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Infectious diseases, including those of viral, bacterial, fungal, and parasitic origin are

often characterized by focal inflammation occurring in one or more distinct tissues.

Tissue-specific outcomes of infection are also evident in many infectious diseases,

suggesting that the local microenvironment may instruct complex and diverse innate

and adaptive cellular responses resulting in locally distinct molecular signatures. In

turn, these molecular signatures may both drive and be responsive to local metabolic

changes in immune as well as non-immune cells, ultimately shaping the outcome

of infection. Given the spatial complexity of immune and inflammatory responses

during infection, it is evident that understanding the spatial organization of transcripts,

proteins, lipids, and metabolites is pivotal to delineating the underlying regulation of

local immunity. Molecular imaging techniques like mass spectrometry imaging and

spatially resolved, highly multiplexed immunohistochemistry and transcriptomics can

define detailed metabolic signatures at the microenvironmental level. Moreover, a

successful complementation of these two imaging techniques would allow multi-omics

analyses of inflammatory microenvironments to facilitate understanding of disease

pathogenesis and identify novel targets for therapeutic intervention. Here, we describe

strategies for downstream data analysis of spatially resolved multi-omics data and,

using leishmaniasis as an exemplar, describe how such analysis can be applied in a

disease-specific context.

Keywords: immunometabolism, infectious disease, inflammation, granulomas, mass spectrometry imaging,

spatial transcriptomics, multi-omics, leishmaniasis

INTRODUCTION

Metabolism reflects an intrinsically complex interplay between multiple molecular and cellular
networks. These dynamic networks underlie essential biological functions such as inflammatory
responses, tissue degeneration, and regeneration. Notably, metabolism has an intimate relationship
with immune cell activation and underpins many of the well-defined activation and differentiation
states associated with cells of the innate and acquired immune response. For example, studies of
macrophage polarization under the influence of LPS and interferon-γ (IFN-γ) or IL-4 [generating
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M1 and M2 phenotypes, respectively (Murray et al., 2014)] have
revealed their strong association with glycolysis (van den Bossche
et al., 2012; Tannahill et al., 2013; Palsson-McDermott et al., 2015;
Millet et al., 2016; Shirai et al., 2016; Xie et al., 2016) and oxidative
phosphorylation (Vats et al., 2006; Van den Bossche et al., 2016),
respectively. Integrating in vitro metabolic and transcriptional
data on macrophage polarization has revealed howmetabolism is
affected between polar macrophage activation (Jha et al., 2015).
Similarly, differentiation of CD4+ T cell effector function is
associated with the regulation of aerobic glycolysis (Chang et al.,
2013). Whilst in vitro studies provide clear proof of concept and
underscore a link between metabolism and immune function,
they may fail to sufficiently account for the more complex and
dynamic interactions that occur in vivo in the context of acute
and chronic inflammatory microenvironments.

Inflammation reflects the coordinated aggregation of
immune cells in response to tissue injury, infection, or other
insults that disrupt tissue homeostasis. Inflammatory foci
typically contain a wide variety of myeloid and lymphoid
cell subsets, with composition varying in a dynamic manner
from initiation to resolution. The biology of inflammation has
for many years been studied using whole tissue approaches
to evaluate gene and protein expression [e.g., whole tissue
transcriptomics] or through the use of techniques that require
tissue dissociation [e.g., flow cytometry (Leung et al., 1985)
or scRNA-seq (Satija and Shalek, 2014)]. Additionally, the
advent of dual RNA sequencing of both the host and pathogen
has provided further insights into metabolic divergence of
different macrophage lineages and pathogen fitness amongst
these lineages during infection-associated inflammation
(Pisu et al., 2020). Nevertheless, it is becoming increasingly
appreciated that a full understanding of the processes governing
inflammation requires a spatial context and this is likely to be
equally true for studies aiming to delineate and understand
the underlying metabolic signatures of immune cells at
inflammatory sites.

Analysis of the molecular composition of a tissue is pivotal
in understanding the basis of a broad spectrum of disease
mechanisms and to determine appropriate diagnostics (Norris
and Caprioli, 2013; Aichler and Walch, 2015). In clinical
research and diagnostics, medical imaging of tissues is an
indispensable technique. Classical hematoxylin and eosin (H&E)
staining of tissues reveals tissue histology whereas medical
images generated by magnetic resonance imaging (MRI) or
computed tomography (CT) reveal tissue morphology and
anatomy and enable monitoring of dynamic organ functions in
health and disease using high-resolution tomographic images
(Porta Siegel et al., 2018).

Technological advances have enabled multi-modal and multi-
omics analyses to study the intrinsic interplay of genes, proteins,
lipids, and metabolites in single cells which was recognized by
Nature as the method of the year 2019 (Single-cell multimodal
omics, 2020). Complementing these multi-modal and multi-
omics methodologies to investigate immunometabolism is
promising, yet they come with a variety of challenges. Two main
challenges, which is reviewed elsewhere (Artyomov and van den
Bossche, 2020; Lercher et al., 2020; Mazumdar et al., 2020), are to

preserve the spatial context of biomolecules and the downstream
analysis of the different omes.

