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Abstract

Despite the increasing number of potential biomarkers identified in laboratories and reported in much literature, the adoption 

of biomarkers routinely available in clinical practice to inform treatment decisions is very limited. Reimbursement decisions 

for new health technologies are often informed by economic evaluations; however, economic evaluations of diagnostics/test-

ing technologies, such as companion biomarker tests, are far less frequently reported than drugs. Furthermore, few countries 

provide the health economic evaluation methods guide specific to co-dependent technologies such as companion diagnostics 

or precision medicines. Therefore, this paper aims to guide the process of the development of cost-effectiveness models of 

cancer biomarkers for targeted therapies, focusing on companion diagnostics. This tutorial paper provides practical guidance 

on how to conduct economic evaluations of cancer biomarkers and how to model the characteristics of the biomarker tests 

as part of the value for money of corresponding targeted therapies. This paper presents a brief introduction to the methods 

and data requirements, a step-by-step guide to constructing a health economic model of companion cancer biomarkers, and 

a discussion of issues that arise in their application to healthcare decision making. This practical guidance is provided in 

R, and worked examples are provided in this paper with R codes in the accompanying electronic supplementary material.
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1 Introduction

The optimization of treatment strategies has become possi-

ble based on the information provided by biomarkers before 

the administration of treatments, especially in oncology. 

This advance has raised expectations over biomarker-guided 

therapies in cancer that may improve patient outcomes while 

helping to achieve efficient resource allocation in health-

care [1–5]. However, the number of biomarkers successfully 

entering clinical routine practices is very low compared with 

the number of biomarkers published [6, 7]. One argues that 

the lack of consensus in methodological approaches and data 

requirements in economic evaluations of biomarkers might 

be one of the limiting factors on why there are as yet only a 

small number of biomarker tests routinely provided in clini-

cal practice [8–10]. Furthermore, few countries provide a 

guide to the methods of health economic evaluation spe-

cifically for co-dependent technologies; only two countries 

(Australia and Scotland) provide some high-level guidance 

on modeling the characteristics of companion testing tech-

nologies as part of assessing the value for money of co-

dependent technologies such as biomarker-guided therapies 

or companion diagnostics [11, 12]. It reflects the current 

reality that reimbursement agencies in many countries do 

not keep pace with the rapidly evolving health technolo-

gies such as ‘omics’-based therapies with the integration of 

companion biomarkers.

This tutorial paper aims to guide the process of the devel-

opment of cost-effectiveness models of companion cancer 

biomarkers for targeted therapies (specifically companion 

http://orcid.org/0000-0003-4746-2264
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Key Points for Decision makers 

No clear methods guidance exists on how to model com-

panion testing technologies as part of economic evalu-

ations of biomarker-guided therapies. Few countries 

provide the health economic evaluation methods guide 

specific to co-dependent technologies such as companion 

diagnostics and biomarker-guided therapies.

This tutorial article provides a step-by-step guide on 

constructing a health economic model to assess the value 

for money of biomarker-guided therapies. A core model 

was developed as part of the worked examples of this 

tutorial, using R. Users can readily adapt the core model, 

with appropriate adjustments to data inputs and model 

structure.

This tutorial can also inform users of relevant data inputs 

of companion biomarker tests required to incorporate 

in economic evaluations of biomarker-guided therapies 

before designing studies/trials for data collection.

We chose to use R (The R Foundation for Statistical Com-

puting, Vienna, Austria) in building this practical model 

because of the advantages of using R (or script-based pro-

gramming) for the development of economic models for 

health technology assessment (HTA), although these are 

only beginning to be recognized [15]. R is easily reproduc-

ible and flexible compared with Microsoft Excel® (Micro-

soft Corporation, Redmond, WA, USA).

2  Model Background and Description

Overall, several elements need to be defined in order to con-

struct the health economic model for health technologies. 

