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Abstract—Model-based testing is a structured method to test
complex systems. Scaling up model-based testing to large systems
requires improving the efficiency of various steps involved in test-
case generation and more importantly, in test-execution. One of
the most costly steps of model-based testing is to bring the system
to a known state, best achieved through synchronising sequences.
A synchronising sequence is an input sequence that brings a given
system to a predetermined state regardless of system’s initial
state. Depending on the structure, the system might be complete,
i.e., all inputs are applicable at every state of the system. However,
some systems are partial and in this case not all inputs are
usable at every state. Derivation of synchronising sequences
from complete or partial systems is a challenging task. In this
paper, we introduce a novel Q-learning algorithm that can derive
synchronising sequences from systems with complete or partial
structures. The proposed algorithm is faster and can process
larger systems than the fastest sequential algorithm that derives
synchronising sequences from complete systems. Moreover, the
proposed method is also faster and can process larger systems
than the most recent massively parallel algorithm that derives
synchronising sequences from partial systems. Furthermore, the
proposed algorithm generates shorter synchronising sequences.

Index Terms—Model based testing, synchronising sequence,
reinforcement learning, Q-learning

I. INTRODUCTION

Model-based testing [1]–[6] is a rigorous method for vali-

dation and verification. The application of model-based testing

to areas such as autonomous reactive systems has been further

facilitated in recent years by advances in model-learning tech-

niques, and their extensions to adaptive and evolving systems

[7], [8]. The industrial-scale application of model-based testing

in these challenging areas requires the scaling up of various

parts of the underlying techniques.

Many systems are state-based: they have an internal state

that affects behaviour and is updated by events and operations.

When testing a state-based system, one typically needs to

apply a number of test sequences, or adaptive test cases, from

the initial state of the system under test (SUT). As a result,

the state of the SUT is normally reset to this initial state

between test sequences. Sometimes it is straightforward to

reset the state of the SUT by, for example, turning the system

off and then on again or issuing the reset signal provided by

the manufacturer/developer. However, the process of resetting

the SUT between test-cases can be one of the most time-

consuming parts of test execution [9] and there may be no

simple approach to resetting the SUT; there may be no reset

input or the use of a reset input may be infeasible. In such

circumstances, the reset operation is implemented through the

use of synchronising sequences (SSs) [10]. SSs are used to

bring the underlying system to a specific state to resume testing

with a new test case [2], [9], [11]–[13]. In such cases, the

length of SSs affects the cost of test execution. This motivates

the work in this paper, which utilises reinforcement learning

in the generation of short SSs. The development of efficient

techniques that produce short SSs will contribute to the agenda

of producing systematic MBT techniques that scale to large

models.

In addition to model-based testing, synchronising sequences

are also heavily used in motion planing of robotic controllers

such as orienting parts on assembly lines [14]. Moreover, SSs

have also been studied in automata theory and genomics and

form an active area of research [12], [14]–[27].

A. Problem statement & Related Work

The underlying transition function of a reactive system test

model can be complete or partial. In a complete model, all

inputs of the system are applicable in each of its states. The

development of efficient methods to generate short SSs from

such a model is very appealing as the use of shorter SSs

reduces the cost and time of test execution. However, the

problem of generating a minimal SS, from a complete model,

is NP-hard [26].

Even though there are several methods for generating an

SS [26], [28]–[35], the initial step of all these methods is

the construction of a product-automaton; a data structure that

requires quadratic space with respect to the number of states

of the model. All existing methods use this data-structure

as the basis of different approaches/heuristics to derive short

SSs. Amongst these, the fastest known algorithm [26] requires

O(n3 + kn2) time where n denotes the number of states and

k denotes the number of inputs of the model.

To address the computational cost, recent work [36] intro-

duced many-core and multi-core approaches for deriving short

synchronising sequences from complete systems. However,

it is relatively difficult to implement these methods, as they

require (i) proficiency in parallel programming and program-



ming general purpose graphics processing units (GPGPUs) and

(ii) sophisticated graphics cards and CPUs.

In a partial model, not all inputs are applicable in all of

the states of the model. For such models, the problem of

deciding whether there is an SS is PSPACE-complete [37]. As

a result, the current focus of research is merely related to the

derivation of SSs. In this line of research, the first published

algorithm was based on constructing a breadth first search tree,

which requires exponential space and time and hence is not

efficient [38], [39]. The only known efficient algorithm [15]

checks all input sequences that are not longer than some

upper-bound. Experimental results show that a combination

of a relatively powerful GPU card and CPU can process

systems with 16, 000, 000 states and 10 inputs. However, the

performance of the algorithm degrades as the number of

inputs increases. Moreover, this method also requires (i) solid

expertise in programming general purpose graphics processing

units and (ii) a powerful graphics card.

Finally, in [40], the authors introduce an algorithm that

uses Answer Set Programming to generate SSs from complete

systems. As the method requires a Conjunctive Normal Form

formulation of the system and the SS generation problem, it

is not scaleable to large systems with many states.

Given recent breakthroughs in the Reinforcement Learning

(RL) spectra, the objective of the work presented in this paper

is to use RL as the basis for novel algorithms that efficiently

find short synchronisation sequences. RL defines a family of

machine learning algorithms and is becoming a major tool

in computational intelligence [41]. In RL, computers (agents)

make their own choices (take actions) in a given environment

without having prior information or labelled data [42].

Recently, the use of RL in test generation has received

significant attention [43]–[51] and we now briefly review a

few examples. RL has formed the basis of an algorithm to

automatically generate test cases for Android applications with

the aim of improving code coverage [50] and has also been

used in mutation testing to predict whether a mutant will

be killed by a given test suite without incurring the cost of

executing the mutant [52]. RL has also been used in graphical

user interface (GUI) testing [44], [45].

In online testing, test inputs are derived during test execu-

tion. It has been shown that RL can be used to address the

associated problem of optimizing the choice of test actions to

reduce test costs [51]. RL has been used to learn a behaviour

model of the system under test to aid risk-based testing [47].

Three RL algorithms have been proposed and embedded in

EvoSuiteFIT [43] to support hyperheuristic search based test

generation algorithms [48].