Here, we provide a perspective on how multi-modal label-
free molecular imaging techniques such as mass spectrometry
imaging (MSI) combined with spatially resolved highly
multiplexed protein and transcriptome mapping can be
used in concert to understand the progression of infectious
diseases and delineate inflammatory microenvironments.
We discuss strategies for downstream data integration and
analysis and describe a case study of research on granulomatous
inflammation associated with experimental leishmaniasis as a
possible exemplar of how research into inflammatory diseases of
infectious (as well as non-infectious) origin can benefit from this
approach.

Mass Spectrometry Imaging
Mass spectrometry (MS) is a technique that measures the mass
of atoms and molecules (Chughtai and Heeren, 2010). The
specificity of MS allows structural analysis of small and large
biomolecules, like metabolites, lipids, or large protein complexes,
resulting in unambiguous molecular compound identifications
(McDonnell and Heeren, 2007). In addition, rapid advancements
of MS-related methodologies have increased its use in a wide
variety of (bio)medical sciences, like infectious diseases (Seng
et al., 2010; Zheng et al., 2010), oncology (Ifa and Eberlin, 2016;
Takats et al., 2017; Mas et al., 2020), pharmacology (Jove et al.,
2019), personalized medicine (Chen et al., 2012; Geyer et al.,
2016), and more.

Initially described by Caprioli et al. (1997), MSI translates the
spatial molecular context of tissues into improved understanding
of biological processes underlying health and disease (Chughtai
and Heeren, 2011; Porta Siegel et al., 2018). MSI uses an
ionization technique that generates charged molecules (ions)
from which the mass-to-charge ratios of ions can be determined
(Chughtai and Heeren, 2010). Several ionization techniques
exist like matrix-assisted laser desorption/ionization (MALDI),
desorption electrospray ionization (DESI), and secondary ion
mass spectrometry (SIMS) as well as different types of mass
analyzers. It is important to recognize that the combination
of ionization technique and type of mass analyzer depicts
the sensitivity, specificity, and overall spatial resolution of an
MSI workflow. In addition, the biomolecule class (i.e., protein,
lipid, or metabolite) spatially analyzed in MSI is dependent on
sample pre-treatment.

Mass spectrometry imaging defines the molecular
composition at the tissue level and even at cellular level, resulting
in improved understanding of the tissue microenvironment and
can concomitantly identify specific molecular profiles of disease
(Ščupáková et al., 2020). Moreover, it facilitates the translation
of molecular images to the pathology of tissues (Norris and
Caprioli, 2013; Schwamborn et al., 2017). This translation to
pathology is enabled by the ability to align histological images,
e.g., following H&E staining or immunohistochemistry (IHC),
with MSI-generated images. As described earlier (Deutskens
et al., 2011), post MALDI-MSI allows classical histological
staining and microscopic evaluation of the same tissue section.
Such combination of histology and MSI enables the study of
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molecular patterns associated with specific cell types or tissue
structures (Porta Siegel et al., 2018).

A recent development combined MSI with laser
microdissection and sensitive liquid chromatography-mass
spectrometry (LC-MS) based proteomics. This application
uses MSI-guided evaluation of (micro) regions of interest
(ROIs) followed by targeted extraction of cellular material
and conventional LC-MS/MS proteomics. As a result,
MSI-guided spatial omics allows for a more in-depth
molecular characterization of a tissue microenvironment
(Dewez et al., 2020).

Spatially Resolved, Highly Multiplexed
Immunohistochemistry, and
Transcriptomics
Spatial transcriptomic and multiplexed IHC can provide a
transcriptional and functional snapshot of an inflammatory
microenvironment. Profiling such in situ microenvironments
can be achieved by a variety of techniques. McCaffrey et al.
(2020) used multiplexed ion beam imaging by time of flight
(MIBI-TOF) to spatially map and comprehensively delineate
lung granulomas in patients with tuberculosis into cellular
niches. Using individually metal isotope tagged antibodies and
imaging based on SIMS, they found that the innermost core
of granulomas is rich in myeloid suppressor cells exhibiting
high expression of immunomodulatory immune checkpoint
molecules IDO-1 and PD-L1 (McCaffrey et al., 2020). The
10× Genomics Visium platform that allows transcriptomic
mapping of whole tissue sections using spatially bar-coded
capture spots was used in combination with scRNA-seq to
delineate granuloma architecture and show that non-immune
cells can also produce antimicrobial factors that limit infection
in leprosy (Ma et al., 2021). In another study (Carow et al.,
2019) in situ mRNA sequencing was used to study murine
lung granuloma progression over time. Other platforms like
Hyperion that marry CyTOF technology and imaging mass
cytometry (IMC) have recently been used to spatially map
immune signatures and study lung pathology in COVID-
19 (Zhang et al., 2020; Butler et al., 2021; Chevrier et al.,
2021). Another key technology CODEX uses iterative cycles of
imaging and removal of reporters that bind to complementary
barcodes on antibodies used to stain tissue sections. It has
been exploited extensively in cancer research (Parra et al., 2019;
Schürch et al., 2020) and may be used to probe immune
microenvironments.

