad underpass using a three-dimensional 
(3D) BE model. Báez et al. (2018) analysed the aforementioned structures following a sub-
structuring approach, and Zangeneh et al. (2018) by means of a FE model. In all cases, the 
authors found the influence of SSI relevant. Romero et al. (2012, 2013) studied the effect 
of SSI on the resonant response of railway bridges. They concluded that the bridge fun-
damental periods and damping ratios increase when soil interaction is taken into account. 
Later, Doménech et al. (2016) and Martínez-Rodrigo et al. (2018) analysed SSI effects over 
an extensive catalogue of bridge typologies prone to experience high transverse accelera-
tions at resonance for modern trains and high design velocities. They studied the struc-
tural response using a coupled 3D BE–FE model and concluded that incorporating SSI 
effects in the analysis of new simply supported (SS) bridges or in the analysis of existing 
ones for retrofitting purposes could be of great importance in the assessment of the Ser-
viceability Limit Sate (SLS) associated to traffic safety. González et al. (2020) studied the 
performance of inclined pile foundations on the seismic response of bridges. The authors 
computed impedance functions and kinematic interaction factors of the pile foundations 
and compared them with the results of two different approaches: a Winkler-type model and 
a BE–FE model. Zangeneh et al. (2019) presented a simplified discrete model for calculat-
ing the modal parameters of the fundamental bending mode of railway beam bridges on 
viscoelastic supports. They proposed exact, closed-form expressions for the fundamental 
frequency and modal damping ratio, considering the effect of the dynamic stiffness and 
dissipation capacity of the foundation–soil system. Recently, Zangeneh (2021) investigated 
the effect of the foundation mass on the fundamental modal properties of the beam bridges. 
Gara et  al. (2019) studied the effect of the foundation–soil system on the interpretation 
of experimental ambient vibration tests and on the calibration of numerical models. They 
concluded that the common practice of updating fixed base numerical models to fit experi-
mental results should be prudently evaluated in the case of bridges where SSI is significant.

In the aforementioned research, simplified foundation geometries are mostly consid-
ered due to the high computational cost of the chosen numerical approaches. However, 
the computational effort could be reduced to a certain extent during SSI simulations using 
Perfectly Matched Layers (PML) to limit the size of the soil domain (Basu and Chopra 
2003a, b, 2004; Basu 2009; Kausel and de Oliveira Barbosa 2012). For example, Davoodi 
et al. (2018) studied the response of simplified geometries of different foundations using 
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the absorbing layers provided by the PML incorporated in a FE model. Lopes et al. (2014) 
studied the problem of a track-tunnel-ground system using a two-and-a-half-dimensional 
(2.5D) FE-PML approach. Esmaeilzadeh Seylabi et al. (2017) solved the wave propagation 
problem in the frequency-domain on a FE model applying PML to numerically simulate 
measured dynamic impedances of soil–pile systems. Zangeneh et  al. (2021) investigated 
the effect of dynamic SSI on the resonant response of portal frame bridges founded on a 
rigid base, and the parameters governing their interaction. The authors compare the results 
given by a simplified model with those from a full 3D FE-PML model.

Figure  1 shows a schematic representation of the railway beam-bridge coupled prob-
lem. The problem is usually divided into two sub-domains. First the bridge deck, supports 
and foundations are commonly represented using FEs. Then this structural domain is cou-
pled to the soil subspace. Alternatively, if the complete problem is modelled, and therefore 
modal superposition is not applied, the corresponding dynamic equilibrium equations can 
be solved using either implicit or explicit integration schemes, in the time or frequency 
domains. These approaches require large amounts of computational resources and time 
since, in addition, it is usually required to obtain the bridge response under several train 
types and speeds. An alternative and faster approach is to decouple the problem and to 
compute the structural response as the superposition of the first modal contributions. How-
ever, this transformation is not straightforward when the soil is accounted for, due to the 
presence of non-proportional damping.