RL has also been used in security testing. For example,

researchers have developed an RL based testing algorithm

that trains dishonest agents to reveal dangerous behaviours

of autonomous cyber-physical systems [49]. An RL based test

generation technique has also been devised with the aim of

increasing hardware Trojan detection accuracy [53], [54].

This paper uses Q-learning, which defines a family of RL

methods in which the actions taken by an agent are decided

according to quality values (Q-values) [55]. Q-learning has

become the basis of many RL algorithms because unlike other

methods, Q-learning is simple and exhibits excellent learning

facilities [56]. Q-learning techniques have recently attracted

significant attention with the introduction of Deep Q Networks

(DQNs) [57]. Although Q-learning algorithms are promising,

it is still challenging to use them in our setting. The initial Q-

learning algorithm has good convergence properties, however

it requires tables or matrices to hold Q-values. When the

agent interacts with the environment, a single Q-value on

the table is updated. So this simple setting introduces at least

two problems, (i) in circumstances where the environment is

complicated, critical states might not be experienced/learned

(generalisation problem), and (ii) because the underlying data

structure is a table, it leads to a large amount of storage space

being required. Therefore, for complex learning problems with

large, complex environments, it is difficult to achieve effective

learning by using the tabular Q learning algorithm. Function

approximators have been used, to overcome generalisation

problem, as an alternative to keeping Q values [58].

B. Research questions

In light of these findings, the research questions studied in

this paper are summarised as follows:

RQ 1 Is our proposed Q-learning algorithm more efficient and

scalable than the state of the art algorithms?

We further refine this research question into the fol-

lowing sub-questions pertaining to the execution time,

scalability, and memory usage, respectively:

RQ 1.1 Is the growth of the execution time more modest in the
Q-learning algorithm?

RQ 1.2 How scalable can a Q-learning algorithm be? By fixing
the amount of memory and execution time, can a Q-
learning algorithm generate SSs from specifications that
cannot be processed by the state of the art SS generation
algorithms?

RQ 1.3 How does the memory usage behaviour of the Q-
learning algorithm compare to state of the art SS gener-
ation algorithms?

RQ 2 Is our proposed Q-learning algorithm more effective in

generating shorter synchronising sequences for a larger

class of system models?

We also refine this research question into the following

sub-questions pertaining to the length of the generated

synchronising sequence and the types of systems han-

dled by the algorithm, respectively:

RQ 2.1 Does the Q-learning algorithm generate shorter

SSs (relative to execution time and memory con-

sumption) than the state of the art SS generation

algorithms?

RQ 2.2 Can the Q-learning algorithm be extended to miti-

gate the above-mentioned generalisation problem?

C. Contributions

In this paper, we report what is, to the best our knowledge,

the first application of reinforcement learning to deriving

state synchronisation sequences, in order to make model-based



testing more efficient. In particular, we propose a sequential,

Q-learning (reinforcement learning) algorithm that derives

synchronising sequences from partial and complete systems.

Regarding deriving SSs using machine learning, apart from

the work surveyed before, we are aware of only one closely

related publication [59]. In this work, the authors report a

Deep Learning method to predict the length of the SS without

generating it. We, however, aim to generate the SS from a

given specification.

Regarding our novel Q-graph formalism, we are aware of

two related pieces of work that used different types of data

structures in the Q-learning setting to ease the generalisation

problem. In one approach [60], the Markov Decision Process

(MDP) search space has been represented as a k dimensional

tree which makes it possible to keep unrelated part of the

environment in a database. This reduces the memory cost of

the RL algorithm. A second piece of work [61] shows how the

steps taken by an agent can be represented as a graph. This

graph is then used to aid exploration/exploitation dilemma

using a shortest path algorithm. None of these methods,

however, employ a similar technique to ease the generalisation

problem as the presented method.

Our Q-learning framework, unlike the tabular setting, does

not require prior knowledge of the entire search space. Instead,

it explores and constructs the search space as the agent

interacts with the environment. Therefore with this framework,

we are allowed to apply the Q-learning method to problems

that possess a very large search space using a limited memory

space. For example, the classical tabular Q-learning method

would require 2n rows and in total x ∗ 2n cells for a given

system with n states and x inputs.

Through empirical evaluation, we show that the proposed

algorithm is superior to the state of the art sequential and par-

allel algorithms: the proposed algorithm can generate shorter

SSs and 1000 (256) times faster, and can process 256 (2048)

times larger specifications than the state of the art sequential

(parallel) algorithm. To ensure the scalability of our approach,

we retrieved the specification of an industrial-scale system

to manage the engine status of Océ printers and copiers (a

subsidiary of Canon). The specification has 3410 states and

77 inputs; it has been developed in an industrial context and

has been formally cross-checked against the design documents

of the system, from which the implementation code is auto-

matically generated [62]. Our method could derive an SS from

this specification in less than a second where other state of the

art SS generation methods would not terminate in an hour.

Our proposed algorithm serves as a basis for future efficient

algorithms for large state-space exploration that cannot be

explored exhaustively.

D. Organisation of the paper

The paper is organised as follows. In the next section,

we provide the terminology and notation regarding reactive

systems and Q-learning used throughout the paper. This is

then followed by a section in which we explain the proposed

algorithm. In Section IV, we present the experimental subjects,

conducted experiments, and their results. Later, in Section V,

we discuss the results. Finally, Section VI draws conclusions

and discusses some future research directions.

II. PRELIMINARIES

A. Automata

We use the standard notation A = 〈S,Σ, H〉 to denote an

automaton. Here S is a set of states, Σ is a finite input alphabet

and H ⊆ S × Σ × S is the set of transitions. The set of all

input sequences is represented by Σ⋆. We let |S′| denote the

number of elements in a given set of states.

We let dom-A denote the set of pairs (s, x) ∈ S × Σ such

that there exists a transition leaving state s with input x and we

refer it as ’x is defined in state s’. A is said to be completely-

specified if dom-A = S × Σ and otherwise A is partial. A

transition of A is represented by tuple τ = (s, x, s′) ∈ H ,

where s is the starting state, s′ is the ending state, and x is

the input label of the transition τ .