While the above-named technologies commonly scan an
entire tissue section, the Nanostring GeoMx Digital Spatial
Profiler (DSP) platform (Merritt et al., 2020) allows more precise
selection of user-defined regions of interest by using a unique
method of patterned UV light (Merritt et al., 2020). Further,
it allows segmentation analysis based on morphology markers
for profiling cell types of particular interest. A typical workflow
involves staining tissue sections with oligonucleotide tagged
antibodies or RNA probes, histological, or fluorescently labeled
image guided ROI selection, UV cleavage of tags specifically from
the whole ROI or from a segment within an ROI, collection,

and finally, barcode counting in the nCounter system (or next
gen sequencing). This ability to select biologically relevant
regions becomes particularly relevant when DSP is used to
assess specific microenvironments, as applied recently in studies
of cutaneous leishmaniasis (Dey et al., 2021) and COVID-19
pathology (Margaroli et al., 2021; Rendeiro et al., 2021).

DOWNSTREAM ANALYSIS OF
MULTI-OMICS DATA

Granulomas are mononuclear cell-rich inflammatory foci formed
around “indigestible” materials or pathogens and Leishmania
donovani infection provides one of the best studied examples
of experimental hepatic granuloma formation (Murray, 2001;
Kaye and Beattie, 2016). Further, a transcriptional network
enriched in genes for lipid metabolism were identified in
uninfected bystander Kupffer cells that are responsible for
parasite survival (Beattie et al., 2013). Interestingly, L. brazililensis
was shown to affect host cell lipid metabolism (Alves-Ferreira
et al., 2020). We show here as an example, a pipeline
for the analysis of liver granuloma development following
experimental visceral leishmaniasis and their associated lipid
profile (using MSI) to help strategize therapeutic approaches.
These methods are, however, generally applicable to immune
microenvironments (Figure 1).

Using GeoMx DSP, ROIs can be created on granulomas using
established morphological stains. Next, to identify compositional
differences between the granuloma microenvironment and the
surrounding parenchymal tissue can be identified using MSI-
guided spatial omics. As an exemplar, and in line with our
proposed workflow depicted in Figure 1, we show preliminary
results on aberrant spatially resolved protein and lipid profiles
from granulomas in L. donovani-infected mice using DSP and
MSI (Figure 2). High-level (low-plex) exploratory analysis of
cellular composition of granulomas using targeted spatial protein
profiling and MSI on serial sections can identify heterogeneity
in ROI (Figure 2.1) composition and metabolic programming
(Figures 1.1, 1.2 for strategy and Figure 2.2 as exemplary
data). Such heterogeneity can then be used to explore more
mechanistic questions using further iterations of targeted DSP
and MSI, e.g., involving cell-specific segmentation (Merritt et al.,
2020) in previously characterized ROIs and/or by casting a
wider net to delineate heterogeneity at whole transcriptome
resolution.

The structure of formatted omics data is often an Xij matrix
where the i = r1, r2, r3, . . ., rm representing the abstraction level of
the measured object (e.g., individuals, single-cells, or ROIs) and
j = j1, j2, j3, . . ., jn representing the features of themeasured object
(which can be single nucleotide polymorphisms, mRNA counts,
protein, lipid, or other macromolecular expression intensity).
Data generated using DSP and MSI can be easily converted into
a rectangular format to describe protein/RNA and metabolite
levels as features (column) per ROI (row). Each omics field has
developed tools and pipelines for curating and analyzing data,
but they provide general ideas for analyzing this type of data
(Robinson et al., 2009; de Wit et al., 2012; Butler et al., 2018). We
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FIGURE 1 | Proposed workflow: (1) classical hematoxylin and eosin (H&E) or nuclear staining of a mouse liver, infected with Leishmania donovani can be used to

select granulomatous regions of interest (ROI). (2) Thin serial sections (5 µm) processed in parallel through GeoMx Digital Spatial Profiler (DSP; left) and mass

spectroscopy imaging (MSI; right). For DSP: targeted morphology-based selection of ROIs can be probed using antibody-based protein profiling (e.g., mouse

Immune Panel, NanoString). In parallel, MSI is used to analyze the whole tissue section at a predefined spatial resolution, typically 10–50 µm pixel size. MSI imaging

is used to generate the molecular masses of biomolecules (e.g., of lipids, metabolites, or proteins), depending on the sample’s pretreatment, from each pixel. MSI

images can be either co-registered with the corresponding DSP-imaged area based on H&E/nuclear staining. (3) Data obtained from DSP and untargeted MSI

imaging are processed in parallel to extract most variable features, which are then scaled, normalized, and finally visualized in reduced dimensions to assess

microenvironment (ROI) heterogeneity through PCA. Principal components that explain most of the variance in the data are used to cluster granuloma subtypes

based on proteomic/transcriptomic data (DSP) or their metabolic profile (MSI). Progression trajectory inferred from transcriptomic data is overlaid on metabolic

(Continued)
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FIGURE 1 | Continued

signature to identify aberrant lipids as an example. (4a) A mathematical re-construction of granuloma progression and its association to cell types,

chemokine/cytokine expression, lipid metabolism (based on 4a,b) can be used to predict heterogeneity in progression dynamics for example associated with

different outcomes. (4b) Finally, the knowledge inferred from serial sections using MSI/DSP may be routed back to label granuloma sub-types. Image classifiers can

then be used to train on H&E or nuclear stain to learn and predict pathology and function from gross morphology. (5a) Variable features obtained from 1 to 3 are then

re-probed on new tissue sections obtained from a larger cohort of subjects and through segmentation analysis or higher resolution targeted MSI. This targeted

approach aims at the analytical validation of novel biomarkers discovered during the holistic profiling in 1.1–1.3. (5b) Intervention studies using

agonists/blockers/metabolic agents or anti-leishmanial drugs to further establish causality associated with identified targets.

