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Abstract: 

Surgery to implant a total hip replacement (THR) is very successful in reducing pain 

and restoring function. This procedure has become more prevalent, and projections 

estimate further increases in demand. However, complications can arise, and current 

diagnostic techniques often fail to expose underlying issues before they result in a 

catastrophic failure that requires revision surgery. An instrumented implant, with 

embedded sensors capable of real time condition monitoring, would be an attractive 

proposition to incorporate within a THR. Continued advances in the performance and 

miniaturisation of electronic components, embedded systems, sensing and wireless 

communications have given the tools and resources medical device manufacturers 

need to innovate in the field of implantable medical devices. Smart implants are 

already being widely used in healthcare including pacemakers, cochlear implants, 

glucose monitors and insulin pumps however, a widely used smart THR has not yet 

been realised. Since the implantation of the first instrumented hip implant in the 1960s 

there have been several in-vitro studies monitoring levels of implant loosening. 

Additionally, significant research has been conducted using instrumented THRs to 

perform in-vivo measurement of biomechanical metrics, including force and moments. 

To date less than 100 patients have successfully received an instrumented implant. 

The results of these studies have aided researchers, designers and surgeons in wider 

research projects, however, the motivation behind the work was to provide discrete 

biomechanical data sets and not provide real-time condition monitoring of an implants 

performance or highlight early indications for revision surgery. If in-vivo sensing within 
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a THR is to be achieved and adopted in regular clinical practice then the following 

challenges need to be addressed: choice of the sensing method, biocompatibility and 

integration within the implant, power supply, communication, and regulatory 

considerations. 

  

Page 2 of 42AUTHOR SUBMITTED MANUSCRIPT - PRGB-100048.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



1. Introduction 

Total hip replacement (THR) surgery is a successful intervention and relives pain and 

restores function [1]. National joint registries [2]–[4] have all shown consistent increase 

in the number of THR surgeries performed annually and projections are estimate 

further growth in the demand for both primary and revision procedures [5], [6]. 

Furthermore, patient expectations are changing as younger patients are undergoing 

THR and increasingly demand return to recreational activities [7]. Despite the success 

of THR surgery, complications can still arise, and current diagnostic techniques often 

take too long to expose underlying issues before they result in catastrophic failure 

which may result in revision surgery. Revisions are undesirable because of increased 

surgery time, complication rates and expense. Equally, unnecessary clinical reviews 

of well–functioning THRs are routinely carried out because there is no alternative to 

assess on-going function. The use of in-vivo sensing capable of real time condition 

monitoring of the implant’s performance, occurrence of adverse events and patient 

health metrics offers a potential solution. Research in this area was first explored in 

the 1960’s, however, despite almost 60 years of continued innovation, there has not 

been widespread adoption in orthopaedics. Recent advancements in materials, 

manufacturing and electronics may provide new potential innovations in the field of in-

vivo sensing and smart implants thus making it an opportune moment to conduct a 

review on past systems and applicable technology. 

 

Why is it desirable to have telemetry in an implanted medical device? 

An implanted medical device (IMD) with sensing capabilities and telemetric link could 

provide a means of continuous monitoring as oppose to traditional episodic monitoring 

[8]. This would enable clinicians to track the post-operative recovery process, better 

guide personalised postoperative care [9], [10] and empowers patients with the ability 

to review and manage the health of their implant. Additionally, the system could 

provide alerts on the occurrence of adverse events to give an early indication of the 

need for further investigation, or modification in activities. 

Increased availability of cheaper, smaller and more powerful integrated circuits 

and semiconductors has led to huge technological advances in electronics, sensing 

and communications. These advances and increased adoption of technology in 
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healthcare has meant that smart IMDs are becoming a reality and are commonly used 

across healthcare. For example, the Freestyle Libre continuous glucose monitor 

(Abbott, Ill, US) offers an alternative to traditional finger prick blood glucose tests. The 

Freestyle Libre offers a pain free method for continuously measuring blood glucose 

levels and information on the direction blood glucose levels are trending. This 

demonstrates an example of how the advent of technology has improved both the 

convenience and quality of the care. 

The data gathered by an instrumented implant could inform the healthcare 

professional during their diagnostic decisions. In the case of a THR this data could 

include (for example) metrics on the performance of the implant or activity of an 

individual patient such as daily steps, range of motion, and condition of the bone-

implant bond or wear of the bearing surfaces. Furthermore, this data would also be 

valuable to researchers to gain a better understanding of the overall use and 

performance of THRs across a patient population. Ultimately this research could be 

used to refine the design and surgical placement of existing implants to give enhanced 

performance and increased longevity. If these improvements were achieved, they 

would be of benefit patients and clinicians; and also providers (healthcare systems) 

and financiers (governments and insurance companies).  

 

How do hip implants fail? 

The common indications and percentage occurrence for primary revision following 

primary THR surgery (that occurred in England, Wales, Northern Island, the Isle of 

Man and the States of Guernsey from 1st April 2003 to 1st March 2020 [2]) are 

summarised in Figure 1. In the short term (less than one year after primary hip 

replacement), the most common indications for revision (as measured by failures per 

1000 prosthesis-years) were dislocation/subluxation (2.50), infection (1.92), peri-

prosthetic fracture (1.71), aseptic loosening (1.03), reaction to particulate debris (0.77) 

and malalignment (0.73). Clearly pain cannot be detected by means of an 

instrumented implant however there is scope for the other listed indications to be 

detected in-vivo. 
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Figure 1 – Common indications for primary revision following primary revision surgery as reported by 

the 17th Annual Report of the National Joint Registry [2]. *Other indications of note include 

malalignment, implant wear and implant fracture. 

 

The indications for revision demonstrate different modes in which an implant 

can fail, all may be linked to patient reported pain.  This can make an initial diagnosis 

through clinical observations a challenge. An instrumented hip implant could give 

quantitative data demonstrating an adverse event providing an early indication for the 

need for clinical review. This could reduce the diagnostic pathway providing a quicker 

diagnosis thus reducing the impact of time sensitive conditions [8]. 

This review will look at the current state of the art of instrumented hip implants 

focusing on their capability to perform in-vivo sensing and translation into routine 

clinical practice. Following this the challenges that will need to be overcome for in-vivo 

sensing systems to be viable will be considered. These are as follows: choice of sensor 

(including author recommendations on potential sensing applications for use within a 
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THR), biocompatibility and integration within the implant, power, communication, and 

regulatory considerations. 
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2. Review: Instrumented hip implants current state of the art 

The review’s findings are reported in sections on related to the indication for revision 

or main phenomena that the study was looking to detect or monitor; (i.e. biomechanics 

and aseptic loosening).  