An input x is said to be defined at state s if and only if

(s, x) ∈ dom-A. Otherwise x is undefined at state s.

A walk of an automaton A is a sequence (s1, x1, s2)
(s2, x2, s3) . . . (si, xi, sj)(sj , xj , sk) of consecutive transitions

of A. The input sequence of this walk ω = x1x2 . . . xixj is

called its trace, we use ε to denote the empty sequence. We can

extend the notion of a defined input to defined input sequences

as follows. An input sequence ω is defined at a given set of

states S′ ⊆ S if one of the following is true (i) ω is an empty

sequence; or (ii) for any prefix ω1 of ω, with ω = ω1ω2, ω1

is defined at S′ and ω2 is defined at the states reached from

S′ using ω1.

Let δ : 2S × Σ⋆ → 2S be a map specifying the set of

states which can be reached using an input sequence from a

given set of states. Let ω = xω′ be an input sequence. If

for a given s ∈ S′, ω is not defined, then δ(S′, ω) is also

not defined. Otherwise the delta function can be defined in

a recursive way δ(S′, ε) = S′, δ(S′, x) = ∪s∈S′δ(s, x), and

δ(S′, ω) = δ(δ(S′, x), ω′). If for some pair of states s, s′ ∈
S′, δ(s, ω) = δ(s′, ω) then ω is said to be a Merging Input

Sequence (MIS). If ∀si, sj ∈ S, δ(si, ω) = δ(sj , ω) then ω is

called a Synchronising Sequence (SS).

In Figure 11, we provided the specification for the ceil-

ing speed monitoring with service brake intervention (SBI)

from [63]. Note that this specifications is partial. This

can be completed by adding self-loop transitions that label

missing input, and this completion method is well known

in this field [64]. Note that an input sequence SS1 =
?c3?c5?c6?c7 resets the automaton to state Normal, i.e.,

δ(S, ?c3?c5?c6?c7) = {Normal}.
While testing a given system, we need to apply a number of

test sequences, all of which start from the reset state (Normal

in this case), and there is a need to reset the system under test

between the execution of these test sequences. Thus, the length

of the SS has an impact on test execution time and shorter SSs

are preferable.

1We did not draw the added transitions in Figure 1.



The automaton ASBI given in Figure 1 has another SS

SS2 =?c3?c0?c7 that also resets the system to state Normal.

Since SS2 is 25% shorter, using SS2 is preferable for testing.

For example, consider the classical test generation method,

the W method [2], [13]. Asymptotically, the W method can

generate a test suite with |S| + |S| ∗ |Σ| elements. If we use

SS2 instead of SS1 then we would save (|S|+ |S| ∗ |Σ|) = 40
inputs during testing an implementation of automaton ASBI .

Normal

Overspeed

S Brake

Warning

E Brake

?c0

?
c1?c

2

?c3

?c0 ?
c5

?c0

?c6

?c7

?c1

Fig. 1: Automaton ASBI with S = {Normal,

Warning, Overspeed, S Brake, E Brake},
Σ = {?c0, ?c1, ?c2, ?c3, ?c5, ?c6, ?c7}.

B. Q-learning environment

Q-learning algorithms can operate on a Markov Decision

Process (MDP) [56]. An MDP is defined with a tuple P =
(S,A,P,R), where S is a set of states, A is a set of actions, P
is the probability function in the form of P(S ′|S, a), that is for

each action a ∈ A and state S ∈ S, it defines the probability of

reaching state S ′ ∈ S and R is the immediate reward function

in the form of R(S, a,S ′), i.e., it returns the reward received

after transitioning from state S to S ′ with action a.

The Q-learning is a value-based reinforcement learning

method which is used to find the optimal policy when state

transition probabilities P are unknown for a given MDP

P = (S,A,P,R). Instead of estimating these unknown

probabilities, the method uses a value function, Q [55]. The

value function Q is recursively defined as

Q(S, a) =























Q(S, a)− α{R(S, a) + γ ∗ argmax
a
′

Q(S ′, a′)

−Q(S, a)}, if S = current state, and
an action a is executed

no change, otherwise,
(1)

where S ∈ S, a ∈ A, and Q(S, a) is the value of applying

action a at state S , R(S, a) is the immediate reward received

after applying action a at state S , α is the learning rate, and γ

is the future reward discount factor. α, and γ are values within

the range [0, 1].
The Q-learning algorithm asymptotically reconstructs the

true expected discounted reward [55] and as a result works

towards recovering the optimal policy. In this respect, policy

selection based on Q-learning can be viewed as an off-policy

temporal difference control algorithm which asymptotically

approximates the optimal policy [56].

III. THE PROPOSED ALGORITHM

A. From Q-tables to Q-graphs and problem formulation

The naive implementation of theQ-learning algorithm relies

on a Q-table which holds the Q-values for each of the states

of the underlying environment i.e., MDP P [56]. This is a

drastic improvement over cases where complete knowledge of

the transition probabilities P is required. The use of a Q-table

is straightforward: if the agent wants to learn the Q-value of

a state S ∈ S it just reads the information from the table after

it computes its index.

However, consider a scenario in which the agent does not

require the whole Q-table while learning the environment. In

such a case, we may not have to store the Q-values using a

preset table but instead we can use a directed graph. Using

such an approach, we let the graph grow as the agent dis-

covers states on-the-fly. This method will reduce the memory

requirements of the algorithm in situations in which the agent

can find an optimum policy based on only a portion of the

state-space, which is the case in our application domain.

A Q-graph has a finite set of nodes N (Q-nodes), such that

each node n ∈ N is associated with a state of the environment

(say MDP state) S (nS ) and a Q-value (Q(S, a)) for each

action (a) of P . Intuitively, in the set of admissible edges in

a Q-graph there exists an edge labelled with action a from

Q-node n to Q-node n′ if and only if one can reach nS′ from

nS using an action a.

Finally, we represent the SS construction problem as an

MDP P . An element S′ of the power set of S (S′ ∈ pow(S))
corresponds to a state (S ′ ∈ S) of the MDP P and each input

x ∈ X of A is an action a ∈ A of P .