FIGURE 2 | Preliminary data on Leishmania granuloma. Day 28 p.i. L. donovani infected C57BL/6 mice liver sections (n = 5) were 1A stained with SYTO 13 nuclear

dye and Nanostring Immune Cell Profiling Core and IO Drug Target Modules (protein panel, 26 oligo labeled antibodies). Eighty granulomas (75 or 150 µ diameter)

were selected based on nuclear dye on a Digital Spatial Profiler (DSP, Nanostring). UV light cleaved ROIs from individual granulomas were collected in a 96 well plate,

hybridized, and counted on an nCounter system (1B). Distinct granuloma clusters as calculated based on edge betweenness of a minimum spanning tree

representation of a granuloma weighted (Pearson’s correlation) graph object. (2A) Day 14 L. donovani infected mouse liver sections (n = 5) were analyzed by MSI.

(2B) Principal component analysis (PCA) is used as an unsupervised approach to show variance in spatial distribution of all lipid masses from every pixel across all

granuloma regions. The PCA image depicts highly intense pixels, which represent granulomas and contain different lipid profiles. A total of 20 granuloma ROIs per

mouse liver section were analyzed. Subsequent PCA shows discriminative lipid profiles, which suggests that granulomas show heterogeneous lipid signatures.

briefly describe methods that can be used to analyze the spatial
structure and distribution of multi-modal measurements.

Clustering ROIs to Find Biological
Communities
Features with low dispersion in the data are removed to
exclude non-informative features (i.e., curse of dimensionality)

which can reduce the distance between the data points.
Variable features, as selected above, can be normalized to
the number of nuclei or area of microenvironment. Features
can then be scaled and used as candidates for dimensionality
reduction by principal component analysis and this is generally
recommended for both small and large datasets (MSI and single-
cell RNA) in terms of accuracy and efficiency (Klerk et al., 2007;
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Sun et al., 2019). It is relevant to assume that heterogeneity
in inflammatory microenvironments may be due to cellular
activation or composition and that these discrete communities
may be classified as discrete clusters. k-means clustering can be
used to identify clusters that best model the data by selecting an
appropriate “k” using the elbow method (Diday, 1994). Graph-
based methods try to detect clusters by identifying nodes that
are connected tightly using a distance metric. For example,
one approach to this is to calculate the edge betweenness
that assigns highest scores for edges that are traversed
often to find shortest paths and, therefore, are assumed to
connect discrete communities/clusters (Freeman, 1979; Brandes,
2001). Methodologies adopted in high dimensional scRNA
sequencing datasets have shown that while there is hardly
one clustering method that fits all problems (Lockett, 2020),
when it comes to clustering scRNA data graph-based tools
such as Seurat (Butler et al., 2018), SCANPY (Wolf et al.,
2018), and PhenoGraph (Levine et al., 2015) are able to identify
clusters very efficiently (Kiselev et al., 2019). Many algorithms
(including non-graph based) have been used for scRNA-seq data
[tabulated in Kiselev et al. (2019)] and may be borrowed for
analysis of ROI-based high dimensional datasets. An important
consideration here is that clustering works well for individual
cell types but the signal obtained from a granuloma will be
composite and may require additional de-convolution steps
(Biancalani et al., 2020; Kleshchevnikov et al., 2020) to aid or
inform clustering using publicly available or in-house scRNA
sequencing datasets.

Trajectory-Based Analysis
Granulomas may be similar or distinct, as well as asynchronous
in their development (Albergante et al., 2013; Moore et al.,
2013; Kaye and Beattie, 2016). This suggests that while the
selected ROIs may be grouped as discrete clusters, they
may also be related to each other in a continuous sense.
In 2003, methods to order temporally sampled microarray
data correctly by calculating minimum spanning tree of
a complete graph were developed (Magwene et al., 2003).
These methods have been extended and applied to high-
dimensional single cell RNA datasets to infer a pseudotemporal
ordering of individual cells. Single-cell transcriptomes show
heterogeneity and imply asynchronicity in expression
patterns. Thus, cells sequenced at a single time-point can
be statistically ordered in pseudotime to reveal lineages
(Trapnell et al., 2014). This is not restricted only to single
lineages but can indicate the possible branching of trajectories.
In the context of inflammatory microenvironments such
as granulomas, trajectories can be applied to ascertain
progression or maturation. Protein/RNA snapshots at multiple
timepoints can further aid computational interpretation of
microenvironment progression trajectory. The asynchronicity
of granuloma formation and outcome may be mapped on
to a pseudo-temporal space. Interpreting such information
in the context of underlying spatial metabolism may
indicate how the latter affects immune cell composition
or activation score in a spatially resolved manner. Further,
probabilistic methods of learning temporal trajectory have

been described for single cell RNA data that can be applied
for multi-modal ROI analysis (Campbell and Yau, 2016a)
especially those that can incorporate prior knowledge
in trajectory learning (Campbell and Yau, 2016b). At
this stage, clustering information of lipid profiles (based
on MSI) may be associated [co-analysis (Buescher and
Driggers, 2016)] of exact serial sections) with the granuloma
progression trajectory as inferred via protein expression data
(DSP) to link metabolic profiles to granuloma progression
(Figure 1.3).