The decision problem of this tutorial is to assess the cost 

effectiveness of testing patients with a companion biomarker 

test and treating them according to their biomarker status, 

in comparison with comparator strategies such as treat 

all patients with the biomarker-guided therapy or treat all 

patients with usual treatment regardless of biomarker status 

without testing. The study design is a model-based cost-

effectiveness analysis using a hypothetical cohort of patients, 

and the study outcome to be calculated is incremental cost-

effectiveness ratio (ICER; cost per life-year [LY] and cost 

per quality-adjusted life-year [QALY] gained). The reference 

case applied in this worked example of the core model is 

summarized in Table 1. This core model is developed based 

on the findings and practical lessons acquired from previ-

ous studies on companion diagnostics or co-dependent tech-

nologies [8, 10, 16, 17]. Systematic reviews found that the 

characteristics of companion biomarker tests were not con-

sistently incorporated in economic evaluations of biomarker-

guided therapies and the structure of comparative analyses 

of the strategy arms was so varied that it may lead to a differ-

ent conclusion in terms of cost effectiveness [8, 10, 17]. The 

process of building a health economic model involves defin-

ing the structure of the model and data inputs. Its detailed 

descriptions are provided in the following subsections.

2.1  Strategy Arms to be Compared and Assessed

The intervention strategy of this core model is biomarker-

guided therapies guided by companion diagnostics that 

patients are tested prior to the administration of targeted 

therapies according to their biomarker status (Table 1). In 

terms of comparator strategy that this intervention strategy 

is being compared against, standard of care (SOC) is an 

appropriate comparator strategy that reflects the most rel-

evant alternative intervention(s) used in clinical practice [18, 

19]. However, previous literature reviews [8, 10] found that 

the existing literature of economic evaluations demonstrates 

that the choice of comparator strategies and the comparison 

structure is not consistently applied in economic evaluations 

diagnostics, classifying patients into responders and non-

responders for a specified therapeutic agent in treating 

patients with cancer). Companion biomarker tests (inter-

changeably, companion diagnostics) guide the safe and 

effective use of therapeutics with its approved label restrict-

ing drug access [13]. Although model conceptualization 

is the first key step in developing an appropriate model, 

it is beyond the scope of this tutorial paper. This paper is 

intended for those who chose a state-transition model as 

their appropriate model, based on their decision problems to 

be represented in the model. For those who are not yet clear 

what model types are appropriate for their decision prob-

lems, there is a useful paper providing a series of consensus-

based best practices for the process of model conceptualiza-

tion [14]. For example, when the decision problem requires 

modeling the effect of patient interaction (e.g. the treatment 

effect on disease spread), this core model is not applica-

ble. As explained by Roberts et al. [14], this state-transition 

model is appropriate in instances where the disease is broken 

into distinct health states, as in cancer.

Users can adapt this core model to assess their biomarker-

guided therapies by making local adaptations in data require-

ments and methodological approaches from the perspective 

of their specific payers and country settings. The example 

used in this tutorial paper has three health states, progres-

sion-free survival (PFS), progressive disease (PD), and dead. 

This analysis is performed for a hypothetical cohort of can-

cer patients who are not eligible for tumor excision surgery.
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of biomarker-guided therapies. For example, SOC (e.g. 

usual therapy without biomarker testing) was not chosen 

as a comparator strategy in some evaluations. Instead, they 

compared biomarker-guided therapy with biomarker testing 

versus without the testing, while no SOC was considered 

in the evaluations. Therefore, based on the study findings 

from previous studies [8, 10, 16], we found that assessing 

the biomarker-guided therapy against two comparator strate-

gies was the most suitable structure for strategy comparison. 

Therefore, we constructed three strategies as default com-

parisons in this core model: (1) patients being tested with 

a companion biomarker and treated with the corresponding 

targeted therapy according to their biomarker testing result 

(hereinafter referred to as the test–treat strategy, i.e. ‘TT 

arm’); (2) patients not tested and treated with SOC (here-

inafter referred to as the usual care strategy, i.e. ‘all-UC 

arm’); and (3) patients not tested and treated with the cor-

responding targeted therapy (hereinafter referred to as the 

targeted care strategy, i.e. ‘all-TC arm’). These arms can be 

compared with one another depending on the decision prob-

lem, and the users are expected to adapt this core model for 

their specific research question. This construct of compara-

tive strategy arms is also line with what has been suggested 

by previous studies [17, 20]. The detailed schematic of the 

comparative structure of strategy arms is depicted in Fig. 1.