In this paper a general approach is proposed to solve the SSI problem in railway bridges 
applying modal superposition. A sub-structuring approach involving PML permits the 
modelling of arbitrary foundation geometries. First, the problem in Fig. 1 is decoupled into 
(i) the soil–foundation problem (Fig.  2), and, (ii) the soil–foundation–bridge interaction 
problem (Fig.  3). In the first, the equivalent frequency dependent dynamic stiffness and 
damping characteristics of the soil–foundation system are computed using the FE-PML 
method. In the second, the dynamic response of the structure under railway traffic is com-
puted using a FE model that includes spring/dashpot elements at the supports, where the 
equivalent properties at the bridge–foundation connection points are extracted from the 
first problem. This soil–foundation–bridge model is solved by modal superposition consid-
ering the equivalent dynamic stiffness and damping of the soil–foundation corresponding 
to each natural frequency. To do so, a model updating procedure is implemented. As the 
model presents non-proportional damping, the complex eigenvalue problem is solved in 
order to compute the natural frequencies and mode shapes.

The study considers the vertical force transmission between the deck and the foundation, 
as the aim of the investigation is to develop and present the methodology. Nevertheless, the 
approach could easily be extended to more complex bridge–foundation–soil systems.

The outline of the paper is as follows. In Sect.  2, the numerical formulation is pre-
sented. In Sect. 3 the modal properties and dynamic response of a particular soil–founda-
tion–bridge system are validated and compared to those from previous publications which 

Soil

FoundationBridge

P

Fig. 1  Schematic representation of soil–foundation–bridge coupled system
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are computed applying different numerical techniques. In Sect.  4 the response of a real 
bridge is reproduced and compared to experimental measurements. Finally, in Sect. 5 the 
main conclusions are summarized.

2  Numerical formulation

The soil–foundation–bridge interaction problem (Fig. 1) is decoupled (Figs. 2, 3) with the 
aim of implementing a fast and accurate analysis tool that can be used in practice for the 
design and performance evaluation of these types of structures.

2.1  Soil–foundation interaction problem

The dynamic stiffness of the soil–foundation system is computed applying the FE method. 
In order to represent the absorbing boundaries for the wave equation, PML is used. Follow-
ing, the formulation of the PML is briefly summarized (Basu and Chopra 2003b; Bindel 
and Govindjee 2005; ANSYS, Inc. 2021).

The PML layers absorb and attenuate the arriving waves. In the frequency domain, the 
PML medium is formulated assuming a harmonic time dependence of the displacement, stress 

Fig. 2  Schematic representation 
of the soil–foundation decoupled 
system Soil

Foundation

Foundation

Soil

Absorbing boundary

Bridge

P

Kv Cv Kv Cv

Fig. 3  Schematic representation of soil–foundation–bridge decoupled system
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and strain, e.g. �(�, t) = �(�) exp ��t , where � =
√
−1 and � is the frequency of excitation. 

The waves are attenuated along the local coordinate system �′ inside the PML domain. Fig-
ure 4 shows a schematic representation of the attenuation function at each spatial direction j, 
with LPj being the PML thickness. The frequency-domain equations for the PML medium are 
obtained by applying nonzero complex-valued coordinate stretching functions in the x′

j
 direc-

tion denoted as sj:

where �′

ij
 are the components of the stress tensor in the local coordinate system, and � is the 

density of the medium.
The components of the strain tensor in the local coordinate system are:

The stretching function is sj(x�j) = [1 + f e
j
(x�

j
)∕�] − �f

p

j
(x�

j
)∕� , where the functions f e

j
 and 

f
p

j
 attenuate evanescent and propagating waves, respectively. If evanescent waves are not 

present, the stretching function results sj(x�j) = 1 − �f
p

j
(x�

j
)∕� . The attenuation functions 

used in this work and referred to in Fig. 4 are:

The parameters f0j and LPj are set to obtain a normal reflection coefficient of −60 dB , i.e.:
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The versatility of the FE methodology allows the simulation of different foundation types 
and soil stratigraphies. Firstly the soil–foundation system shown in Fig. 2 is considered in 
order to compare the proposed methodology with the results presented in Doménech et al. 
(2016) and Martínez-Rodrigo et al. (2018).

Three homogeneous soil types are defined with flexibilities covering the AASHTO clas-
sification (AASHTO 2012). In particular s and p-wave speeds of cs = {150, 220, 365} m/s 
and cp = 2cs are admitted, meaning that Poisson’s ratio �s = 1∕3 . Soil density and material 
damping are �s = 1800 kg/m3 and �s = 0.05 , respectively, for all cases. Identical 2B × 2B 
rigid foundation plates with B = 2.5 m are considered in all the cases initially.