 

2.1 Biomechanics 

In terms of instrumented hip implants, most of the focus has been on studying the 

biomechanics of THRs and function in an in-vivo environment. Strain gauges, 

piezoelectric transducers and temperature sensors have been used to measure 

forces, pressures, moments and temperatures in-vivo. The data collected in these 

studies has been important in validating computational and cadaveric models, and 

inform designers and surgeons thus improving implant design and surgical technique. 

 

2.1.1 Early Work on Measuring Hip Joint Force In-Vivo 

The first use of sensors in an instrumented implant, for in-vivo use, was that of Rydell 

et al [11] who positioned strain gauges within the neck of the femoral prosthesis. The 

prosthesis was implanted successfully in two patients successfully and six months 

later a second surgery passed lead wires out of the skin to allow for data collection. 

After a week these lead wires were designed to be cut free by a sharp edge at the 

junction with the prosthesis however this method failed, and a separate operation had 

of be conducted to remove the leads. Results (in terms of measured load) were 

recorded from two patients were collected (Table 1). 

Convenience, improved patient comfort and reduced risk of infection led to the 

use of wireless connections. An approach, first described by English and Kilvington 

[12] and later in Kilvington and Goodman [13], was to use battery power and a FM 

transmitter chip (Sandev SNlO2F) operating at 102.3 MHz. Their implant consisted of 

a sealed piston with four strain gauges thus forming a load cell capable of measuring 

the axial compressive load transmitted through the neck of the femoral component. A 

cable was passed out of the implant stem and led to an implanted Perspex box where 

the transmitter and accompanying electronics were housed, the cable and box were 

encapsulated within silicone rubber. The system had an operational battery life of 
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approx. 70 hours and with the use of sub miniature magnet controlled reed switches, 

recordings could be made up to 43 days post-op [12]. Results (load from walking and 

one legged stance) from a single patient were collected (Table 1).  

Other early work measured contact pressures at the joint surface, Carlson et al 

[14] developed a prototype prosthesis to measure the magnitude and distribution of 

pressure generated over the inner surface of a natural human hip socket. The implant 

featured 14 pressure transducers covering the outer surface of the femoral head, and 

a 16-channel telemetry system located within the femoral head. The power and data 

transfer induction coil were located at the distal end of the implant, allowing the implant 

to be powered by an external power coil. A similar approach was adopted by Otake et 

al [15] who developed a modified femoral head with eight sub-miniature pressure 

sensors embedded over the surface and covered with a spherical ABS plastic surface 

to reduce friction. The device was limited in that it was only intended to measure 

intraoperative pressures at the bearing contact surfaces. 

 

2.1.2 3D Force Measurements Acting on the Femoral Stem 

In 1979 Georg Bergmann developed a new method for measuring force distributed 

over a femoral head termed the matrix method [16]. The method required only one 

sensor for each load component and so meant that 3D force measurements could be 

made on the femoral head with the use of only three strain gauges positioned within 

the femoral neck (on the inner surface). Bergmann then developed his own 

instrumented hip implant that he initially tested in sheep [17]. A functional 

telemeterised hip for in-vivo human use was first described and implanted in 1988 [18]. 

The implant, (Figure 2a), included three semiconductor strain gauges positioned on 

the inner wall of the hollow neck. The remaining electronics, including the power coil 

and RF transmitter, were placed on both sides of a 15mm X 7mm wide substrate and 

housed in an 8mm X 25mm cylinder. The top plate of the cylinder had two lead 

throughs that connect to the RF transmitter antenna which was fitted into the cavity of 

a ceramic head [19].  Two patients received the instrumented hips, firstly in 1988 a 

bilateral procedure (both hips) was performed on an 82 year-old male with height 

168cm and bodyweight (BW) 650N, and then in 1990 in the right hip of a 69 year-old 
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female of height 160cm and BW 470N. Results recorded (peak loads in walking and 

stumbling) from the two patients are shown in Table 1.  

 In the 1990s Bergmann’s group developed a further endoprosthesis which 

measured the force components experienced by the head and also the temperature 

distribution across the full length of the femoral stem [20]. The implant, (Figure 2b) 

was based on the hollow shaft hip endoprosthesis CENOS (ARTOS, Berlin, Germany) 

and featured three semiconductor strain gauges and two temperature sensors (TS1 & 

TS2 Figure 2b) glued to the inner surface of the hollow neck along with an additional 

six temperature sensors (TS3 - TS8 Figure 2b) positioned along the shaft of the stem. 

The power coil and two telemetry units were positioned within the hollow shaft, which 

was sealed by a top plate. The top plate was welded to the top of the implant neck, 

and featured two lead throughs that allowed connection to the antenna that occupied 

the cavity of the ceramic head, [20] similar to the previous endoprosthesis [19]. 

 In 2001 Bergmann and colleagues published the results of two studies 

conducted using these new endoprosthesis [21], [22]. Firstly, contact forces were 

reported from four patients’, age range 51 – 76 years and BW range of 702N – 980N. 

Hip contact force results collected from these four patients are shown in Table 1. In 

the second study temperature measurements were made in seven patients’, age 

range 51 – 82 years. Peak temperature of implants with a polyethylene liner was 

measured at 43.18°C after an hour of walking and was observed in sensor TS1 which 

was positioned at the top of the neck [22], (Figure 2b). 
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Figure 2a – Cross section of Bergmann’s first hip endoprosthesis for force measurements [18]. Figure 

2b – Bergmann’s hollow shaft smart prosthesis capable of force measurement and temperature 

measurement along the full length of the stem [22].  

 The third iteration of Bergmann’s instrumented hip prosthesis [23] was based 

on a “Cementless Tapered Wedge” (CTW) prosthesis (Merete Medical GmbH, Berlin, 

Germany). This allowed for the measurement of forces and moments acting in the 

joint. Three custom-made twin semiconductor strain gauges were positioned inside 

the hollow neck along with a nine-channel telemetry transmitter and an internal 

induction coil. A cut-out model of the prosthesis is shown in Figure 3a. The prosthesis 

had a transmission range of 50cm [23]. In 2013 Damm and colleagues [24] reported 

in-vivo friction measurements using Bergmann’s modified CTW prosthesis. Results at 

3 months post-op from eight subjects, age range 50 – 69 years and BW range of 754N 

– 899N and are shown in Table 1.  
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Table 1 – Summary of studies reporting in-vivo loads measured through hip joint  

Study Method Patients Stance/Activity Measured load 
through joint 
normalised to body 
weight  

Rydell 
[11](1996) 