2.2  Model Structure

A discrete-time Markov cohort model is constructed to 

record the transition between health states experienced by a 

hypothetical cohort of patients eligible to be treated either 

with targeted care (biomarker-guided therapy) or usual 

care (non-guided therapy) in oncology treatments. Health-

related quality of life (HRQoL) weights and a cost pertinent 

to each of these health states are assigned. The model has 

three mutually exclusive health states: PFS, PD, and dead. 

As depicted in Fig. 2, the arrows indicate the flow of indi-

vidual patients in every model cycle. Transition from PD to 

PFS is assumed to be impossible. The transition probability 

can be calculated using the formula suggested by Briggs 

et al. [21]. Given that health states are mutually exclusive, 

the transition probabilities sum to one. A Markov model 

of disease progression is presented in Fig. 2. The detailed 

model schematic of decision tree linking to the health state 

transitions is provided in Fig. 1, with ‘M’ indicating a move 

into the Markov model. Once patients are allocated to their 

respective decision branch, they enter a Markov model based 

on their assigned transition probabilities. Patients assigned 

to ‘treat-all’ strategies (either with new therapy or with usual 

therapy) will enter the Markov model without being bio-

marker tested, and move to respective health states (PFS, 

PD, dead) assigned by the given transition probabilities. On 

the other hand, patients assigned to the ‘test–treat’ strategy 

arm will be either provided new therapy or usual therapy 

according to biomarker status, and will then enter a Markov 

model and be assigned to a respective health state followed 

by transition probabilities. A lifetime horizon is applied.

2.3  Data Requirements and Model Inputs

Model inputs are detailed in Table 2. These data inputs 

are just exemplary figures to guide the process of develop-

ing an economic model for biomarker-guided therapies, 

developed based on the previous study findings [8, 10, 16]. 

For example, we have incorporated all data inputs relevant 

to the key characteristics of companion biomarker tests 

that are often ignored in existing economic evaluations of 

biomarker-guided therapies such as clinical utility, patient 

preferences (disutility or utility of biomarker testing), 

frequency/prevalence of biomarker status, and diagnostic 

Table 1 Summary of the reference case used in this guide

Element Reference case

Intervention strategy Test–treat patients according to biomarker status, using companion diagnostics for targeted therapies

Choice of treatment alternative (compara-

tor strategies)

The comparator strategy that the new biomarker-guided therapy will most likely replace. Thus, in 

this core model, two comparator strategies were employed: (1) Treat all patients with biomarker-

guided therapy regardless of biomarker status; (2) Treat all patients with usual treatment regard-

less of biomarker status

Health state Three health states: progression-free survival (PFS), progressed disease (PD) and dead

Viewpoint of the analysis Health system perspective

Time horizon Lifetime

Analysis model Cost-utility analysis

Health outcome Quality-adjusted life-year

Method for the measurement and valua-

tion of health effects

Generic measures of health instruments

Discounting rate 3.5%

Uncertainty Probabilistic sensitivity analysis; with an option of deterministic sensitivity analysis
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accuracy, including false negative and false positive. A 

third-party payer perspective (e.g. the National Health 

Service) is employed in developing the model, and thus 

any non-medical costs (e.g. lost productivity costs) are 

beyond the scope of this core modeling practice. Health 

state costs are defined per model cycle, including drug 

costs and biomarker testing costs (Table 2). HRQoL (e.g. 