The soil–foundation system is analysed using the FE model shown in Fig.  2 imple-
mented in ANSYS. In this figure only volumes are indicated for simplicity, and not the 
actual mesh. A massless foundation plate is considered for a better comparison with the 
cited works, which is modelled with four-node shell elements with six degrees of freedom 
(dof) per node. The plate is surrounded by a volume of soil represented with eight-node 
solid elements with three dof per node. At the boundaries of the soil elements, additional 
solid elements are created incorporating the PML formulation in order to act as absorbing 
boundaries.

The number of PML layers determines the absorbing efficiency of the PML region. The 
absorbing efficiency depends on the excitation frequency, the distance between the source 
and the PML domain, the PML domain thickness LPj , and the wave propagation veloc-
ity. The number of layers of the PML region is obtained from the PML thickness and the 
required element size. It is recommended a number of layers higher than 2 to reproduce the 
attenuation distribution. Moreover, it is advisable to model the near-field soil, at least, by 
two elements (ANSYS, Inc. 2021).

A total soil volume of 20 m × 20 m × 10 m is generated, where the thickness of the 
PML boundary equals 5 m , according to the mentioned requeriments. Therefore, the dis-
tance between the PML region and the foundation is 2.5 m . The size of the elements is 
selected based on the frequency. In particular, the mesh is discretized in 10 elements per 
wave length � = 2�cs∕� (Coronado and Gidwani 2016) with a minimum element size of 
0.5 m.

When a harmonic vertical force Fs(�) is applied at the center of the foundation plate 
with frequency � , the dynamic stiffness is defined as Domínguez (1993):

where vs is the vertical displacement of the foundation. Kd
v
(�) can be expressed as:

The real and imaginary parts of the previous equations are related to the stiffness and iner-
tia, and to the damping properties of the soil, respectively. Therefore,

where Kv(�) = Re{Kd
v
(�)} stands for the stiffness, and Cv = Im{Kd

v
(�)}∕� represents the 

damping of the system in terms of the frequency.
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Figure  5 shows the vertical compliance for the surface square foundation. The 
results are normalised to a0 = �B∕cs and to the compliance F0 = Bc2

s
�s∕K

d
v
 as in 

Domínguez (1993). The normalised results for the three different soils types with 
cs = {150, 220, 365} m/s match as indicated in Domínguez (1993). The agreement with 
the results computed with a BE model, shown in the same figure in solid black trace, is 
good.

Figure  6 presents the soil–foundation system stiffness and damping for the same 
soils. Moreover, the results presented in Gazetas (1991) are superimposed with circles. 
Gazetas (1991) provided results in the dimensionless frequency range a0 from 0 to 2, 
i. e., 0–19 Hz , 0–28 Hz and 0–46 Hz , respectively, for the three soils considered. In 
the cited research, the stiffness decreases approximately 40% percent and the radiation 
damping remains fairly constant while the material damping decreases with the fre-
quency in the considered range. The agreement between the proposed methodology and 
the results presented in Gazetas (1991) is good. At low frequencies, the FE-PML model 
predicts slightly higher values for the stiffness, and lower for the damping for the two 
stiffest soils. As the frequency increases, both properties decrease. The decrement of the 
material damping is higher in Gazetas (1991).

The advantage of the methodology presented herein is that it permits the representa-
tion and analysis of any type of foundation (abutments, piles, etc.) and soil stratigraphy. 

(a) (b)

Fig. 5  a Real and b imaginary parts of the vertical compliance for surface square foundation. BE results are 
represented in black trace

(a) (b)

Fig. 6  a Stiffness Kv and b damping Cv of the foundation–soil system. The results presented in Gazetas 
(1991) are superimposed with circles
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This study focuses on the numerical validation of the approach based on previous 
results. Cases dealing with more complex geometries will be presented in future works.

2.2  Soil–foundation–bridge interaction problem

Figure  3 shows the soil–foundation–bridge decoupled model. Beam bridges of length 
L, cross-section bending stiffness EIz , mass per unit length mb , and structural damping � 
are discretized using two-node Bernoulli-Euler beam elements, well suited for the analy-
sis of railway bridges in this study given the slenderness ratios and the frequency range 
of interest from 0 to 30 Hz (Doménech et al. 2016). The spring/dashpot elements at the 
bridge–foundation connection points, with equivalent stiffness and damping values Kv and 
Cv , are obtained from the FE-PML model as explained in Sect. 2.1. Therefore, the cross-
interaction between the two foundations of the bridge is neglected.