We use one-to-one and onto functions to denote correspond-

ing inputs and set of states: (i) i() maps an input x ∈ Σ of the

automaton A to the corresponding action a ∈ A of the MDP

P and vice versa, and (ii) st() maps a set of states S′ ∈ P(S)
of the automaton A to the corresponding state S ′ ∈ S of the

MDP P and vice versa.

For each S and a, we let

P(S ′|S, a) =

{

1, if and only if δ(st(S), i(a)) = st(S ′),
0, otherwise.

That is in P there exists a transition from a given state

S to another state S ′ labelled with action a if and only if

δ(st(S), i(a)) = st(S ′).
The immediate rewards (R(S, a)) are computed as follows,

let S ′ be the next MDP state such that δ(st(S), i(a)) = st(S ′).

R(S, a) =











−1, if |st(S)| = |st(S ′)|,

NAN, if i(a) is undefined for st(S)

100 ∗ φ/|st(S)|, else (φ = |st(S)| − |st(S ′)|).

The above formulation introduces a heuristic that helps to

break ties when we have a set of merging inputs. The heuristic

step considers the number of merged states and promotes the



input that is causing more states to merge. Note that when |S′|
is equal to |S|, the reward is −1, this is a step to prevent the

agent from introducing redundant inputs to SS. Moreover, with

immediate reward NAN , the proposed algorithm can derive

SSs from partial systems without worrying about constructing

SSs with undefined inputs. However, the algorithm may gen-

erate longer SSs when the underlying system is partial. This is

due to the fact that the length of a shortest SS for a complete

system is bounded by O(n2) [26] and for a partial system the

bound is O(n2 ∗ 4n/3) [65].

Finally, note that the for a given SS construction problem

instance, the constructed MDP is finite. We formally state this

property in the Corollary below

Corollary 1. Let A be an automaton, the MDP P constructed

from A for constructing an SS is a finite MDP.

B. The Algorithm

Before going into the details of the algorithm we will

introduce some basic concepts that the algorithm uses. The

proposed algorithm uses an ǫ-greedy approach [56]. Using this

approach we addressed the exploration and the exploitation

trade off. With probability ǫ the agent chooses inputs ran-

domly. Otherwise it selects inputs according to the Q-values,

which are computed using the standard Q-value function given

in Formula 1 where the next state (S ′) is computed using the δ

function, i.e., S ′ = δ(st(S), i(a)). The learning rate and future

reward discount values were both set to 0.9, i.e., α = 0.9 and

γ = 0.92.

The algorithm receives an automaton A and an upper-bound

on the number of episodes3 (E) as its inputs. Then it constructs

the Q-graph. The construction of the Q graph is done by

introducing a single Q-node: a node that is associated with the

set of states nS = S of A with random Q-values. (Lines 1-3 of

Algorithm 1). The graph then gradually grows by introducing

new nodes while the agent explores the environment. Once the

initial node has been created, the algorithm initialises the graph

with an empty input sequence and a pointer to the initial node

(initialNode) that will be used when the algorithm wants

to reach the first node of the Q-graph i.e., when it picks an

undefined input. The algorithm also sets the episode counter

to 0 (Line 4 of Algorithm 1).

Afterwards it enters a loop that ends when (i) it finds an

SS, i.e., it reaches a node n′ such that |n′
S | = 1, or (ii) the

maximum number of episodes has been reached. Note that in a

finite MDP the Q-learning algorithm converges after a number

of episodes, i.e., runs [56]. However, not all automata possess

an SS. When there is no SS, the agent will repeatedly compute

ω and never succeed. As a result of this observation, the

algorithm requires an upper-bound on the number of episodes

as input (E).

2The α and β values were manually set based on controlled experiments
during which we measure the total rewards gained. This is then followed by
the experiments. That is hyperparameters α and β were constant throughout
the experiments.

3Throughout the experiments E was set to 1,000,000 episodes.

Input: Automaton A = (S,Σ, H) such that |S| > 1, E

Output: An SS ω for A

begin
1 Initiate aQ−node n such that nS ← st(S).
2 foreach x ∈ Σ do

3 Assign a random value toQ(nS , i(x)) of n.

end

4 InitialNode← n, n′ ← n, N ← N ∪ n, ω ← ε, e← 0.

5 while e < E do

6 foreach x ∈ Σ do

7 if n′′ with n′′

S = δ(st(n′

S), x) does not exist in N
then

8 Introduce n′′ to N such that

n′′

S = δ(st(n′

S), x) having random

Q-values.

9 Introduce an edge from n′ to n′′ labelled with

i(x).
end

end

10 e← e+ 1, Pick a random value r in the range (0, 1].
11 if r ≤ ǫ then

12 Select a random input x, update n′, andQ-values.

end

13 else

14 Select x using Q(nS′ , i(x)), update n′, and

Q-values.
end

15 if R(n′

S |i(x)) = NAN then

16 n′ ← InitialNode, ω = ε.

end

17 else

18 ω ← ω · x.

19 if |n′

S | = 1 then

20 return ω.

end

end

end

21 return ε.

end
Algorithm 1: The Q-Synch algorithm.

At each iteration, the algorithm picks the current node (n′),

extracts the set of states nS′ and it checks if all the adjacent

nodes of n′ are in N i.e., for each input x ∈ Σ it checks if

an adjacent node n′′ is included in the Q-Graph. If not, then

it introduces the missing Q-nodes with random Q-values, and

introduces the edge information (Lines 6-9 of Algorithm 1).

After this the algorithm increments e, updates the input

symbol (x), the current Q-node (n′), and Q values according

to the ǫ-greedy method (Lines 10-14 of Algorithm 1).

If the immediate reward is NAN , then the algorithm clears

ω, sets the current node as the initial node, and repeats the

process. Otherwise, it appends the input to ω and checks

whether the current node is associated with a singleton set or

not. If so, the algorithm returns ω as the SS (Lines 15-20 of

Algorithm 1). Otherwise it repeats the above mentioned pro-

cess. If the upper-bound on the number of episodes is reached

and no SS has been found then the algorithm terminates and

returns an empty ω.

The above algorithm can generate an SS from a given A if



and only if A has an SS and a suitably large episode value E

is provided.