EQ-5D) data inputs are also provided in Table 2. In prac-

tice, HRQoL data are often obtained along with clinical 

trials or by separate literature reviews (e.g. systematic 

literature review and/or meta-analysis); however, for the 

development of this practical guide, dummy estimates on 

utility values are used in this core model, although these 

data are obtained by clinical trials or separate literature 

reviews in practice. It is recommended that all relevant 

data from difference sources (e.g. clinical trials) are sys-

tematically synthesized and incorporated in economic 

evaluations [22, 23]. Biomarker-related parameters such as 

biomarker testing disutility value, performance accuracy 

(sensitivity and specificity), and biomarker prevalence are 

also shown in Table 2. Companion diagnostic technology 

for cancer patients usually require collecting a biosample 

for analysis, and this gives rise to the existence of pro-

cess utility (such as reassurance or information) [24–26]. 

Patients might express different preferences by being 

informed of the process of interventions or diagnostics; 

for example, patients may prefer diagnostic A because it 

is more convenient or informative to them than diagnostic 

B, even though there is no definite difference in health 

outcomes. Brennan and Dixon supported the existence of 

process utility and found different approaches being used 

to detect and measure it [27]. Given the existence of pro-

cess utility, in this core model, testing disutility was used 

under the assumption that undergoing biomarker testing 

might cause some discomfort to patients. However, if this 

is not the case (e.g. testing bringing not discomfort but 

convenience to patients), the utility value of testing should 

be considered when adapting this core model. In addition, 

transition probabilities, drug efficacy, and discounting rate 

are also provided. All-cause mortality was not considered 

in this core model, however it should be considered when 

adapting this core model for local adaptations of country-

specific settings. In other words, modellers are advised to 

incorporate country-specific epidemiological data, such 

as all-cause mortality, into the core model for their local 

adaptations if applicable.

2.4  Uncertainty Analysis

Uncertainty analysis is a standard practice in modeling 

studies to assess the uncertainties around parameters 

and assumptions used in the model. Both deterministic 

sensitivity analyses (DSA) and probabilistic sensitivity 

analyses (PSA) are performed in this practical model in 

order to assess the impact of parameter uncertainty on the 

cost-effectiveness results. DSA is performed to test the 

sensitivity of the results of cost effectiveness to specific 

parameter values. As for PSA, all parameters are simul-

taneously tested for uncertainty while randomly sampling 

Fig. 1  Model schematic. ‘M’ 

indicates a move into the Model 

in Fig. 2. PFS progression-free 

survival, PD progressed disease, 

M Markov model

PFS

PD Dead

Fig. 2  Health transition diagram. PFS progression-free survival, PD 

progressed disease
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the parameter values from a priori-defined probability 

distributions [28].

3  Step‑by‑Step Guide

Figure 3 is an overall picture of the steps involved to perform 

cost-effectiveness analysis of companion biomarkers for tar-

geted therapies in R. Note that it is a general guidance and 

thus some specific adjustments might be required depending 

on the country-specific clinical settings or country-specific 

HTA requirements. It should also be decision problem spe-

cific. An explanation of each step is provided. More detailed 

R codes are provided in electronic supplementary material 

(ESM) 1–7. R codes can be self-explanatory, with some 

notes written in italics with the # symbol, which can be use-

ful when the codes are copied and pasted in R; however, a 

basic understanding of R is required in order to follow this 

guide. This modeling guide is not intended for complete R 

beginners. As a basic note, the <- symbol is to assign values 

in R.

3.1  Step 1: Create Transition Probability Matrices

This step is to prepare the transition probability matrix per 

strategy arm. Before this step, it is necessary to first decide 

which model is suitable, such as a Markov or semi-Markov 

model, etc., as shown in Fig. 1. The core model presented 

here is constructed based on a state-transition model. In 

order to construct the probability matrices, parameter val-

ues exampled in Table 2 need to be assigned to R first. It 

can then create the transition matrix of each health state 

per strategy arm. Refer to ESM 1 for the entire R code for 

Step 1.