The bridge FE model with N dof is solved using complex modal superposition (Hurty 
and Rubinstein 1965). The equilibrium equation of the system is:

where M , C , and K are the mass, damping and stiffness matrices, respectively. Due to the 
SSI effect, represented by the spring/dashpot elements at the supports, damping in the 
problem is non-proportional, i.e., (M−1C)(M−1K) ≠ (M−1K)(M−1C) . In the case of non-
proportional damping, the position of each dof in each mode shape is defined by the ampli-
tude and the phase, which requires 2N equations to determine the solution of the N dof 
structure. Equation 8 can be rewritten as a system of 2N equations to be solved in this case 
as:

Equation 9 is expressed as a first order matrix equation:

where

In the previous equations, A and B are real symmetric matrices with dimensions 2N by 2N, 
and y is the state vector.

2.2.1  Free vibration response

In the free vibration case, Eq. 10 takes the form

The non trivial solution of this linear system of equations may be expressed as

(8)

Mü(t) + Cu̇(t) + Ku(t) = F(t)

u(0) = u0

u̇(0) = u̇0

(9)
[
C M

M 0

] [
u̇(t)

ü(t)

]
+

[
K 0

0 −M

] [
u(t)

u̇(t)

]
=

[
F(t)

0

]

(10)Aẏ(t) + By(t) = P(t)

(11)A =

[
C M

M 0

]
B =

[
K 0

0 −M

]
P =

[
F(t)

0

]
y(t) =

[
u(t)

u̇(t)

]

(12)Aẏ(t) + By(t) = 0
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where sj represents the j-th element of a set of 2N eigenvalues, and �j are the correspond-
ing eigenvectors:

The natural frequencies, damped natural frequencies and the modal dampings may be 
obtained from the eigenvalues sj as �j = |sj| , �dj = |Im{sj}| and �j = −Re{sj}∕|sj| . There-
fore, in the problem analysed, Re{sj} should be negative and Im{sj} ≠ 0 . Moreover, 
orthogonality conditions �T

j
A�k = 0 and �T

j
B�k = 0 for j ≠ k apply as proven in Hurty 

and Rubinstein (1965), where the superscript T indicates transpose.
The natural frequencies of the soil–foundation–bridge system are computed as per 

Eq. 12. First, the values of Kv and Cv obtained from Fig. 6 for the j-th natural frequency 
of the SS beam are selected as an initial solution. Then, an iterative problem is solved by 
updating the values of Kv and Cv for the damped natural frequencies of the bridge, upto the 
relative error in the n-th iteration, (f n

j
− f n−1

j
)∕f n−1

j
< 0.01 . The convergence of the problem 

is very efficient, involving generally only a few iterations.

2.2.2  Forced vibration response of non‑proportional damped structures

The solution to Eq. 10 can be expressed as:

Applying orthogonality conditions and normalising the eigenvectors to the matrix A , i. e., 
�

T
j
A�j = 1 , Eq. 10 can be uncoupled in a set of 2N equations as (Hurty and Rubinstein 

1965)

where �j = �
T
j
B�j = −sj and pj(t) = �

T
j
P(t).

Taking into account that the eigenvalues and eigenvectors for the structures analysed are 
pairs of complex conjugates, the displacements in the bridge can be computed from

Equation 16 may be solved numerically. It corresponds to a non-stiff differential equation 
that, in what follows, is solved using a Runge–Kuta (4,5) explicit algorithm (Dormand and 
Prince 1980; Shampine and Reichelt 1997).