Proposition 1. The Q-Synch algorithm can construct an SS

from an automaton A if and only if A has one and E is

sufficiently large.

Proof. →→→ This part follows from the Corollary 1, and the fact

that Q-learning algorithm finds the optimal policy in finite

MDPs [66].

←←← Now assume that the Q-Synch algorithm returns a

non-empty input sequence ω but this is not a synchronising

sequence. We consider two cases (i) there exists s, s′ ∈ S

such that δ(s, ω) 6= δ(s′, ω) and (ii) there exist s ∈ S such

that δ(s, ω) is not defined.

Since ω is non-empty the algorithm must return when a

singleton set is reached. Therefore |δ(S, ω)| = 1 and (i) cannot

be true. Next, assume that ω is in the form of ω′xω′′ where

ω′ and ω′′ are sequences. Let us assume that δ(s, ω′) = s′ but

δ(s′, x) is not defined. We need to consider two sub-cases: (a)

ω′ is an SS for A, and (b) ω′ is not an SS for A. Note that the

algorithm returns as soon as it reaches an SS, so (a) cannot

be true. If (b) happens then the algorithm should clear ω and

cannot return a non-empty sequence. Therefore (ii) cannot be

true. Hence the result follows.

IV. EXPERIMENTS

In this section, we provide the details of the controlled

experiments conducted to answer our research questions. We

first recall the research questions and the evaluation criteria,

focusing on which aspects of the algorithms were compared.

This is then followed by a description of the experimental

subjects. Next, we outline the benchmark algorithms used as

a baseline and the experiment environment used. Finally, we

provide the results of the experiments.

A. Research Questions and Evaluation Criteria

The following research questions were posed at the outset

(in Section 1):

RQ 1 Is our proposed Q-learning algorithm more efficient and
scalable than the state of the art algorithms?

RQ 1.1 Is the growth of the execution time more modest in
the Q-learning algorithm?

RQ 1.2 How scalable can a Q-learning algorithm be? By
fixing the amount of memory and execution time, can
a Q-learning algorithm generate SSs from specifica-
tions that cannot be processed by the state of the art
SS generation algorithms?

RQ 1.3 How does the memory usage behaviour of the Q-
learning algorithm compare to state of the art SS
generation algorithms?

RQ 2 Is our proposed Q-learning algorithm more effective in
generating shorter synchronising sequences for a larger
class of system models?

RQ 2.1 Does the Q-learning algorithm generate shorter SSs
(relative to execution time and memory consumption)
than the state of the art SS generation algorithms?

RQ 2.2 Can the Q-learning algorithm be extended to mitigate
the above-mentioned generalisation problem?

To answer these questions, we consider a number of eval-

uation criteria. The first one is the time an algorithm requires

to generate an SS, with a faster algorithm being better. The

second criterion is related to the length of the SSs generated

by the algorithms. Since there is a cost associated with the

application of an SS, we say that an algorithm is better

than others if it generates a shorter sequence for a given

automaton. The last criterion relates to the scalability of the

algorithms. By scalability, we refer to two different aspects

of the algorithms. First, we consider the maximum number of

model states that the algorithm can process in a given time.

Second, we considered the memory used by the algorithm

while constructing SSs. So a scalable algorithm is the one

that can process larger automata and requires less memory

than others.

B. Experiment subjects

We used two sets of automata in the experiments. The

sets (S1 and S2) contained randomly constructed synthetic

automata, where S1 had completely specified automata and

S2 contained partially specified automata. Synthetic automata

were constructed using the following procedure.

Let n be the number of states and p be the number of inputs.

To generate a completely specified automaton with n states and

p inputs, we first generated a graph with n nodes (states) and

for each node (state) we randomly generate p adjacent nodes.

Then we checked whether the resultant automaton has an SS.

If so, we kept it, we discarded it otherwise.

If the underlying automaton is to be partial then we again

generated a graph with n nodes but this time for each node we

picked k adjacent nodes from the graph where k was picked

randomly in the range [1, p]. If the underlying automaton had

an SS then we stored the automaton. We used each (n, p) pair

in which n ∈ {32, 64, 128, . . . , 131072} and p ∈ {10, 16, 22}.
For each such (n, p) pair, we randomly generated 100 au-

tomata for S1 and another 100 automata for S2, resulting in

a total of 7800 automata.

In order to complement the experiments, we also used

a specification of a real software Engine Status Manager

(ESM). An ESM is a piece of control software that is used to

manage the status of the engine in Océ printers and copiers

(a subsidiary of Canon). This example is chosen, because its

structure and behaviour is representative of embedded control

software [67]. Moreover, the ESM model was not retrieved

from its designers/developers but it was learned by another

piece of software LearnLib [68] and rigorous verification has

confirmed that the behavioural model is indicative of the actual

system. The ESM model is partial and has 77 inputs and 3410

states.

C. Benchmark algorithms and experiment environment

For S1, we compared the Q-synch algorithm with the

fastest sequential algorithm, algorithm called the The Greedy

Method [26]. There are other more recent algorithms such as

FastSynchro and SynchroP that can find shorter SSs than the

Greedy approach; however the computational complexities of



these algorithms are much worse than the Greedy algorithm

and are O(n4|Σ|) and O(n5|Σ|) respectively [30]. An algo-

rithm based on a SAT solver is provided in [69] however this

algorithm is slow and cannot process large automata. For S2,

we compared the Q-synch algorithm against the only existing

algorithm reported in the literature, the parallel brute-force

(parallel BF) SS generation algorithm [15].

The sequential algorithms were implemented in C++, and

compiled using Microsoft Visual Studio, edition 2012. The

parallel BF algorithm was implemented in CUDA 6.0 using

compute capability 2.1. The source-code, the constructed SSs,

the automata in sets S1, S2, and the ESM are publicly

available4. The computer used in the experiments had an Intel

I7−3630QM CPU at 2.0GHz with 8GB RAM equipped with

an NVIDIA Geforce 610M with 2GB memory. The operating

system used was 64-bit Windows 75.

D. Results

In order to evaluate the relative performance of the algo-

rithms, for each automaton A, we separately computed SSs

using the proposed algorithm and the benchmark algorithms.