6 strain 
gauges in 
stem 

2 One-legged stance 2.3X (peak patient 1) 
2.9X (peak patient 2) 

Walking 1.3m/s 
(patient 1) & 1.4m/s 
(patient 2) 

1.8X (peak patient 1) 
& 3.3X (peak patient 
2) 

Kilvington & 
Goodman 
[13](1981) 

Load cell 
piston 

1 One-legged stance  2.8X (12 days post-
op) & 2.2X (40 days 
post-op) 

Walking  2.0X (12 days post-
op) & 1.9X (40 days 
post-op) 

Davy [25] 
(1988) 

3 strain 
gauges 
matrix 
method 

1 One-legged stance 
(31 days post-op) 

2.1X  

Walking  2.6X to 2.8X (range) 

Stair climbing 2.6X 

Kotzar [26] 
(1991) 

3 strain 
gauges 
matrix 
method 

2 One-legged stance 
(23 days post-op) 

2.1X to 2.8X (range) 

Walking 2.8X to 3.6X (range) 

Bergmann et 
al. [27]1993 

3 strain 
gauges 
matrix 
method 

2 Walking 0.3m/s 
(patient 1) & 1.4m/s 
(patient 2) 

2.8X (peak patient 1) 
& 4.8X (peak patient 
2) 

Stumbling 7.2X (peak patient 1) 
& 8.7X (peak patient 
2) 

Bergmann et 
al. [21]2001 

3 strain 
gauges 
matrix 
method 

4 One-legged stance  2.3X (mean from 4 
patients) 

Walking (1.1m/s) 2.4X (mean from 4 
patients) 

Damm et al. 
[24] 

3 strain 
gauges 
matrix 
method 

8 Walking (3 months 
post-op) 

2.5X (mean from 8 
patients) 

 

Bergmann et al [28] also developed a further prosthesis based on the CTW 

design solely for in-vivo temperature measurements. This had a 6.2mm diameter X 

50mm long bore in the neck for the thermistor and accompanying electronics, (Figure 

3b). Bergmann’s previous implants had all featured internal power coils and an 

external niobium antenna. The new prosthesis however, had a combined power and 

data coil positioned within a hermetically sealed chamber instead of being positioned 

in the recess of the femoral head and encapsulated in silicone. The justification being 

that the plastic encapsulation of electronics should only be used for non-permanent 
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implants [28]. To date no study has been reported from this prosthesis however, 

Bergmann et al. [28] state that a clinical study on temperature rise in hip implants was 

planned in 100 patients. 

  

Figure 3a – Bergmann’s first CTW implant with three twin semiconductor strain gauges, internal 

power coils and an external niobium antenna [23]. Figure 3b – The latest of Bergmann’s smart 

implants and the first to feature a combined power and data transfer coil [28].  
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2.2 Implant Loosening 

Aseptic loosening is failure of the implant – bone bond in the absence of infection. It 

is the most common reason for orthopaedic implant revision. Aseptic loosening can 

cause pain and if it is diagnosed too late, can lead to a destruction of bone stock which 

can create issues when implanting a new revision implant [29]. The initiation and 

progression of aseptic loosening is multifactorial, this includes: resultant adverse 

biological reactions to cement, polyethylene, metal or ceramic particles, micromotion 

at the interface, stress shielding, high fluid pressure, endotoxin or individual and 

genetic variations [30].  

 

2.2.1 Vibration Analysis 

Vibration analysis (VA) relies on measuring the ambient vibrations and frequencies of 

a system or the vibration response following a mechanical excitation from an external 

source e.g. a shaker. A structural change or degradation within the system, for 

example an imbalance, worn and broken components or torque variations, will give 

rise to distinct features in the output signals. An abnormal vibration response can be 

more easily identified if an original or typical vibration response is known [31]. The 

frequency response of a linear system will show the excitation (input) oscillating at the 

same frequency as the output. Whereas the output of a nonlinear system will contain 

multiple harmonics. In the case of a THR, a well-fixed prosthesis can be considered 

as a linear system whereas an unstable or loose implant will behave like a nonlinear 

system, Figure 4.  
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Figure 4 – Conceptual diagram of vibration analysis being performed on a femur and implanted stem. 

The output waveform of a well-fixed implant will match the sinusoidal nature of the input excitation 

and frequency analysis will reveal one major frequency. Conversely a loose implant will have a 

distorted output waveform and multiple harmonics will be present [32]. 

Chung et al [33] first suggested the use of VA as a diagnostic technique to 

assess THR fixation. They described the technique as safe and non-invasive because 

only a small mechanical excitation was required; that the method could be used on 

pre-existing implant designs and previously implanted prostheses and allow for the 

real time monitoring of levels of osseointegration. The in-vitro experimental setup 

included a mechanical shaker applying an excitation to the implant–bone system and 

accelerometer(s) attached to the bone, measuring the vibration response. Several 

studies report similar findings to Chung et al [33] using a femoral stem implanted in a 

femur [32], [34], [35], acetabular cup implanted in a Sawbone block [36] and complete 

THR system implanted in a Sawbone femur and pelvis [37]. Results demonstrate that 

an implant–bone interface with a loosened implant, gave a distorted output waveform, 

increased numbers of resonance peaks and a reduction in the magnitude of the 

fundamental frequency.  

Rosenstein et al [32] and Georgiou and Cunningham [38] further developed this 

concept by conducting in-vivo trials using VA to detect THR loosening in-vivo. In both 

studies, a single accelerometer was positioned over the greater trochanter and a 
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vibrator applied excitation to the lateral epicondyle of the femur. Rosenstein et al found 

that in five patients where the VA test was positive for loosening, it was also observed 

in revision surgery. Additionally, Georgiou and Cunningham reported their VA method 

had a sensitivity of 80% and a specificity of 89%, and when compared to the standard 

radiographic method was 20% more sensitive and able to diagnose 13% more 

patients. There were however, limitations in the in-vivo method; firstly, the technique 

is unsuitable for patients who could not lie on their side or who experience pain and 

discomfort induced by the vibrator, in Georgiou and Cunningham’s study this 

accounted for 10% of the patients. Secondly, although the authors took care to position 

the sensor and shaker with “good bony contact” variations in patient soft tissue can 

greatly affect the propagation of the vibrations to the body’s surface and so affect the 

diagnostic capabilities [39].  

Using an implant with telemetry presents an alternative method that would allow 

for ongoing VA assessment of the THR component loosening. Puers et al [40] propose 

a concept that included a capacitive accelerometer sealed in a titanium can and placed 

into a recess made in the femoral head (Figure 5). The inductive power and data coils 

were fed through the lid of the titanium can and coil around the superior portion of the 

neck stem. Puers et al. [40] state that having the sensing system within the implant 

will provide far better results when compared to previous VA methods. One limitation 

of this integration method is that the required recess incurs significant modification to 

the femoral head which would affect the bearing function at the articulating interface. 