The effects of SSI on the seismic structural response are large and they should be 
accounted for. Carbonari et al. (2011) used lumped parameter models to approximate the 
frequency-dependent behaviour of the SSI in multi-span bridges and to evaluate their seis-
mic responses. Poul and Zerva (2019) implemented the PML for modeling the unbounded 
domain in the seismic response evaluation of a concrete gravity dam. Chen et al. (2021) 
computed the frequency response of offshore monopile foundations to seismic excitation 

(13)y(t) = �je
sjt

(14)�j =

[
�j

sj�j

]

(15)y(t) =

2N∑

j=1

�j�j(t)

(16)�̇�j(t) + 𝛼j𝜉j(t) = pj(t)

(17)u(t) =

N∑

j=1

2Re{�j�j(t)}
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using the PML as an absorbing boundary condition. The present methodology can be 
extended to seismic problems applying the corresponding accelerograms ( ̈ug(t) ) in the 
force term of Eq. 9, by an additional term −�üg(t) . Then, u(t) = ut(t) − ug(t) , where ut(t) 
represents the total displacement of the structure. The proposed approach allows the com-
puting of the displacements and the stresses in the bridge.

3  Numerical analysis

Several of the cases presented by Doménech et  al. (2016) and Martínez-Rodrigo et  al. 
(2018) are undertaken following the approach presented in Sect. 2, with the aim of per-
forming a numerical validation and comparing the results with those obtained by apply-
ing a different numerical procedure. In the aforementioned works, the authors analyse SSI 
in beam bridges with the same superficial rigid plate foundations using a fully coupled 
3D BE–FE model integrated in the time domain. In this case, the Green’s function for an 
elastic half-space is used as the fundamental solution for the soil, and material damping is 
approximated as a constant value. In order to compare with the results presented in Domé-
nech et al. (2016), the same structure studied in the mentioned reference consists of a beam 
bridge of length L = 17.5 m , mass per unit length m = 17,500 kg/m , and fundamental 
frequency equal to 35% of the simplified method frequency band in Eurocode 1, is ana-
lysed under the circulation of the HSLM trains from these standards. A structural Rayleigh 
damping of 1.18% is assigned according to the design recommendations of Eurocode 1 for 
prestressed concrete bridges. The three soil types presented in Sect. 2.1 are studied. 5.00% 
soil material damping is used in all cases.

A modal analysis of the bridge is performed as per Eq. 12. Non-oscillatory modes with 
real eigenvalues are excluded from the analysis. The first vertical bending frequency of 
the bridge in the simply supported (SS) case is f SS

1
= 6.87 Hz . When the interaction with 

the soil is taken into account, the fundamental frequencies resulting from the proposed 
approach for the three soil types are: f 150

1
= 6.13 Hz , f 220

1
= 6.43 Hz , and f 365

1
= 6.69 Hz , 

where the superindices indicate the soil shear wave velocity. Moreover, the modal damp-
ing ratios, which include the effect of both material and radiation damping, in addition 
to structural damping, computed from the complex eigenvalue problem are: �150

1
= 9.44% , 

�220
1

= 3.94% , �365
1

= 1.97% . The increment in the modal damping corresponding to the 
softer soil numerically identified in Martínez-Rodrigo et  al. (2018) from BE–FE analy-
ses is reproduced with the present approach, although the soil damping decreases with 
the shear-wave velocity according to Fig.  6. The second vertical bending frequency of 
the bridge is modified from f SS

2
= 27.48 Hz , to f 150

2
= 27.43 Hz , f 220

2
= 26.59 Hz , and 

f 365
2

= 26.24 Hz , while the modal damping ratios corresponding to the second verti-
cal bending mode shape are: �150

2
= 20.18% , �220

2
= 14.64% , �365

2
= 7.14% . This mode is 

highly damped, mainly for the softer soil. The soil–foundation system stiffness and damp-
ing obtained from the iterative process are shown in Fig. 7 for these particular cases.

It should be also remarked that the second bending natural frequency for the system, 
accounting for these damping and stiffness values, decreases as the shear wave velocity 
increases. It can be explained by the parametric analysis shown in Fig.  8. The frequen-
cies corresponding to modes 1 and 2 for the stiffness values shown in Fig. 7a and differ-
ent Cv∕Kv ratios are plotted in solid trace. The frequency values obtained for the Cv val-
ues obtained from the iterative procedure and presented in Fig. 7b are superimposed with 
circles.
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Figure 9 shows the mode shapes of the soil–bridge systems corresponding to the first 
and second natural frequencies. The real and imaginary parts are plotted, and in the 
complex mode shapes, each degree of freedom has a different phase angle.