Table 2  Parameter values for the model development

PFS progression-free survival, PD progressed disease

Variable name coded in R Value Description

Costs

cPFS 500 State cost of one cycle in the progression-free disease state

cPD 3000 State cost of one cycle in the progressive disease state

cDrug 1000 State cost of drug for one cycle

cTest 100 State cost of biomarker testing for one cycle

cDead 0 State cost of one cycle in the death

Quality-of-life adjustments

uPFS.UC 0.75 Quality-of-life weight for one cycle in PFS for patients treated with usual care

uPD.UC 0.65 Quality-of-life weight for one cycle in PD for patients treated with usual care

uPFS.TC 0.80 Quality-of-life weight for one cycle in PFS for patients treated with targeted care

uPD.TC 0.70 Quality-of-life weight for one cycle in PD for patients treated with targeted care

Biomarker-related parameters

disutility.Test 0.05 Disutility value of testing a biomarker status

pBiomarker 0.74 Biomarker prevalence/frequency

tp 0.285 Biomarker testing accuracy (true positive)

fp 0.245 Biomarker testing accuracy (false positive)

tn 0.015 Biomarker testing accuracy (true negative)

fn 0.455 Biomarker testing accuracy (false negative)

Transition probabilities

pPFS2PD 0.2 Probability of entering the PD state

pPD2D 0.25 Probability of dying from PD

pPFS2D 0.05 Probability of dying from PFS

pPD2PFS 0 Recovery from PD to PFS is not permitted in the model

Other parameters

eff 0.25 Targeted drug reduces the likelihood of being progressed by 25% Relative risk 

of disease progression from using the drug

Targeted drug is discontinued upon progression

rDiscount 0.035 Discount rate for outcomes and costs 3.5%
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3.2  Step 2: Create Cost and Utility Transition 
Matrices

Similarly, the transition matrices for cost and utility values 

can be prepared using the Matrix command in R. This step 

is similar to Step 1 in a sense that model inputs are defined 

and vectored into the R model. The detailed R code for Step 

2 is provided in ESM 2.

3.3  Step 3: Building a Markov Model for the ‘All 
Usual Care’ Arm

Based on the transition matrices set up in Step 1, a Markov 

trace with a hypothetical cohort of patients, summing up 

over time, needs to be constructed. In this stage, all different 

scenarios of treatment pathways by different strategy and 

testing results should be constructed, as depicted in Fig. 1 

and Fig. 2. Thus, biomarker-related data need to be defined 

and vectored into the R model including biomarker testing 

accuracy and biomarker prevalence. Overall, 1000 cycles 

were assigned to capture the lifetime horizon of all patients 

entered in the model, with one cycle being equivalent to 

1 month in this core model. In other words, 1000 cycles are 

equivalent to 83.33 years, which is long enough to simulate 

the model in a lifetime horizon. Depending on the progres-

sion of the disease of interest, the cycle can be shortened 

or lengthened. These model settings can be easily altered 

according to local adaptation requirements. The R code for 

this Step 3 is detailed in ESM 3.

3.4  Step 4: Adapting the Model for the ‘All Targeted 
Care’ and ‘Test–Treat’ Arms

This stage is relatively simple. The R code used for the 

all-UC arm in Step 3 can be easily modified and adapted 

for both the all-TC and TT arms. This feature is one of the 

advantages of using a script-based program when build-

ing health economic models. It can be easily transformed 

and adapted for other strategy arms with a relatively small 

amount of time and effort dedicated. The cohort trace of 

patients in the all-TC arm needs to be separated into two 

branches depending on their actual biomarker status, 

because all patients will be treated with biomarker-guided 

therapy; however, some patients might not be biomarker-

positive and thus the targeted therapy will not be effective 

for these patients. The cohort trace for patients in the TT 

arm needs to be separately constructed for patients who truly 

tested positive, falsely tested positive, truly tested negative, 

or falsely tested negative. Cohort simulation commences 

with a hypothetical cohort of patients (in this core model, it 

is set at 1000, which means a hypothetical cohort of 1000 

patients started the model). These patients then move or 

stay in the possible health state according to the transition 

probabilities defined by different treatment scenarios of the 

strategy arms. The simulation tracks the cohort from one 

cycle to the next following the transition probabilities. Refer 

to ESM 4 for the detailed R code for Step 4.