Further, as both DSP andMSI retain exact spatial information,
inferred ROI subtypes can be associated to metadata available
from tissue morphology. Correlations found at this step to
morphology and pseudotime ordered ROIs can then be applied
to probe more mechanistic questions like how proximity to
underlying morphology can impact immune cell activation
or metabolism. This can be achieved by asking broader
fundamental questions by informing mathematical models
(Figure 1.4a) of granuloma development in parallel (Albergante
et al., 2013; Moore et al., 2013; Siewe et al., 2017; Moyo
et al., 2018) or by targeted experiments and interventions,
e.g., an ex vivo biomarker validation study in a larger cohort
(Figures 1.5a, 1.5b).

Computational Image Processing
Statistically inferred ROI sub-types can be further explored at
the single cell level by co-registering MS images with IHC of the
entire tissue based on cell types or proteins identified earlier in the
process. QuPath (Scupakova et al., 2020), an open-software tool
for digital pathology image analysis was successfully aligned with
single-cell MALDI-MSI data allowing for automated single-cell
morphometrics with their detailed molecular profile (Scupakova
et al., 2020). Using other specialized software like Strataquest
(TissueGnostics StrataQuest, 2021) and Cell Profiler (Mcquin
et al., 2018) it is then possible to identify mechanistic reasons
for observed branching in pseudotime. In parallel, classification
of ROIs in branched trajectories can be used to label ROIs for
training convolutional neural networks to identify such clusters
in routinely stained images (Shi et al., 2019). These can be used as
a powerful research or diagnostic tool (Figure 1.4b).

CONCLUSION

Spatially resolved immunometabolism advances our knowledge
of different immune lineages and populations central to
microbial infections but more specifically can help delineate
pathogenesis in important infections such as tuberculosis
(Silva Miranda et al., 2012), schistosomiasis (Hams et al.,
2013), and leishmaniasis (Kaye and Beattie, 2016) where
pathogen induced metabolic re-wiring of host cells has been
implicated in the pathological progression of the disease
(Wilson et al., 2019; Saunders and McConville, 2020).
Recent dual RNA-seq studies evaluating host and pathogen
transcriptional response simultaneously show that metabolic
interplay between the intracellular pathogen and the host
cell can determine microbicidal or permissive property

Frontiers in Microbiology | www.frontiersin.org 6 August 2021 | Volume 12 | Article 709728



Tans et al. Spatially Resolved Immunometabolism

of the microenvironment (Westermann et al., 2016, 2017;
Russell et al., 2019). In addition, MSI based reconstruction
of host–pathogen lipid metabolic responses has been shown
for Francisella infection (Scott et al., 2017) and for specific
glycolipids in tuberculosis lesions (Blanc et al., 2018). Further
understanding of the heterogeneity in development, function, or
progression of these granulomas in relationship to their tissue
microenvironment requires further detailed in situ exploration
of the relationship between host immune cells, pathogen niches,
and local biomolecule (protein, lipid, and transcript) profiles.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

RT, SD, and ND designed and wrote the manuscript. GC and
PO’T provided insights and feedback. PMK and RMAH reviewed
the manuscript and are project leaders and corresponding
authors. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was funded by the York-Maastricht Partnership
program and supported by a Wellcome Trust Senior Investigator
Award to PMK (WT106203). This research was part of the M4I
research program and received financial support from the Dutch
Province of Limburg under the LINK program. The figures in this
article have been created/modified using Biorender.

REFERENCES

Aichler, M., and Walch, A. (2015). MALDI Imaging mass spectrometry: current
frontiers and perspectives in pathology research and practice. Lab. Invest. 95,
422–431. doi: 10.1038/labinvest.2014.156

Albergante, L., Timmis, J., Beattie, L., and Kaye, P. M. (2013). A petri net model
of granulomatous inflammation: implications for IL-10 mediated control of
leishmania donovani Infection. PLoS Comput. Biol. 9:e1003334. doi: 10.1371/
journal.pcbi.1003334

Alves-Ferreira, E. V. C., Ferreira, T. R., Walrad, P., Kaye, P. M., and
Cruz, A. K. (2020). Leishmania braziliensis prostaglandin F 2α synthase
impacts host infection. Parasit. Vectors 13:9. doi: 10.1186/S13071-020-
3883-Z

Artyomov, M. N., and van den Bossche, J. (2020). Immunometabolism in the
single-cell era. Cell Metab. 32, 710–725. doi: 10.1016/j.cmet.2020.09.013