We recorded the generated SS, the execution time, and mem-

ory required by the algorithms. Throughout the experiments,

we set the execution time limit to one hour and set the memory

limit to 1GB of RAM.

We ran the Greedy Algorithm with automata from set S1.

The Greedy Algorithm could generate SS when n ≤ 512.

When n > 512 the memory requirement exceeded the given

limit. We ran the parallel BF algorithm with automata from

set S2, and the parallel BF algorithm could not compute SSs

when n > 64 within the given time limit.

In the rest of this section we discuss the results in greater de-

tail. We used R for statistical tests and to generate graphs [70]6.

1) Time comparison: We provided the time comparison

results conducted on S1 in Figure 2a. The y-axis values give

the mean ratio of the time taken by the Q-Synch algorithm

to the time taken by the Greedy Method. The results are

promising and show that the proposed Q-synch algorithm is

500 times faster than the Greedy algorithm on average. We also

observe that as the number of states increases the difference

increases. When n = 512 the Q-Synch algorithm is about

1000 times faster than the Greedy method.

To investigate the results further, we conducted a statisti-

cal effect size analysis through computing Cohen’s distance

d [71], using the R tool [70]. The results regarding to the effect

sizes for execution time are given in Table I. The statistical

analyses indicate that the effect size between the population’s

is large.

We provide the time comparison results conducted on S2
in Figure 3a. Again we observe that the results are promising.

4Code and data are anonymously available at https://figshare.com/articles/
software/CodeAndData/14478132

5Please note that in [15] the authors used a Tesla K40 GPU to conduct the
experiments which is about 10,000 times faster than the GPU card used in
these experiments.

6The R source codes and the data are anonymously published in https:
//figshare.com/s/cbf85c54a1ff11674374

The proposed Q-synch algorithm was 1000 times faster than

the parallel BF algorithm on average and when n = 64 the

proposed algorithm was 10000 times faster on average. The

result of Cohens’ d analysis is given in Table IV. Results again

indicate that the effect size between the populations is large.

2) Length of constructed SSs: The length comparison re-

sults for the SSs generated for S1 are given in Figure 2b.

Similar to before, the y axis denotes the ratio of the lengths

(length of an SS constructed by the Greedy method/ length

of an SS constructed by the Q-Synch algorithm); therefore,

the higher the value, the better the Q-Synch algorithm. The

results indicate that the Q-Synch algorithm constructs shorter

SSs (30% shorter on average) than the Greedy method. The

difference appears to plateau at around 30% and does not

change with the number of states and inputs. The result of

effect size analysis is given in Table II. The results also

suggest that the populations effect size is slightly different.

Regardless of the number of inputs and the number of states,

the median for the length of SSs generated by the Greedy

method is slightly higher than the median of the length of the

SSs generated by the Q-Synch algorithm.

The results conducted on S2 are given in Figure 3b. This

time the y axis denotes the averages of the ratio of the

lengths of SSs constructed by the parallel BF method to the

lengths of SSs constructed by the Q-Synch algorithm. Since

the parallel BF algorithm is a brute-force algorithm it finds

one of the shortest SS for each automaton from set S2. The

SSs generated by the Q-Synch algorithm are 38% longer than

the SSs generated by the parallel BF algorithm on average.

One promising observation is that the difference seems to

plateau at around 38% and does not grow with the number

of states or inputs. The Cohen’s d analysis also indicates that

the median of the lengths of the SSs constructed by the parallel

BF algorithm is smaller the median of the lengths of the SSs

constructed by the Q-Synch algorithm (Table V).

3) Memory requirements: The memory requirements

for automata in S1 are given in Figure 2c. The y

axis provides the ratio of the memory required by the

Greedy algorithm to the memory required by the Q-

Synch algorithm. We used WorkingSetSize property of

PROCESS_MEMORY_COUNTERS of Windows API to get the

memory information. The figure indicates that the Greedy

algorithm requested more memory than the Q-Synch algo-

rithm (30 times more memory on average) and the difference

increases with the number of states. When n = 512 the

Greedy algorithm requires 76 times more memory than the

proposed algorithm on average and when n = 1024 the

Greedy algorithm failed to generate SSs within the given

memory limit. Moreover, considering the effect size analysis

in Table III, we see the results of effect size analysis and

that the results are conclusive, the effect size between the two

populations is large.

The memory consumption comparison for the parallel BF

method and Q-Synch algorithm is given in Figure 3c. Again,

the y axis gives the ratio of the amount of memory required

by the parallel BF algorithm to the memory required by the
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Fig. 2: Comparison of the performances of the Greedy and the Q-Synch algorithms on dataset S1. Figure 2a summarises the ratio of the
time required to construct SSs, Figure 2b summaries the ratio of the lengths of the SSs, and Figure 2c summarises the ratio of memory
required to construct SSs.
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Fig. 3: Comparison of the performances of the parallel BF and the Q-Synch algorithms on dataset S2. Figure 3a summarises the ratio of
the time required to construct SSs, Figure 3b summaries the ratio of the lengths of the SSs, and Figure 3c summarises the ratio of memory
required to construct SSs.

Q-Synch algorithm. The results are similar, with the proposed

algorithm requiring less memory (18% on average) than the

parallel BF algorithm. Similar to before, we can observed

that the ratio increases as the number of states increases. We

again complement the analysis using the Cohen’s d metric

(Table VI). Results suggest that the effect size is large,

meaning that the populations are different.

n p Cohens’d

32
10 13.863
16 1.837
22 2.488

64
10 8.123
16 19.045
22 33.176

128
10 30.253
16 47.210
22 63.369

256
10 60.639
16 74.934
22 83.587

512
10 30.491
16 42.241
22 46.386

TABLE I: Cohens’d anal-

ysis on the amount of

time required by the al-

gorithms on S1.

n p Cohens’d

32
10 0.200
16 0.802
22 0.998

64
10 0.301
16 0.945
22 1.204

128
10 0.588
16 1.173
22 1.518

256
10 0.475
16 1.466
22 1.648

512
10 0.618
16 1.427
22 2.272

TABLE II: Cohens’d

analysis on the lengths

of SSs constructed by

the algorithms on S1.

n p Cohens’d

32
10 43.385
16 32.861
22 6.456

64
10 1394.707
16 33.283
22 1215.009

128
10 1599.230
16 452.060
22 481.147

256
10 1005.881
16 852.319
22 825.083

512
10 2307.331
16 2426.511
22 1901.071

TABLE III: Cohens’d

analysis on the memory

requirements of the

algorithms on S1.