Additionally, the coils are within the operating space of the ball and socket joint and 

are thus vulnerable to damage if primary impingement (contact between the cup and 

stem) occurred. 
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Figure 5 - Method of packaging showing the location of the recess in the femoral head and positioning 

of the transmission coils [40]. 

Marschener et al [41] developed a system with a custom transponder chip and 

an accelerometer complete with a lock-in amplifier, which filtered out signal noise 

generated by the in-vivo environment. The system also featured onboard storage, that 

could include patient and prosthesis manufacturer data as well as reference data sets 

for loosening trend analysis. The chosen integration solution was to screw the coil and 

electronics housing to the distal end of the prosthesis this ensured vibration coupling 

to the implant and meant that there was no metal surrounding the transponder coil 

[41].  

Sauer et al [42] positioned a sensor system in the femoral head.  The rationale 

for the approach was that firstly, when compared with the manufacturing process of 

stem, modifying the femoral head would be far simpler and cheaper. Secondly, the 

micro-porous surface coating on their stem required a gamma sterilisation process 

that would have a detrimental effect on integrated hardware. Finally, there were less 

femoral head design options compared with the number of stem sizes so using the 

femoral head would reduce the number of required variations. Their system included 

a 3-axis acceleration sensor, lock-in amplifier and inductively coupled data 

transmission and power supply working at 125Hz. The first integration concept was to 

put the sensor system within the cone of a ceramic head, (Figure 6). To secure the 

sensing apparatus a low consistency silicone was selected to provide a durable 

fixation and no electromagnetic disturbance or shielding of the telemetry coils. 

However, it was noted that the titanium acetabular cup would interfere with the 
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electromagnetic field of the transponder coils and so an alternative approach was 

devised. In this approach, the sensor system was encapsulated within the titanium 

sleeve and the coils, connected by lead throughs, were wound on a polyether ether 

ketone (PEEK) element and mounted on the sleeve (Figure 7). 

 

 Figure 6 - THR sensing system to measure vibration potted in the femoral head [42]. 

 

Figure 7 - THR sensing system to measure vibration showing the sensing system positioned within a 

titanium sleeve and the transponder coil wrapped around a PEEK element [42]. 
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All three research groups [40]–[42] that investigated telemetric VA were able to 

verify their sensing systems and produced similar vibrational response data to [32]–

[37].  

 

2.2.2 Acoustic Emissions 

Acoustic emission (AE) is the phenomenon of energy release, in the form of acoustic 

(elastic) waves, as a result of a solid material undergoing irreversible changes in its 

internal structure such as crack propagation, phase changes and dislocations within 

the material [43]. The stress waves generated propagate to the materials surface 

(Figure 8) where they can be recorded by sensors, typically piezoelectric. Key 

parameters can then be derived including rise time, maximum signal amplitude, signal 

duration, signal energy and peak counts. If multiple sensors are present the timings of 

the waves arrival at the materials surface can be used to triangulate the point of origin 

and hence the location of the defect.  

 

Figure 8 – Crack propagation in the bone cement will release acoustic waves which will travel to the 

surface of the bone or implant and can then be detected. 

One of the earliest examples of using AE to determine the occurrence of implant 

loosening was conducted in 1989 by Sugiyama et al [44]. They used an AE technique 

to investigate the effect torsional load has on femoral stem loosening and compared 

three cementing techniques including combinations of canal irrigation, manual 

insertion, and vacuum mixing combined with pressure injection. They concluded that 

the most successful cementing technique (as measured by reduced AEs) was 

pressure injection and vacuum mixing of the cement, however some AEs were still 
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detected suggesting that even the best cementing technique was prone to failure when 

torsional loading was applied [44]. 

Other studies [45]–[47] have also assessed whether AE can be related to 

cement-bone debonding. These studies used a similar approach; placing piezoelectric 

transducers positioned on the surface of, or embedded into, the femoral stem. All 

noted the discontinuous nature of the cumulative AE events and attributed this to the 

propagation of a crack or coalescence between a main crack and a microcrack. 

Additionally, AE waveforms related to cement cracking have higher energy, longer 

signal duration and shorter rise times. Furthermore, work conducted by Rowland et al. 

[48] demonstrated that AE monitoring could be used for the detection of excessive 

wear. They had two AE sensors positioned on the top and bottom fixtures of a five-

station wear rig and noted that one of the stations showed two repeating signals of 

57dB and 66dB amplitude. This was associated with higher volumetric wear and a 

subsequent inspection of the implant components showed evidence of wear that was 

not seen in the other stations. 

Ruther et al [49] developed a novel detection technique they termed magnetic 

oscillator, that uses elements of AE sensing. The sensing process begins with an 

external coil exciting the ferrous head of the oscillator. The oscillator then hits the 

membrane inside the implant and the impulse generated by this contact is dependent 

on the material adjacent to the membrane. For example, close bone contact, indicative 

of successful osseointegration, would mean there would be a lower deformation 

energy and reduced spring dampening. This could be measured by a second external 

detection coil measuring the velocity of the oscillator or by recording the resulting AE 

generated by the oscillator contacting the membrane. A mock-up of how the system 

could be used clinically, a cross section of an instrumented implant and magnified 

views of the oscillator, is shown in Figure 9. 

Page 19 of 42 AUTHOR SUBMITTED MANUSCRIPT - PRGB-100048.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

Figure 9 - Mock-up of how the novel magnetic oscillator system could be used clinically, a cross 

section of an instrumented implant and magnified views of the oscillator [29]. 

Ruther et al [50] assessed this concept in an in-vivo rabbit model. Three 

different implant surfaces were used to induce various levels of osseointegration. Over 

the 4 weeks of implantation the AE changed with loosening of the implants (defined 

by the low axial pull-out strength of the implant) showing a continuous increase in 

central frequency. Ruther et al propose a novel solution for a non-destructive in-vivo 

assessment of implant loosening, this required no embedded electronics or telemetry 

systems and has the potential to provide localised measurement of osseointegration. 

However, to cover the full surface of the implant the concept would likely require 

extensive modification to the prosthesis and the addition of the oscillators would 

potentially complicate the manufacturing process.  