Beattie, L., D’El-Rei Hermida, M., Moore, J. W. J., Maroof, A., Brown, N., Lagos, D.,
et al. (2013). A transcriptomic network identified in uninfected macrophages
responding to inflammation controls intracellular pathogen survival. Cell Host
Microbe 14, 357–368. doi: 10.1016/j.chom.2013.08.004

Biancalani, T., Scalia, G., Buffoni, L., Avasthi, R., Lu, Z., Sanger, A., et al. (2020).
Deep learning and alignment of spatially-resolved whole transcriptomes of
single cells in the mouse brain with Tangram. Biorxiv [Preprint] doi: 10.1101/
2020.08.29.272831

Blanc, L., Lenaerts, A., Dartois, V., and Prideaux, B. (2018). Visualization of
mycobacterial biomarkers and tuberculosis drugs in infected tissue by MALDI-
MS imaging. Anal. Chem. 90, 6275–6282. doi: 10.1021/acs.analchem.8b00985

Brandes, U. (2001). A faster algorithm for betweenness centrality. J. Math. Sociol.

25, 163–177. doi: 10.1080/0022250X.2001.9990249
Buescher, J. M., and Driggers, E. M. (2016). Integration of omics: more than the

sum of its parts. Cancer Metab. 4:4. doi: 10.1186/s40170-016-0143-y
Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating

single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36, 411–420. doi: 10.1038/nbt.4096

Butler, D., Mozsary, C., Meydan, C., Foox, J., Rosiene, J., Shaiber, A., et al.
(2021). Shotgun transcriptome, spatial omics, and isothermal profiling of SARS-
CoV-2 infection reveals unique host responses, viral diversification, and drug
interactions. Nat. Commun. 12:1660. doi: 10.1038/s41467-021-21361-7

Campbell, K. R., and Yau, C. (2016b). Ouija: incorporating prior knowledge in
single-cell trajectory learning using Bayesian nonlinear factor analysis. Biorxiv
[Preprint] doi: 10.1101/060442 bioRxiv: 60442,

Campbell, K. R., and Yau, C. (2016a). Order under uncertainty: robust differential
expression analysis using probabilistic models for pseudotime inference. PLoS
Comput. Biol. 12:e1005212. doi: 10.1371/journal.pcbi.1005212

Caprioli, R. M., Farmer, T. B., and Gile, J. (1997). Molecular imaging of biological
samples: localization of peptides and proteins using MALDI-TOF MS. Anal.
Chem. 69, 4751–4760. doi: 10.1021/ac970888i

Carow, B., Hauling, T., Qian, X., Kramnik, I., Nilsson, M., and Rottenberg,
M. E. (2019). Spatial and temporal localization of immune transcripts defines
hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 10:1823.
doi: 10.1038/s41467-019-09816-4

Chang, C.-H., Curtis, J. D., Maggi, L. B., Faubert, B., Villarino, A. V., O’Sullivan, D.,
et al. (2013). Posttranscriptional control of T cell effector function by aerobic
glycolysis. Cell 153, 1239–1251. doi: 10.1016/j.cell.2013.05.016

Chen, R., Mias, G. I., Li-Pook-Than, J., Jiang, L., Lam, H. Y. K., Chen, R.,
et al. (2012). Personal omics profiling reveals dynamic molecular and medical
phenotypes. Cell 148, 1293–1307. doi: 10.1016/j.cell.2012.02.009

Chevrier, S., Zurbuchen, Y., Cervia, C., Adamo, S., Raeber, M. E., de Souza, N.,
et al. (2021). A distinct innate immune signature marks progression from mild
to severe COVID-19.Cell Rep. Med. 2:100166. doi: 10.1016/j.xcrm.2020.100166

Chughtai, K., and Heeren, R. M. (2010). Mass spectrometric imaging for
biomedical tissue analysis. Chem. Rev. 110, 3237–3277. doi: 10.1021/cr100012c

Chughtai, K., and Heeren, R. M. A. (2011). Mass spectrometric imaging for
biomedical tissue analysis - chemical reviews (ACS publications). Chem. Rev.

110, 3237–3277. doi: 10.11606/T.6.2015.tde-19102015-100242
de Wit, P., Pespeni, M. H., Ladner, J. T., Barshis, D. J., Seneca, F., Jaris, H.,

et al. (2012). The simple fool’s guide to population genomics via RNA-Seq: an
introduction to high-throughput sequencing data analysis. Mol. Ecol. Resourc.

12, 1058–1067. doi: 10.1111/1755-0998.12003
Deutskens, F., Yang, J., and Caprioli, R. M. (2011). High spatial resolution imaging

mass spectrometry and classical histology on a single tissue section. J. Mass

spectrom. 46, 568–571. doi: 10.1002/jms.1926
Dewez, F., Oejten, J., Henkel, C., Hebeler, R., Neuweger, H., de Pauw, E., et al.

(2020). MS Imaging-guided microproteomics for spatial omics on a single
instrument. Proteomics 20:e1900369. doi: 10.1002/pmic.201900369

Dey, N. S., Senarathna, S., Somaratne, V., Madarasinghe, N., Seneviratne, B.,
Forrester, S., et al. (2021). Early reduction in PD-L1 expression predicts faster
treatment response in human cutaneous leishmaniasis. Biorxiv [Preprint] doi:
10.1101/2020.02.21.959528

Diday, E. (1994). New Approaches in Classification and Data Analysis. Berlin:
Springer-Verlag.