3.5  Step 5: Computing Epidemiological Outcomes

Epidemiological outcomes of different health states can be 

computed and plotted in a graph using the R code written 

in ESM 5. Respective cohort traces per strategy arm can be 

plotted as survival curves. For the all-TC and TT arms, the 

cohort transition matrices need to be merged before plotting 

the survival curves. Overall survival (OS) probability can be 

separately computed and plotted in the OS curve according 

to different strategy arms. Life expectancy can be calculated 

by summing the probability of OS over time.

3.6  Step 6. Estimating the Base‑Case Cost 
Effectiveness

We are now ready to perform the analysis and estimate the 

expected values and cost effectiveness. In R, the expected 

values of each strategy can be calculated by processing the 

multiplication of the Markov trace produced in Steps 3 and 

4 and the transition matrices of the cost and utility inputs 

Vectoring model inputs   

Construc ng transi n matrices (probability, costs, u lity values) 

Building a Markov model for all UC strategy arm    

Adap ng all-UC model for all-TC and Test-Treat arm respec ly    

Compu ng epidemiological outcomes    

Es ma ng the basecase cost-effec ness     

Performing sensi ty analyses     

Choice of modelling approach 

Fig. 3  Algorithm steps in performing cost-effectiveness analysis for 

cancer biomarkers for targeted therapies in R. UC usual care, TC tar-

geted care
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produced in Step 2. The R code for Step 6 is provided in 

ESM 6, with self-explanatory comments shown in italics. 

The example base-case ICER calculated for this exercise is 

also provided in ESM 6.

3.7  Step 7: Performing Sensitivity Analyses

Uncertainty analysis is a standard practice in modeling 

studies to assess the uncertainties around parameters and 

assumptions used in the model. ESM 7 explains how to 

perform PSA using R as an integral part of the uncertainty 

analysis of cancer biomarkers for targeted therapies in addi-

tion to the detailed R code. In R, the model can be run by the 

function defined by the modeler (R is known to be extremely 

flexible in this regard) and we define all parameters in the 

run_model function. DSA modeling is similar to that of PSA 

(refer to the supplementary R code for DSA in ESM 7).

In addition to this parameter uncertainty, an analysis of 

structural uncertainty can be performed by adapting this 

core model. For example, the structure of health states can 

be readily altered considering the natural course of disease 

progression of interest for local adaptation.

4  Discussion

This paper introduced a core model that can be adapt-

able for users’ analysis of their specific datasets and 

requirements in assessing the value of cancer biomark-

ers. This guide demonstrated the model structure of 

strategy comparisons and data requirements relevant to 

the characteristics of companion biomarker testing that 

require incorporation into the health economic modeling 

of biomarker-targeted therapies. Users can vector in their 

specific data inputs instead of dummy variables used in 

the worked example (Steps 1, 2 and 3). In addition, those 

wanting to make any structural changes, such as health 

states or strategy arms, can readily replicate the process 

of creating the transition matrices by modifying (adding/

removing) the matrices of transition probability, cost, and 

utility values in Steps 1–2. Nevertheless, we expect the 

user to have a prior understanding of, and experience with, 

R coding in order to understand this tutorial and adapt 

this core model for their specific local model. For any 

beginners using R, there are useful references to familiar-

ize themselves first [29, 30]. For those who need a more 

generic understanding on health economic modeling in R 

that is non-specific to certain health technologies, such as 

companion biomarker tests as focused on in this tutorial, 

a tutorial paper is available that they might like to read 

first [31].

As found in a previous study [10], many existing eco-

nomic evaluations of biomarker-guided therapies have 

ignored several key characteristics of companion bio-

markers when assessing the value for money of biomarker-

guided therapies. They found that the most frequently 

ignored areas were patient preferences, clinical utility, 

and prevalence of biomarker status, while the costs of 

biomarker testing were considered. For example, it can 

be very difficult to generate data inputs on the clinical 

value of companion biomarker tests if the biomarker test 

is developed in silos without being embedded in the clini-

cal trials of its corresponding drug. This tutorial informs 

readers on what key data inputs relevant to companion 

biomarker tests are required to be incorporated and tested 

for uncertainty in economic evaluations of the guided 

therapies.