Figure 10 shows the free vibration response of the beam at mid-span after the pas-
sage of a single load in terms of the non-dimensional speed KSS

1
= v∕(2f SS

1
L) for differ-

ent soil properties. These free vibration envelopes permit the identification of velocities 
leading to either local maxima or cancellation conditions (minima of free vibrations). 
The amplification of the response to be expected at resonance, depends on the amplitude 
of these free vibrations, which will add in phase in the resonant case.

Figure  11 presents the maximum bridge acceleration at mid-span under the 
loading of HSLM-A1 and HSLM-A6 trains (Eurocode 1 2002). The character-
istic distances of these trains are d = 18 m and d = 23 m , respectively. HSLM-
A1 and HSLM-A6 theoretically induce a second resonance of the fundamen-
tal mode of the bridge at v1,2 = f SS

1
× d∕2 = 6.87 × 18∕2 × 3.6 = 222.59 km/h , and 

v1,2 = f SS
1

× d∕2 = 6.87 × 23∕2 × 3.6 = 284.42 km/h , respectively (non-dimensional 
speed 0.26 and 0.33). The dashed horizontal line indicates the SLS of the vertical accel-
eration for ballasted track bridges ( 0.35g = 3.43 m/s2).

(a) (b)

Fig. 7  a Stiffness Kv and b damping Cv of the foundation–soil system for the 17.5 m beam type bridge first 
(circle) and second (asterisk) vertical bending frequencies and different soil properties

(a) (b)

Fig. 8  Frequencies corresponding to a mode 1 and b mode 2 for the stiffness values shown in Fig. 7a and 
different Cv∕Kv ratio. The frequencies computed for the numerical case considered are superimposed with 
circles



3206 Bulletin of Earthquake Engineering (2022) 20:3195–3213

1 3

(a) (b)

(c) (d)

Fig. 9  a, c Real and b, d imaginary part of the a, b first, and c, d second bending mode shapes for different 
soil properties

Fig. 10  Maximum free vibration 
displacement at mid-span as a 
function of non-dimensional 
speed for different soil properties: 
single moving load, L = 17.5 m , 
f1,035 , m = 17,500 kg/m , and 
� = 1.18%

(a) (b)

Fig. 11  Maximum acceleration at mid-span as a function of the speed parameter v/d for different soil prop-
erties: L = 17.5 m , f1,035 , m = 17,500 kg/m , � = 1.18% , and a HSLM-A1 and b HSLM-A6 trains. The ver-
tical dashed line indicates the theoretical resonant speed for the SS case. The dashed horizontal line indi-
cates the SLS. The results presented in Doménech et al. (2016) are plotted in dotted traces
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In Fig.  11a, b the response of the bridge under the two aforementioned trains com-
puted following the present approach is compared with the results from Doménech et al. 
(2016). The HSLM-A1 train induces a second resonance on the bridge at approximately 
222 km/h , close to the theoretical resonant velocity. The resonant velocity decreases with 
the soil stiffness, as a consequence of the reduction in the bridge fundamental frequency. 
In the case of the HSLM-A6 train, resonance does not take place because the span length 
and characteristic distance L∕d = 0.76 , is close to a cancellation condition. This phenom-
enon of cancellation of resonance occurs even in the case of the soil with cs = 150 m/s . 
From the figures it can be seen that when SSI is considered, the natural frequencies of 
the bridge computed following the present approach are very close to the results from the 
BE–FE model in Doménech et al. (2016). Nevertheless, the overall damping exhibited by 
the bridge–foundation–soil system is higher, especially for soils with very low values of cs.

4  Case study

In this section the dynamic response of Old Guadiana bridge (Fig.  12), from Madrid-
Alcázar de San Juan-Jaén conventional railway line in Spain, is reproduced and compared 
with experimental measurements. It is a SS bridge with two identical spans of approxi-
mately 12 m of length. The deck is composed of two single track independent decks of 
5.075 m width. Each deck consists of a 25 cm thickness concrete slab resting on five pre-
stressed concrete beams with a 75 cm height rectangular cross-section (Fig.  13a). This 
bridge was monitored by the authors in 2019.