 

2.2.3 Eddy Current 

An Eddy current sensor uses a sensing coil supplied with an alternating current to 

create a magnetic field (primary field). If a conductive material intersects the primary 

field, a magnetic field will then be induced within the conductive material (secondary 

field), causing a change in the impedance of the coil. This change in impedance can 

then be detected and related to the distance between the sensing coil and conductive 

material. 
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Khoke et al [51] examined the efficacy of implanting Eddy current sensors within 

the positioning holes left after total knee arthroplasty with the aim of detecting tibial 

component micromotions. Mohammadbagherpoor et al [52] assessed the use of an 

Eddy current proximity sensor with a 10mm diameter solenoid coil. Their simulated 

and experimental work showed that they were able to detect the micromotions of a 

10mm CoCr rod with a 100µm resolution at a distance of 20mm. Although, an Eddy 

current sensing coil would enable noncontact sensing of micromotions, it remains 

relatively under-developed and there are potential concerns of factors such as sensor 

migration over time with any changes in bone morphology. 

 

2.3 Summary 

Since 1966 less than 100 patients have been reported in literature to have received 

an instrumented hip implant and had in-vivo measurements recorded. Biomechanical 

and thermodynamic measurements, and the assessment of implant fixation have been 

the predominant focus in the field of instrumented hip implants. The first instrumented 

prosthesis to successfully obtain in-vivo measurements was implanted in 1966 (Rydell 

1966). From then to the present there have been several successful attempts at using 

smart hip implants to record measurements in-vivo with the most noteworthy being the 

work conducted by the Orthoload group led by Bergmann. Bergmann’s work improved 

on previous efforts as they were able to measure the 3D load components acting on 

the stem with minimal changes to the external geometry or features of the implant 

components. The packaging of the sensing system within a cavity in the stem meant 

that the components were shielded from the in-vivo environment. However, the 

modifications made to the internal structure to make the hollow shaft (Figure 2b) will 

have involved removal of substantial volumes of material which bring significant risks 

of compromising the integrity of the stem and increased the complexity of the 

manufacturing process. This is likely why the cavity housing the sensing system was 

reduced in the later iterations (Figure 3a & 3b).  

Vibration analysis and tracking the acoustic emissions of the components has 

shown promising results as a method for measuring implant loosening. However, the 

limitations of this technique may be that pre-existing data of a well-fixed implant would 

be required as a reference dataset and that excitation from an external shaker is 
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required. Although, there could be potential for a far wider range of indications or 

phenomena to be detected from examining the vibration response of an implant 

system for example wear [48]. These techniques are also vulnerable or sensitive to 

background noise from the environment for example generated by an experimental 

hip simulator or when in an in-vivo environment. However, improvements in data 

acquisition and processing techniques and advancements in artificial intelligence and 

machine learning could address these challenges. More recent developments by 

Sauer et al [42] demonstrate that potting a sensor system within the head of the 

implant can address many concerns over sensing performance and implant 

robustness and therefore represent good candidates for clinical use. Furthermore, 

non-ferrous metals are no longer being used for implant components, and so there 

won’t be electromagnetic distortion caused by the acetabular cup disrupting the 

wireless communications. 
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3. Challenges in developing a telemetry system for an instrumented 

hip implant 

The following section will discuss the challenges that need to be overcome to enable 

an effective in-vivo sensing system for use within a THR. These include choice of 

sensor, biocompatibility and integration within the implant, power, communication, and 

regulatory considerations. 

3.1 Choice of Sensor 

The choice of sensor is a key challenge in developing a telemetry system for an 

instrumented implant. The potential sensing applications that have been formulated 

around the common indications for revision surgery of a THR (as shown Figure 1), are 

summarised in Figure 10. The aim being to develop a system that could continuously 

provide useful data on the performance of the implant and occurrence or progression 

of the phenomena associated with the indications for revision surgery.  

Sensor choice is clearly a complex challenge, but most simply should primarily 

be driven by the cause or causes of revision for which data is being collected and 

accordingly the type and complexity of the system required. There are however 

several additional considerations. Firstly, the implant is likely to be in situ and 

functional for over ten years. . So, the information collected upon implantation may 

well be needed to address questions formulated 10-15 years in the future. So 

wherever possible the system needs to be future-proofed. Secondly as more data is 

collected on implant performance it may be that hitherto unknown associations or 

‘surrogate’ measures may be found to link a data output with impending revision. For 

example, could reduction in activity be a pre-cursor to failure caused by loosening? 

Thirdly, the outcomes outlined in Figures 1 and 10 are binary in that they focus 

on revision as an endpoint. It is likely that as more data is collected there will be a 

more nuanced measure of failure such as degradation of activity or reduced range of 

motion. These additional factors may modify the primary driver for sensor choice to 

what sensors or combination of sensors would give the most comprehensive output 

data. 
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Figure 10 – Graphical representations of potential sensing methods within a THR addressing the 

common indications for THR revision surgery 
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3.2 Biocompatibility and integration within the implant 

Integration of sensing system within an IMD such as a total hip replacement has the 

potential to be beneficial however, it is important that the system does not impede the 

normal function of the implant nor cause an adverse biological response. This will 

require miniaturisation of the components to fit the size constraints of the implants as 

well as careful selection of materials and the mounting, embedding or encapsulation 

method. The assessment of biocompatibility should require biological evaluation 

including cytotoxicity testing, examination of the immunological and pathological effect 

on surrounding tissue and characterisation of the expected degradation of the 

implant’s material over the lifetime of the implant as per the recommendations of ISO 

10993 or other such standards. Furthermore, conventional consumer electronics are 

designed for a lifetime of 2 – 5 years whereas the lifetime of an orthopaedic implant is 

longer 10-15 years and so this is a factor that will need to be considered by medical 

device manufacturers (MDMs). 

Typically, electronic components require protection and shielding from dust, 

debris, moisture, temperature and salinity that could interrupt their function or cause a 

degradation in their performance. Electronics implanted in humans must be protected 

from inner body elements such as cells, proteins, platelets, and chemical gases [53]. 

Furthermore, electronic components and the substances for the building up of 

integrated circuits, circuit boards, packaging materials and communication cables are 

not suitable for implantation. Printed circuit boards (PCB) consist predominantly of 

fiberglass and copper foil which are not biocompatible [54], [55], additionally PCB 

manufacture requires toxic chemical treatments.  

Conventional electronics can be used within IMDs but will require encapsulation 

within a polymer or in a hermetically sealed chamber. Low consistency silicone has 

been shown to have favourable water absorption, water solubility and surface 

characteristics for long term implantation when compared to epoxy resin or 

polyurethane [56]. Chambers or recesses can be manufactured within the bulk 

material of the implant be it metal, polymer, glass or ceramic and welded or bonded to 

create a hermetic seal [53]. The hermeticity of the device would need to be assessed 

before medical device approval.  