4) Results on the benchmark automaton: Recall that the

ESM specification is partially specified. To conduct the exper-

iments we generated two versions of the ESM specification

(v1,v2). v1 was generated by completing the missing transi-

n p Cohens’d

32
10 0.870
16 0.751
22 1.221

64
10 0.887
16 1.125
22 1.511

TABLE IV: Cohens’d

analysis on the amount

of time required by the

algorithms on S2.

n p Cohens’d

32
10 -2.304
16 -2.586
22 -3.058

64
10 -2.393
16 -2.748
22 -2.866

TABLE V: Cohens’d

analysis on the lengths

of SSs constructed by

the algorithms on S2.

n p Cohens’d

32
10 89.739
16 105.909
22 115.326

64
10 132.892
16 235.355
22 260.244

TABLE VI: Cohens’d

analysis on the memory

requirements of the

algorithms on S2.

tions to obtain a completely specified model. Completing a

partial model is a well known approach in MBT [64], [72]. To

complete the missing transitions, we first introduced an error

state and for each state s and for each missing transition

labeled by an input x, we introduced a transition from s to the

error state with input x. The second version of ESM was

the original partial version. We then investigated the model and

discovered that the ESM model does not possess an SS. This

is because state pairs (s524, s721), (s70, s71), (s304, s3088),

(s344, s2933), and (s1080, s3258) are absorbing pairs. An

absorbing pair is a pair of states (si, sj) such that for each

input x ∈ Σ we have that δ(si, x) = sj and δ(sj , x) = si.

That is, no transitions leave these pairs. In order to be able

to use the automaton in the experiments, for each of these 10
states, we modified transitions labelled with a common input



symbol I21.1 such that they all merge at state s524.

After the above modifications were made, we provided v1
to the Greedy and the Q-Synch algorithms and provided v2
to the parallel BF and the Q-Synch algorithms as input. In

the experiments, the Greedy and the parallel BF algorithms

could not generate SSs. As in the case of randomly generated

automata, the Greedy algorithm failed to construct an SS due

to memory problem and similarly the parallel BF algorithm

could not finish computing an SS within one hour. However,

the Q-Synch algorithm did generate an SS for these specifi-

cations. The lengths of the SSs for v1 and v2 were 356 and

374 respectively and they reset the system to state s524 as

expected. The Q-Synch algorithm was able to generate the

sequences in 351 milliseconds and used 326 MBs of RAM on

average.

5) Scalability: As indicated earlier, we investigated the

scalability of the algorithms with respect to (i) the maximum

number of states, and (ii) amount of memory required to

construct SSs. In Figure 4, we provided the average times

required to construct SSs from S1 and S2 using the Q-Synch

algorithm. The proposed algorithm is able to construct SSs

from specifications with 131072 states and 22 inputs. Since

the Greedy and the parallel BF algorithms could only generate

SSs when n ≤ 512 and n ≤ 64, respectively, with respect to

number of states the proposed algorithm is 256 times more

scalable than the Greedy algorithm. Moreover, the Q-Synch

algorithm is 2048 times more scalable than the parallel BF

algorithm.

In Figure 5, we present the results for S1. Here, each

value is the mean memory required for the Greedy algorithm

(Figure 5a) to process the given size of automata in S1.

Similarly, Figure 5b gives the mean memory usage by the

implementation of the parallel BF algorithm for S2. Moreover,

in Figure 6, we give the mean memory required, in MB, by

the proposed algorithm to construct SSs (S1 in Figure 6a, and

S2 in Figure 6b).

The memory requirement of the proposed algorithm does

not grow as fast as that of the other algorithms. To investigate

this, as the Q-learning algorithm uses Q-nodes, we checked

the mean number of Q-nodes created while computing SSs.

In Figure 7, we provided these values (mean number of Q-

nodes constructed by the proposed algorithm): Figure 7a for

S1, and Figure 7b for S2. We observe that the Q-Synch

algorithm is very economic in the sense that it generates Q-

nodes tentatively. This is important and implies that the Q-

learning algorithm selects its inputs wisely. If this was not the

case, in each episode the agent would select different inputs

and introduce new nodes to the Q-graph.

V. DISCUSSIONS

In this section, in light of the conducted experiments, we

discuss the answers to the research questions. This is then

followed by an analysis of some threats to validity.

A. Answers to the research questions

RQ 1 Is our proposed Q-learning algorithm more efficient and scalable than the

state of the art algorithms?

Answer 1: The results of the experiments suggest that our

algorithm is more efficient and scalable than the most scalable

algorithms reported in the literature. However, we also noted

that the number of inputs and states have negative impact on

the scalability of the proposed method.

RQ 1.1 Is the growth of the execution time more modest in the Q-learning

algorithm?

Answer 1.1: The results indicate that the time requirement

of the proposed algorithm is modest and its growth rate is

much slower than the state of the art SS generation algorithms.

Results indicate that the proposed algorithm is 500/1000 times

faster than the fastest sequential/parallel algorithm on average.

RQ 1.2 How scalable can a Q-learning algorithm be? By fixing the amount

of memory and execution time, can a Q-learning algorithm generate SSs from

specifications that cannot be processed by the state of the art SS generation

algorithms?

Answer 1.2: The proposed algorithm can quickly generate

SSs while using less memory. The experimental results show

that the proposed method can process 256 times larger speci-

fications than the state of the art sequential algorithm. What is

more, the proposed algorithm is 2048 times more scalable than

the state of the art GPU based massively parallel algorithm.

Finally, the experimental results suggest that when there are

limited computation resources, the proposed algorithm can

generate SSs from real specifications where other algorithms

cannot.