A portable acquisition system LAN-XI of Brüel & Kjaer was used. The acquisition 
system fed the sensors (accelerometers) and an instrumented impact hammer in the case 
of the soil tests. LAN-XI also performed the Analog/Digital conversion (A/D). The A/D 
was carried out at a high sampling frequency, fs = 4096 Hz , that avoided aliasing effects. 
The acquisition equipment was connected to a laptop for data storage. Endevco model 86 
piezoelectric accelerometers were used with a nominal sensitivity of 10 V/g and a lower 
frequency limit of approximately 0.1 Hz . Structural response recordings were decimated 
(order 16) to carry out data analysis in the frequency range of interest. Structural responses 
were filtered applying two third-order Chebyshev filters with high-pass and low-pass 
frequencies of 1 Hz and 30 Hz , respectively. The modal parameters of the bridges were 
identified from ambient vibration data by the stochastic subspace identification technique 

Fig. 12  a Old Guadiana bridge and b soil test set-up
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(Reynders 2012). The dynamic characterisation of the soil was carried out by the seismic 
refraction and the Spectral Analysis of Surface Waves (SASW) tests. More details of the 
experimental campaign, the identified properties of the bridge and surrounding soil and the 
dynamic response under several train passages may be consulted in Galvín et al. (2021).

The site has two upper soil layers with a shear wave velocity close to 300 m/s resting 
on a halfspace with cs = 250 m/s (Fig. 13b and Table 1). According to Eurocode 8 (1998), 
the soil profile is approximated as a homogeneous stratum with average shear wave veloc-
ity Vs30 = 303 m/s . Likewise, a material damping ratio of 7.85% is admitted. Following, 
the results obtained from the actual stratigraphy and the equivalent homogeneous soil are 
compared.

A first vertical bending mode (see Fig.  14) with a natural frequency of 9.8 Hz is 
identified from ambient vibrations. The modal damping corresponding to this mode 
obtained under traffic conditions reaches 2.8% , which is higher than the value prescribed 
by standards for design purposes for this particular length and bridge typology (1.5% as 

Fig. 13  Railway bridge cross section

Table 1  Identified soil properties 
at Old Guadiana Bridge

Layer h(m) cp (m/s) cs (m/s) � (kg/m 3) � (–)

1 2 499 298 1900 0.08
2 4.5 350 207 1900 0.05
3 3.6 1300 719 1900 0.05
4 ∞ 500 250 1900 0.09

Fig. 14  Experimentally identified 
first mode shape in Old Guadiana 
Bridge at 9.8 Hz
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per Eurocode 1 2002). A beam model of the bridge is considered in order to show the 
application of the previously proposed approach. 5 m × 5 m rigid massless foundations 
are included. The value for the fundamental frequency of the beam model in the SS 
case is 10.06 Hz . This frequency reduces to 9.8 Hz due to SSI effects. Figure 15 shows 
the corresponding numerical mode shape which is the only bending mode of the beam 
bridge below 30 Hz . The MAC value (Allemang and Brown 1982) between the experi-
mental mode shape corresponding to the longitudinal middle section and the numerical 
mode shape is 0.99. As part of the initial approach, only the contribution of this mode 
is taken into account as it dominates the vertical response at mid-span along the cen-
tre line. Nevertheless the first torsion and transverse bending modes with frequencies 
11.0 Hz and 12.8 Hz were also identified.

The response of the bridge is presented under the circulation of the Renfe Altaria 
train with 9 coaches crossing the bridge at v = 160 km/h . Table 2 summarizes the train 
coach distribution and axle distances. Figure 16 shows the bridge acceleration response 
at the mid-span section, measured under the track and its comparison with the numeri-
cal predictions obtained with the proposed methodology. The agreement between 
numerical and experimental results is good given the simplicity of the beam model used 
for the deck. The response contains peaks associated with the excitation (i.e. ratio of 
train speed v to the characteristic distance v∕d = 3.38 Hz ), corresponding harmonics 
and with the bridge lowest natural frequency. The experimental response shows certain 
participation of modes between 10 and 20 Hz that cannot be reproduced with the beam 
model. The train speed is close to a third resonance of the fundamental mode of the 
bridge: v1,3 = f1 × d∕3 = 9.8 × 13.14∕3 × 3.6 = 154 km/h . This justifies the dominant 
contribution of this mode in the frequency domain. The numerical prediction overes-
timates the response at the resonant frequency, which is expected because dissipation 
mechanisms such as vehicle-structure and track-structure interaction are not included, 
and are particularly relevant under these conditions. In this case, the actual stratigraphy 
is well represented by the equivalent homogeneous soil. The comparison between both 
results presents very small differences in the frequency range analysed.