 

Page 25 of 42 AUTHOR SUBMITTED MANUSCRIPT - PRGB-100048.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



3.3 Power delivery system 

Power supply is vital for the telemetry system of an IMD and the selection affects the 

proper function of the circuitry and the longevity of the working system. To date, only 

batteries and inductive power coupling have been used in untethered instrumented 

hip implants. Power supply still remains one of the most limiting factors of IMDs with 

the most significant constraints being size and demands of high capacity/lifespan [53], 

[57].  

 Sensing systems can be classified as active or passive; active systems require 

an internal power supply to drive active components such as a microcontroller unit and 

transducers. Conversely, passive systems don’t receive power internally but instead 

by an external interrogator, whereby, a signal is generated by the interrogator’s 

excitation circuit and sent at radiofrequency to the sensor [58]. A sensing system can 

include active sensors but have a passive power supply unit such as an inductive 

charging link. 

Batteries can supply consistent levels of electrical energy that is stored in the 

form of chemical energy. The first use of a battery within an instrumented hip implant 

was English and Kilvington [59] and then Davy [25]. Many widely accepted IMDs use 

batteries. Examples are drug pumps, cochlear implants and pacemakers which can 

have a lifespan of 8 – 10 years [60]. 

Lithium ion batteries are preferred owing to their high energy density which can 

range from 210 mWh/g to 440 mWh/g [57], [61]. A rechargeable system would satisfy 

the requirements of an IMD including longevity and power supplied. However, during 

the process of recharging battery cells temperature can increase significantly and 

energy capacity is decreased with every recharge cycle. Recharging options are 

limited, one option would be an ultrasonic source. Ultrasonic transcutaneous power 

transfer begins with an external transmitter converting electrical energy into acoustic 

or vibration waves which propagate through the tissue gap to the internal receiver. The 

piezoelectric receiver then converts the acoustic or vibration energy back to electrical 

energy [62]. Awal et al. [63] conducted an empirical review on the use of acoustic 

energy transfer for IMDs and found that the efficiency of such systems can reach an 

efficiency of 45% over a range of 400mm and typically operated over a frequency 

range of 35kHz to 30MHz with a maximum power level being found to be 5.4W. 
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Although, charging capabilities require additional circuitry [64] thus straining the size 

constraints of IMDs. 

Another option for powering an instrumented hip implant is inductive charging 

which was first used by Carlson et al. [14] an later by other groups [18], [20], [23], [28], 

[40]–[42]. An inductive coupling system has been the preferred method of power 

transfer likely since data can also be transferred inductively.  

 In the early 1830s, Michael Faraday first discovered the concept of 

electromagnetic induction, the theory behind the wireless transfer of electrical energy. 

Inductive power transfer works by passing an alternating current through an “external” 

transmitter coil which generates an electromagnetic field which induces a voltage 

within an “internal” receiver coil [57], [65]. The voltage can then be converted to direct 

current through a voltage rectifier and then be used to power a circuit or charge an 

inbuilt battery or storage capacitor for use at a later time. Factors that can affect 

wireless inductive power efficiency include resonance/operating frequency, distance, 

coil alignment, size and number of turns [65], [66]. Inductive power can satisfy the size 

and energy requirements for an instrumented implant. Theoretically an inductive link 

power system can be used for an infinite amount of time after surgery thus making 

them an attractive option for a long term IMD. However, exposure to high levels of 

electromagnetic fields can be dangerous for patients [64] and if the coils are not 

properly aligned power transfer efficiency is significantly reduced [67]. Wearing the 

transmitter coil system can be uncomfortable for patients, possibly limiting their ability 

to complete activities of daily living and limits the acquisition of data over prolonged 

periods of time [64], [68]. 

A promising alternative technology is the use of energy harvesting to convert 

the mechanical energy from joint motion into electrical energy for powering implants. 

The concern is whether the joints low frequency movement (typically <1Hz whilst 

walking) would be sufficient to generate the required power. Unlike conventional 

sources of mechanical energy, movements can be infrequent and inconsistent and so 

traditional power management and battery charging systems will be unsuitable. Silva 

et al. [69] developed a hip prosthesis with three separate power generators including 

a translation and rotation based electromagnetic generator and a piezoelectric 

generator powered by a ceramic diaphragm located in the hollow femoral head, shown 
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in Figure 11. Each generator had an individual power conditioning circuit that fed into 

the main ultracapacitor energy reservoir, so the implant could function once the 

generators begin to produce enough energy, or the energy can be stored. Once a 

predetermined voltage had been reached within the ultracapacitor the energy stored 

within was delivered to the IMDs telemetry circuit. Other attempts at developing energy 

harvesting systems for a THR have similarly used a linear electromagnetic generator 

[70] and piezoelectric transducers [71]. 

 

 

Figure 11 – Hip prosthesis with three independent power generating systems [69] 

 

3.4 Data transfer system 

Wireless communication would be a necessity for the telemetry system of an 

implantable medical device, particularly in a deeply implanted orthopaedic implant. 

Wired communications were used in the first iterations of instrumented implants but 

are not a viable option as they would induce unnecessary pain or discomfort to the 

patient and pose an infection risk. A wireless connection would also better enable 

continuous data collection without causing inconvenience to patients. In which case 
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designers will have to consider data transfer rate, range, permittivity through human 

tissue and the additional size and power consumption constraints. 

 The choice of the wireless communication system will depend on what data 

needs to be transferred to or from the implant, and when. If the system’s output only 

involves small amounts of data (e.g. ID of the patient and implant or single 

measurement of blood glucose or temperature) or if the frequency of measurement is 

low (e.g. 1 sample per hour) this places lower demands on a real time data transfer 

system. Similarly, if the collected data can be stored or processed locally (in the 

implant), it can be uploaded at the convenience of the user, without requiring a 

continuous telemetry system in place. One such low capacity yet versatile data 

transfer method could be radio frequency identification (RFID), which is being seen in 

warehouse inventory tracking, pet identification, contactless payments and tracking 

marathon runner times. 

A RFID system consists of a transponder or tag, a reader or interrogator, 

accompanying antennas to enable communication through radio frequency and 

software that controls the system and manages the data [72]. The tags will have a chip 

that stores the identification data or electronic product code (EPC). Tags can be active, 

powered by a battery and favoured for their increased range, or passive, powered by 

the reader’s signal and favoured for their low cost (<10 cents) [73].  