Freeman, L. C. (1979). Centrality in social networks. Soc. Netw. 1, 215–239. doi:
10.1016/0378-8733(78)90021-7

Geyer, P. E., Kulak, N. A., Pichler, G., Holdt, L. M., Teupser, D., and Mann, M.
(2016). Plasma proteome profiling to assess human health and disease. Cell Syst.
2, 185–195. doi: 10.1016/j.cels.2016.02.015

Hams, E., Aviello, G., and Fallon, P. G. (2013). The schistosoma granuloma: friend
or foe? Front. Immunol. 4:89. doi: 10.3389/fimmu.2013.00089

Ifa, D. R., and Eberlin, L. S. (2016). Ambient ionization mass spectrometry for
cancer diagnosis and surgical margin evaluation. Clin. Chem. 62, 111–123.
doi: 10.1373/clinchem.2014.237172

Jha, A. K., Huang, S. C. C., Sergushichev, A., Lampropoulou, V., Ivanova,
Y., Loginicheva, E., et al. (2015). Network integration of parallel metabolic

Frontiers in Microbiology | www.frontiersin.org 7 August 2021 | Volume 12 | Article 709728



Tans et al. Spatially Resolved Immunometabolism

and transcriptional data reveals metabolic modules that regulate macrophage
polarization. Immunity 42, 419–430. doi: 10.1016/j.immuni.2015.02.005

Jove, M., Spencer, J., Clench, M., Loadman, P. M., and Twelves, C. (2019).
Precision pharmacology: mass spectrometry imaging and pharmacokinetic
drug resistance. Crit. Rev. Oncol. Hematol. 141, 153–162. doi: 10.1016/j.
critrevonc.2019.06.008

Kaye, P. M., and Beattie, L. (2016). Lessons from other diseases: granulomatous
inflammation in leishmaniasis. Semin. Immunopathol. 38, 249–260. doi: 10.
1007/s00281-015-0548-7

Kiselev, V. Y., Andrews, T. S., andHemberg, M. (2019). Challenges in unsupervised
clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282. doi: 10.
1038/s41576-018-0088-9

Klerk, L. A., Broersen, A., Fletcher, I.W., van Liere, R., andHeeren, R.M. A. (2007).
Extended data analysis strategies for high resolution imaging MS: new methods
to deal with extremely large image hyperspectral datasets. Int. J. Mass Spectrom.

260, 222–236. doi: 10.1016/j.ijms.2006.11.014
Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, H. W., Li, T.,

et al. (2020). Comprehensive mapping of tissue cell architecture via integrated
single cell and spatial transcriptomics. Biorxiv [Preprint] doi: 10.1101/2020.11.
15.378125

Lercher, A., Baazim, H., and Bergthaler, A. (2020). Systemic immunometabolism:
challenges and opportunities. Immunity 53, 496–509. doi: 10.1016/J.IMMUNI.
2020.08.012

Leung, K.-P., Russell, S. W., LeBlanc, P. A., and Caballero, S. (1985). Heterogeneity
among macrophages cultured from mouse bone marrow. Cell Tissue Res. 239,
693–701. doi: 10.1007/BF00219251

Levine, J. H., Simonds, E. F., Bendall, S. C., Davis, K. L., Amir, E. A. D.,
Tadmor, M. D., et al. (2015). Data-driven phenotypic dissection of AML reveals
progenitor-like cells that correlate with prognosis. Cell 162, 184–197. doi: 10.
1016/j.cell.2015.05.047

Lockett, A. J. (2020). No free lunch theorems. Nat. Comput. Series 1, 287–322.
doi: 10.1007/978-3-662-62007-6_12

Ma, F., Hughes, T. K., Teles, R. M. B., Andrade, P. R., Silva, B. J., de, A., et al.
(2021). The cellular architecture of the antimicrobial response network in
human leprosy granulomas. Nat. Immunol. 22, 839–850. doi: 10.1038/s41590-
021-00956-8

Magwene, P. M., Lizardi, P., and Kim, J. (2003). Reconstructing the temporal
ordering of biological samples using microarray data. Bioinformatics 19, 842–
850. doi: 10.1093/bioinformatics/btg081

Margaroli, C., Benson, P., Sharma, N. S., Madison, M. C., Robison, S.W., Arora, N.,
et al. (2021). Spatial mapping of SARS-CoV-2 and H1N1 lung injury identifies
differential transcriptional signatures. Cell Rep. Med. 2:100242. doi: 10.1016/j.
xcrm.2021.100242

Mas, S., Torro, A., Fernández, L., Bec, N., Gongora, C., Larroque, C., et al. (2020).
MALDI imaging mass spectrometry and chemometric tools to discriminate
highly similar colorectal cancer tissues. Talanta 208:120455. doi: 10.1016/j.
talanta.2019.120455

Mazumdar, C., Driggers, E. M., and Turka, L. A. (2020). The untapped opportunity
and challenge of immunometabolism: a new paradigm for drug discovery. Cell
Metab. 31, 26–34. doi: 10.1016/J.CMET.2019.11.014