(a) (b)

Fig. 15  a Real and b imaginary parts of the first bending mode at 9.8 Hz with modal damping 2.8%

Table 2  Renfe Altaria train with 9 coaches

d (m) 0 3 10.5 13.5 20.2 30.0 43.2 56.3 69.5 82.6 95.7 108.9 122.0 131.9
F (kN) 225 225 225 225 70 140 140 140 140 140 140 140 140 70
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The time used by a laptop computer with 1.9 GHz processor and 16 GB of RAM in 
order to solve the complete problem is 26.69 s : the homogeneous soil–foundation prob-
lem required 24.02 s (two frequencies were computed in this case), the eigenvalue prob-
lem required 0.92 s , and the modal superposition required 1.75 s , for one train speed. A 
speed sweep from [150∶1∶400] km/h was solved in 439.2 s for this particular train and 
soil–foundation–bridge system. This is considerably lower than the time required if the 
same problem is solved using BE–FE methods in the time domain.

5  Conclusions

A fast numerical methodology to determine the dynamic response of railway bridges under 
the passage of running trains including the effect of soil–structure interaction is proposed. 
The coupled problem is sub-structured into a soil–foundation and a soil–foundation–bridge 
interaction problems. In the first step, the foundation and surrounding soil are simulated via 
a FE-PML model. Using this approach, equivalent frequency dependent dynamic stiffness 
and damping characteristics of the soil–foundation system are computed. In the second 
step, the dynamic response of the structure under railway traffic is calculated using a FE 
model that includes spring/dashpot elements at the supports, using the equivalent proper-
ties extracted from the first problem. This model is solved by complex modal superposition 
considering the equivalent dynamic stiffness and damping of the soil–foundation corre-
sponding to each natural frequency. The complex modal parameters are obtained iteratively 
and the dynamic complex modal equations are solved using a Runge–Kutta explicit algo-
rithm. The benefits of the proposed approach increase dramatically with the problem com-
plexity since it allows exploiting dedicated analysis tools for addressing the soil–founda-
tion and the superstructure domain.

From the analyses performed the following is concluded:

• The proposed approach can be used to obtain the dynamic response of railway bridges 
under running trains considering SSI, with minimal computational effort. However, it 
is remarked that soil–foundation impedances should be previously calculated.

(a) (b)

Fig. 16  Old Guadiana Bridge: a time history and b frequency content of the acceleration at the midspan 
induced by Renfe Altaria train with 9 coaches at v = 160 km/h circulating on track 2: (black line) experi-
mental and numerical results. The results obtained using the actual stratigraphy are plotted in blue trace, 
and those obtained from the equivalent homogeneous soil are represented in red. For interpretation of the 
references to colour in this figure, the reader is referred to the web version of this article
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• The results obtained in terms of the bridge deck vertical displacements and accelera-
tions are similar to those given by BE–FE analyses.

• Resonance and cancellation phenomena, which are often responsible for the maximum 
bridge acceleration, are accurately reproduced.

• In this particular study, the structural model is simplified to a beam bridge and super-
ficial infinitely rigid plate foundations, because the main objective of the work is to 
present the method and to compare with previous results. However, the consideration 
of more complex geometries for the bridge and the foundations, and the simulation of 
stratified soils is also straightforward to implement. In particular, the effect of the foun-
dation mass should be further analysed.

• Using the proposed approach it is possible to solve the dynamic problem taking into 
account high modal contributions of the structure, with minimal computational cost.

• The results are compared with those given by a fully coupled 3D BE–FE model solved 
in the time domain, where the Green’s function for an elastic half-space is used as the 
fundamental solution for the soil, and material damping is assumed to be constant. In 
this case similar resonant speeds are determined, and close to the resonant frequency, 
a more highly damped response is obtained using the present method, particularly for 
soils with very low shear wave velocities.

• Using the proposed model the experimental response of a real beam-type bridge under 
train loading is reproduced, capturing the frequency contributions of the first structural 
bending mode and the loading frequency contributions.
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