RFID technology is used to track items and store low levels of data so, could 

be used to identify medical devices once they have been implanted and include data 

on the make and model of the implant, reasons for the intervention, the surgeon who 

completed the procedure and details of the surgical approach. One such company 

addressing this is Ortho-tag in collaboration with the University of Pittsburgh. Ortho-

tag was developed to provide a non-invasive, battery less and wireless method of 

identifying an implanted orthopaedic device. The system consists of a RFID chip 

embedded within an implantable tag and a ‘touch probe’ that uses transcutaneous 

near field communication to power and communicate with the tag from outside the 

body [74]. Orthotag claim their system is capable of storing information on an 

implanted medical device, information which could include X-rays and patient medical 

records [75]. 
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An enhancement to a RFID system, that could be beneficial in orthopaedic 

devices, is passive or battery-less sensing capabilities, such systems are known as 

computational RFIDs (CRFID) [73]. Sample et al. [76] achieved this with their wireless 

identification and sensing platform (WISP) which could both receive power and 

communicate data to a wireless RFID reader. They showed the efficacy of their WISP 

by integrating sensors such as temperature, ambient light, rectified voltage, and 

orientation. Other groups have looked at the possibility of using CRFID systems within 

IMDs including pressure sensors for orthopaedic implants [77] and blood glucose 

sensors for continuous blood glucose monitoring [78]. Ortho-tag suggest that their 

system can feature sensors for the in-vivo measurement of pH and temperature to 

indicate infection in the tissue surrounding an implant [75]. 

However, past in-vivo sensing systems have been used to record real time load 

and vibration data at frequencies >1Hz which required data transfer systems with 

higher data transfer rates. The predominant method used in the majority of past 

instrumented hip implants has been inductive data transfer with [28], [40]–[42] all using 

inductive coupling data transfer and Bergmann [28] having a combined power and 

data coil. Nikola Tesla was the first to realise that electrical energy, and so data, could 

be transmitted wirelessly between two inductively resonant coils [79]. Inductive power 

transfer can reach a data transfer rate of up to 100 Mbps at a range of 6cm outside 

the body [80]. However, as well as the aforementioned limitations of using inductive 

coupling for power transfer, when being used for data transfer an inductively coupled 

system is susceptible to interference from nearby electromagnetic fields [53], [80].  

These limitations lead many medical device companies to use, antenna based, 

radio frequency (RF) transceivers for wireless communications between an IMD and 

external unit. The IMD is equipped with an antenna that when fed with a signal radiates 

electromagnetic waves through the body to an external receiver [81]. The radio 

frequency spectrum ranges from 3KHz to 300GHz; between 30MHz and 400MHz is 

the human body’s resonance range where specific absorption rate is at its highest [82] 

meaning that RF waves can penetrate the furthest into the body. Therefore, a 

transceiver operating around this frequency range would be desirable for a deeply 

implanted medical device. 
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In 1999, the increased use of RF systems in IMDs lead the Federal 

Communications Commission (FCC) standardising the Medical Implant 

Communication Service (MICS), to the RF band 402 – 405 MHz. In 2009 the FCC 

upgraded the MICS to the Medradio service which included two additional “wing 

bands” thus extending the band to 401 – 406 MHz [80], [81], [83]. Global medical 

device companies have manufactured their own remote monitoring systems using 

MICS: Biotronik Home Monitoring® (FDA approval 2001), Medtronic Carelink® 

Network (FDA approval 2005) and Merlin.net® Patient Care Network (FDA approval 

2007) [84].  

Another option for wireless communication is Bluetooth or Bluetooth low energy 

(BLE). Bluetooth is a standard for wireless exchange of data operating at a radio 

frequency of 2.45GHz. At this frequency the radio waves will have a penetration depth 

of approx. <4cm in fat and <2cm in skin and muscle [85], [86] however, the higher 

frequency means that BLE has a far higher data transfer rate, up to 2Mbps [87].  

To date Bluetooth has not been used in an instrumented hip implant but has 

seen use in other IMDs. The Confirm Rx ICM (Abbott, Ill, US) is the first Bluetooth 

enabled and smartphone compatible implantable cardiac monitor to have received 

FDA approval in Oct 2017 [88]. In July 2018 the world’s first pacemaker with Bluetooth 

technology (Azure Bluesync pacemaker, Medtronic, Db, Ireland) was implanted [89]. 

Bluetooth is widely used within consumer electronics with many personal devices 

being Bluetooth enabled. Based on the early adoption of Bluetooth enabled IMDs it is 

reasonable to assume that devices of a similar nature will become more widespread 

throughout the medical sector. However, for application within the hip joint the low 

penetration of 2.4GHz RF waves will make Bluetooth an unfeasible option. An 

alternate solution to this is a dual band radio repeater that can receive radio signals at 

one frequency and retransmit at another. Kiourti et al. [90] configured an on-body 

antenna to receive transmissions from an IMD in the MedRadio band 401 – 406 MHz 

and retransmit the received data to an external device in the ISM band, 2400 – 2480 

MHz. This approach would also improve energy efficiency as transmitting low 

frequency waves is far more energy efficient therefore reducing the power 

consumption of the IMD’s telemetry system.  
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3.5 Regulatory considerations – Medical device approval 

Europe and the US are the largest global markets for medical devices. To market their 

devices within these territories MDMs need to comply with the regulations laid out by 

the European Commission in their Medical Devices Regulation (MDR) to achieve a 

CE mark or be approved by the U.S. Food and Drug Administration (FDA), 

respectively.  

An in-vivo sensing system for use within a THR will be a class III (implanted) 

medical device and so will require extensive pre-clinical and clinical testing to provide 

evidence of its efficacy and safety before it can be approved. The same will be required 

when following the FDA’s pre-market approval (PMA) pathway for new medical 

devices when entering the US market.  

If integration of the telemetry system has required modification of the implant, 

then new approval will be required for the implant. If a pre-existing implant has been 

used, then the FDA’s 510(k) pathway would provide a shorter route to approval. 

Nevertheless, these additional regulatory hurdles will mean further costs, risks and 

inconvenience for the MDM. Whereas, if the sensing system is able to integrate with 

the implant without changing function or geometry then approval requirements may be 

more easily met. Furthermore, the safety of the in-vivo sensing system, and 

accompanying telemetry, should not be considered in isolation and interactions with 

the implant should also be considered. Attaching or embedding the sensing system 

could lead to corrosion, generation of wear particles and there is the risk that the 

system will move from the intended position or become separated from the implant. 

These implications should also be considered for the entire lifetime of the implant even 

if the telemetry system becomes inactive or stops working. 

In a 2018 FDA public workshop [8] it was highlighted that care should be taken 

to go beyond physical characteristics associated with pre-clinical testing, such as 

biocompatibility, sterilisation, electrical and mechanical performance, and sensor 

accuracy and repeatability. For in-vivo sensing systems, regulatory considerations 

should also encompass validation of the metrics produced and the level of evidence 

required should be dependent on how the data will be used, for example if the sensor 

is delivering a treatment or providing a diagnosis of a potentially life-threatening 
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condition. In either scenario the wrong result would cause harm to the patient or be 

life threatening.  