Furthermore, given that a single clinical study is 

unlikely to include all relevant scenarios of the TT, all-

UC and all-TT arms, data synthesis from multiple sources 

might be more challenging for co-dependent technolo-

gies (i.e. biomarker-guided therapies) than traditional 

health technologies. Nevertheless, it is widely known that 

all relevant data from different sources of clinical trials 

should be systematically synthesized and incorporated in 

economic evaluations. When direct evidence (i.e. head-to-

head trials) is lacking, network meta-analysis or indirect 

treatment comparison methods are useful to synthesize 

the estimates of clinical trials. These methods of data 

synthesis for economic evaluations are beyond the scope 

of this tutorial and have been described extensively else-

where, including uncertainty analyses around the impact 

of synthesis-based estimates on cost effectiveness [18, 22, 

23, 32, 33].

This paper has also provided a step-by-step guide to car-

rying out cost-effectiveness analysis for biomarker-guided 

therapies in the state-transition modeling framework, and 

has provided R codes in vectoring data inputs, running the 

simulations, performing survival analyses, calculating base-

case mean LYs/QALYs and performing sensitivity analyses. 

The user can adapt this core model to develop their own 

local model applied to their specific cancer biomarker test-

ing technology and specific jurisdiction of reimbursement 

decision making. Alternatively, test developers can assess 

the potential value for money of their candidate cancer bio-

marker tests at an early stage of development by incorporat-

ing the pertinent model inputs with necessary adaptations 

and modifications to this core model. For example, the user 

can adapt the structure of health states, the strategy arms to 

be compared against one another, transition probabilities, 

biomarker-specific characteristics, and cost and utility val-

ues, etc. However, for those who need to reconstruct time-

to-event data from published Kaplan–Meier survival curves 

as part of building health economic models in R, two useful 
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tutorial papers providing algorithms are available for the 

user to use [34, 35].

There are a couple of limitations that readers might wish 

to take into consideration when adapting this model for their 

local models. First, this core model is constructed based on a 

state-transition model and therefore, those wishing to build 

a partitioned survival model (PSM) may require more time 

to adapt. However, PSM does not require as many of the 

modeling techniques as used in the state-transition model. 

Second, the user is required to have some understanding of 

the concepts of economic evaluations and HTA, as well as 

knowledge of programing in R. Therefore, there is still a 

programing language barrier for test developers to adapt or 

apply this core model to their data and requirements if the 

user is not familiar with cost-effectiveness analysis and R 

coding. It requires some intermediate level of R program-

ing/coding and a conceptual understanding of economic 

evaluations of health technologies. Third, guiding on how 

to validate a model was not covered by this guide because 

this study intends to provide a step-by-step guide on how to 

build a model of co-dependent technologies rather than pro-

viding a guide to the validation of a specific model. Further-

more, this core model is built using ‘exemplary’ data inputs 

(not real dataset) and thus, as Eddy et al. suggested in the 

model validation [36], the concept of validity should apply 

to particular applications, not to the model itself. Therefore, 

modellers wishing to adapt this core model to their local 

settings with a specific dataset (e.g. ‘real’ data inputs from 

clinical trials) and assumptions applied to their specific deci-

sion problems, the process of model validation should be 

accompanied in their local adaptation model. Several guid-

ances and checklists have been published on good practices 

of model validation [36–38].

A couple of areas can be recommended for further devel-

opment of this core model. First, although the R codes pro-

vided in this guide are verified by running the model in R, 

it was not tested to what extent this model can be applicable 

to actual datasets. By applying this core model to the pub-

lished economic evaluations of biomarker-guided therapies, 

the generalizability of this model can be further validated. 

By doing so might give more insights into how and under 

what circumstances this core model is adaptable, difficult 

to adapt, or unadaptable at all. Second, this core model can 

be further developed to make it easily accessible to those 

unfamiliar with R. For example, the model can be further 

developed to user-friendly, interface, web-based applications 

using the Shiny R package, as undertaken by Strong et al. in 

assessing the value of information [39].

Supplementary Information The online version contains supplemen-
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