RQ 1.3 How does the memory usage behaviour of the Q-learning algorithm compare

to state of the art SS generation algorithms?

Answer 1.3: The proposed algorithm requires neither a

product automaton nor a preset Q-table to be built; therefore,

the memory requirement of the proposed method grows much

slower than the state of the art sequential SS generation

method. Experimental study indicates that the Greedy algo-

rithm requires 30 times more memory than the proposed

algorithm on average. The parallel BF SS generation algorithm

on the other hand requires 18 times more memory than the

proposed algorithm.

RQ 2 Is our proposed Q-learning algorithm more effective in generating shorter

synchronising sequences for a larger class of system models?

Answer 2 The result of the experiments indicate that the

proposed algorithm is more effective in generating short SSs.

We compared the results with the Greedy algorithm and the

results suggested that the proposed algorithm finds SSs that

are 30% shorter on average.
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Fig. 4: The average amount of time spent to generate SSs from S1 (Figure 4a) and from S2 by using the Q-Synch algorithm

(Figure 4b).
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Fig. 5: The averages of memory requirement to generate SSs from
S1 using The Greedy Method (Figure 5a) and from S2 using the
parallel BF algorithm (Figure 5b).

RQ 2.1 Does the Q-learning algorithm generate shorter SSs (relative to execution

time and memory consumption) than the state of the art SS generation algorithms?

Answer 2.1: The proposed algorithm can generate shorter

SSs and consumes much less memory and time than the

fastest sequential SS generation algorithm does. Moreover the

proposed algorithm can compute SSs that are comparable in

length with the parallel BF SS generation algorithm.

RQ 2.2 Can the Q-learning algorithm be extended to mitigate the above-mentioned

generalisation problem?

Answer 2.2: We introduced a new Q-learning framework in

which we abandoned the idea of keeping the entire search

space in a preset form. Instead, we employ a method where the

search space grows as the agent interacts with the environment.

This allows us to represent the search space using a Q-

graph. We used this formalism in the classical Q-learning

algorithm. To our knowledge, this is new and experimental

studies showed that it allows agents to learn Q-values from

large environments.

Experimental evaluation indicates that using the Q-graph

formalism we can solve problems using a search space whose

size is a fraction of the size of the search space needed in

the classical Q-table setting. For example, as presented in

Figure 7a, and Figure 7b, our method needs 70 Q-nodes to

derive an SS from an automaton that has |S| = 131072 states

and |Σ| = 22 inputs on average. If we were using a tabular

setting, we would generate a table having pow(S) ∗ |Σ| =
(2131072 − 1) ∗ 22 cells which would not be possible.

B. Threats to validity

There are number of threats to the validity of the experi-

ments. The first threat is to generalisability which originates

from the fact that the experimental subjects may not be

representative of real systems. The use of randomly generated

automata clearly introduces such a threat and we addressed

this by creating two versions of the specification of Engine

Status Manager software, which has 3410 states and 77 inputs.

Importantly, the experimental results obtained with these real-

world models are similar to those obtained with randomly

generated automata.

There are also threats to internal validity and the possibility

that one or more of the implementations were incorrect. To

reduce this threat, we applied unit testing in the development

cycle. Moreover, when a sequence (ω) was generated by an

algorithm, we checked that the generated sequence was an SS.

To achieve this, when an SS ω was computed for an automaton

A, we randomly selected an initial state (s) of A and, starting

from s, we applied ω to find the reset state s′. Clearly s′

should be the state that the A reaches regardless of the initial

state from which ω is applied. To confirm this, for every state

s′′ of A, we checked that the application of ω in s′′ took A to

s′. Throughout the experiments we did not encounter a case

where the underlying automaton failed to reach the reset state.

Finally, there is potential to misinterpret the results obtained

from the experiments. To address this threat, we validated our

results by conducting Cohen’s d effect size analysis.

VI. CONCLUSION

Model based testing (MBT) is an increasingly important

type of software testing. Most MBT techniques, require some

method that brings the system under test (SUT) to a specific

initial state in order for a test sequence to be applied to the

SUT. This requirement can be fulfilled by a synchronising

sequence (SS) [38]. The length of an SS used affects the cost

of test execution and so there has been long standing interest in

the problem of finding a short SS [21]. However, the problem

of generating short SSs is known to be NP-hard.

The other motivation for the work described in this paper

comes from the fact that previous work has developed a variety



32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22

0

200

400

600

States/Inputs

M
e

m
o

ry
 (

M
B

s
)

(a)

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22 10 16 22

0

200

400

600

States/Inputs

M
e

m
o

ry
 (

M
B

s
)

(b)

Fig. 6: The averages of the memory requirement of the Q-Synch algorithm when generating SSs from S1 (Figure 6a) and from S2
(Figure 6b).
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Fig. 7: The averages of the number of Q-nodes generated while constructing SSs from S1 (a) and S2 (b) by using the Q-Synch

algorithm.

of successful automated test generation methods based on

Reinforcement Learning (RL) [7], [47], [52]. In this paper, we

proposed a new Q-learning algorithm to derive synchronising

sequences. The proposed method introduces the notion of Q-

graph which, instead of holding the entire search space in

memory, allows the search space to be expanded on-the-fly.

Experimental results indicate that the proposed method is more

efficient and effective in generating SSs than the state of the

art SS generation methods.

There are a number of lines of future work. First, we

will investigate the implications of the introduced Q-learning

framework on other state-exploration problems in model-based

testing and beyond. Instead of holding the entire search space

in a table, our Q-learning framework allows the search space

to be represented as a graph and therefore uses less memory

space, allowing learning from very large search spaces. This

study might lead to new RL algorithms. Besides, there may

be scope to investigate other RL approaches for deriving

SSs. Further potential directions include extensions of the

framework to probabilistic automata with unknown transition

probabilities. Moreover, it would be interesting to study the

effect of shorter SS on testing. Since the impact will depend

on the test technique used, a systematic evaluation of different

test methods should be carried out.

Finally, the experimental results suggest that as the number

of states and inputs of the automata grow, the time and memory

requirements of the method increase. Although this is unsur-

prising, we plan to explore approaches, such as parallelisation,

that might allow the technique to scale further.
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