 

3.6 Regulatory considerations - Cybersecurity 

In 2017, the global WannaCry cyber-attack was estimated to have cost the NHS £92m, 

£19m lost output and £73m in IT costs the majority being spent in the aftermath [91]. 

A study conducted by Clearswift revealed that in the UK, 67% of healthcare 

organisations suffered a cybersecurity incident in 2019 [92]. The risk of cybersecurity 

related incidents within healthcare are increasing as more medical devices have 

wireless connectivity and are joining the internet of things.  

In the past there was concern over malicious cyberhackers gaining unlawful 

access to a patient’s implanted medical device (IMD) and causing harm to the patient. 

In a 2013 interview, Former Vice President Dick Cheney revealed that in 2007 he had 

the wireless connectivity of his pacemaker disabled to avoid the possibility of an 

assassination attempt [93]. Halperin et al. [94] were the first research group to show 

that an IMD could be infiltrated and patient data and safety put at risk. In 2011, amateur 

hacker Barnaby Jack demonstrated live on stage, at the Hacker Halted conference in 

Miami, how he could hack into an insulin pump and deliver a fatal dose to the user 

[95], [96]. The following year Jack performed a similar live demonstration in which he 

hacked into a pacemaker and commanded the device to deliver a deadly voltage surge 

of 830V [96], [97]. Although theoretically possible it is highly unlikely that attacks like 

these would ever occur. Dick Cheney’s unique public figure status meant that he was 

at a high risk and so every precaution was taken to guard him against possible attacks. 

Additionally, hacking into a user’s pacemaker would require the attacker holding 

‘suspicious’ specialised electronic equipment close to the user for an extended period 

of time therefore making it hard for the attack process to be scaled and in general 

there are far easier, more effective and profitable ways to cause harm or steal a 

person’s data [98]. To-date there is no evidence of cases where a patient’s IMD has 

been hacked with malicious intent. Though there have been device recalls [99], [100] 

and safety communications issued by the FDA [101]–[104] where cybersecurity 

vulnerabilities were cited.  
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Cardiac and drug delivery devices, such as pacemakers and insulin pumps, 

carry higher levels of risk whereas, a non-active in-vivo sensing system will carry less 

risk as it only provides diagnostic capabilities so cannot have a ‘physical effect’ on the 

patient or user. However, if a smart implant capable of in-vivo sensing is realised, and 

intended to be used clinically, it is likely that the device would include or even require 

functionality to store data on the patient and their medical history. This data could be 

a potential target for malicious cyber hackers as medical records are worth more than 

a credit card number or bank details when sold on the dark web [105], [106]. Although 

there will be an inherent risk of an IMD being hacked, this is not the only component 

of cybersecurity that should concern MDMs and regulatory bodies instead, the majority 

of medical device cybersecurity should be preventing accidental cyber harm and, 

making sure the system is robust to the unknown and unexpected [107].  

In 2013, the FDA released a safety communication that warned MDMs, 

hospitals and users that cybersecurity breaches could affect the proper function of an 

IMD [108]. Building upon this the FDA issued the “Content of Premarket Submissions 

for Management of Cybersecurity in Medical Devices” guidance document [109], and 

updated in 2018 [110]. The guidance encourages MDMs to consider cybersecurity 

measures during the entire lifecycle of the device and provides details on the 

documentation required for the PMA submission with regards to cybersecurity. 

Additionally, in 2019, the Medical Device Coordination Group (MDCG) released 

“Guidance on Cybersecurity for medical devices” [111] which provides 

recommendations to MDMs on how to satisfy the requirements laid out in the MDD 

that relate to cybersecurity.  
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5. Conclusion 

The number of total hip replacements are increasing, complication and revision rates 

whilst low are still at undesirable levels. An in-vivo sensing system with telemetric 

capabilities would be beneficial as a means of gathering valuable data on the implant’s 

function and the condition of the surrounding tissue. This data could be used to verify 

in-silico and in-vitro studies, inform improvements in implant design and surgical 

technique, and guide postoperative care. If real time condition monitoring is achieved 

along with intelligent recognition of adverse events and deviations from a patient’s 

normal function, then such systems could provide advantages including remote patient 

monitoring, improved accessibility to healthcare and continuous as oppose to episodic 

and largely unnecessary assessment and early detect of problems. 

Since the implantation of the first instrumented hip implant in the 1960s less 

than 100 patients have received an instrumented implant capable of in-vivo sensing. 

These implants have measured biomechanical metrics, including force and moments 

and temperature. The data gathered has helped progress understanding of how a THR 

functions in-vivo and so informed improvements in implant design and surgical 

technique. However, force, moments and temperature measurements are currently 

not sufficient to deduce early indications for revision surgery. However, they are 

important metrics and may still be required in a sensing system for use in a smart THR 

capable of condition monitoring and intelligent feature recognition. Other experimental 

work has looked at measuring levels of implant loosening presumably because 

loosening is the most common indication for revision surgery in THR and indeed other 

orthopaedic implants. This work has shown potential but until it can be shown that the 

diagnostic accuracy and reliability is matched to standard radiographic methods then, 

clinical translation will not be a possibility. 

Widespread adoption of smart instrumented THRs and IMDs will not be realised 

until several key challenges have been overcome these include: what sensing method 

is used, biocompatibility and integration within the implant, power delivery, 

communication, and regulatory considerations. Additionally, product liability is also a 

limiting factor within the field of IMDs as MDMs will not want to take on the additional 

risks associated with developing and marketing such technology without measurable 

benefits either in improved outcomes or reduced costs but also to the wider healthcare 

system. Also, the expected lifetime of a THR is >15 years whereas the lifetime of 
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common consumer electronics such as a smartphone is <5 years (whilst also receiving 

regular software updates). This will need to be considered by MDMs when designing 

the hardware and software of the IMD. Smart implantable medical devices, such as 

pacemakers and insulin pumps, are becoming more accepted and widely used as 

clinical interventions. Furthermore, advances in technology such as wireless power 

and telemetry systems, suggests that the development and eventual adoption of an 

instrumented hip implant, capable of real time condition monitoring, is imminent.  

The successful introduction of technology outlined in this review would not only 

benefit the patient, but it would also enable clinicians to base decisions on more 

objective quantitative data This would potentially obviate the need for follow-up clinics 

for all patients thereby reducing hospital workload and hence costs which would 

benefit the payer whether they are a government or an insurance company.  
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