McCaffrey, E. F., Donato, M., Keren, L., Chen, Z., Fitzpatrick, M., Jojic,
V., et al. (2020). Multiplexed imaging of human tuberculosis granulomas
uncovers immunoregulatory features conserved across tissue and blood. Biorxiv
[Preprint] doi: 10.1101/2020.06.08.140426

McDonnell, L. A., and Heeren, R. M. (2007). Imaging mass spectrometry. Mass

Spectrom. Rev. 26, 606–643. doi: 10.1002/mas.20124
Mcquin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, A., Karhohs,

K. W., et al. (2018). CellProfiler 3.0: next-generation image processing for
biology. PLoS Biol. 16:e2005970. doi: 10.1371/journal.pbio.2005970

Merritt, C. R., Ong, G. T., Church, S. E., Barker, K., Danaher, P., Geiss, G., et al.
(2020). Multiplex digital spatial profiling of proteins and RNA in fixed tissue.
Nat. Biotechnol. 38, 586–599. doi: 10.1038/s41587-020-0472-9

Millet, P., Vachharajani, V., McPhail, L., Yoza, B., and McCall, C. E. (2016).
GAPDHbinding to TNF-αmRNA contributes to posttranscriptional repression
in monocytes: a novel mechanism of communication between inflammation
and metabolism. J. Immunol. 196, 2541–2551. doi: 10.4049/jimmunol.1501345

Moore, J. W. J., Moyo, D., Beattie, L., Andrews, P. S., Timmis, J., and Kaye, P. M.
(2013). Functional complexity of the Leishmania granuloma and the potential
of in silico modeling. Front. Immunol. 4:35. doi: 10.3389/fimmu.2013.00035

Moyo, D., Beattie, L., Andrews, P. S., Moore, J. W. J., Timmis, J., Sawtell, A.,
et al. (2018). Macrophage transactivation for chemokine production identified
as a negative regulator of granulomatous inflammation using agent-based
modeling. Front. Immunol. 9:637. doi: 10.3389/fimmu.2018.00637

Murray, H. W. (2001). Tissue granuloma structure-function in experimental
visceral leishmaniasis. Int. J. Exp. Pathol. 82, 249–267. doi: 10.1046/j.1365-2613.
2001.00199.x

Murray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt,
S., et al. (2014). Macrophage activation and polarization: nomenclature and
experimental guidelines. Immunity 41, 14–20. doi: 10.1016/j.immuni.2014.
06.008

Norris, J. L., and Caprioli, R. M. (2013). Analysis of tissue specimens by matrix-
assisted laser desorption/ionization imaging mass spectrometry in biological
and clinical research. Chem. Rev. 113, 2309–2342. doi: 10.1021/cr3004295

Palsson-McDermott, E. M., Curtis, A. M., Goel, G., Lauterbach, M. A. R., Sheedy,
F. J., Gleeson, L. E., et al. (2015). Pyruvate kinase M2 regulates Hif-1α activity
and IL-1β induction and is a critical determinant of the warburg effect in
LPS-activated macrophages. Cell Metab. 21, 65–80. doi: 10.1016/j.cmet.2014.
12.005

Parra, E. R., Francisco-Cruz, A., and Wistuba, I. I. (2019). State-of-the-art
of profiling immune contexture in the era of multiplexed staining and
digital analysis to study paraffin tumor tissues. Cancers 11:247. doi: 10.3390/
cancers11020247

Pisu, D., Huang, L., Grenier, J. K., and Russell, D. G. (2020). Dual RNA-Seq of
Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen
interactions. Cell Rep. 30, 335–350. doi: 10.1016/j.celrep.2019.12.033

Porta Siegel, T., Hamm, G., Bunch, J., Cappell, J., Fletcher, J. S., and Schwamborn,
K. (2018). Mass spectrometry imaging and integration with other imaging
modalities for greater molecular understanding of biological tissues. Mol.

Imaging Biol. 20, 888–901. doi: 10.1007/s11307-018-1267-y
Rendeiro, A. F., Ravichandran, H., Bram, Y., Chandar, V., Kim, J., Meydan, C., et al.

(2021). The spatial landscape of lung pathology during COVID-19 progression.
Nature 593, 564–569. doi: 10.1038/s41586-021-03475-6

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2009). edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616

Russell, D. G., Huang, L., and VanderVen, B. C. (2019). Immunometabolism at
the interface between macrophages and pathogens. Nat. Rev. Immunol. 19,
291–304. doi: 10.1038/s41577-019-0124-9

Satija, R., and Shalek, A. K. (2014). Heterogeneity in immune responses: from
populations to single cells. Trends Immunol. 35, 219–229. doi: 10.1016/j.it.2014.
03.004

Saunders, E. C., and McConville, M. J. (2020). Immunometabolism of leishmania
granulomas. Immunol. Cell Biol. 98, 832–844. doi: 10.1111/imcb.12394

Schürch, C. M., Bhate, S. S., Barlow, G. L., Phillips, D. J., Noti, L., Zlobec, I., et al.
(2020). Coordinated cellular neighborhoods orchestrate antitumoral immunity
at the colorectal cancer invasive. Front. Cell 182:1341–1359. doi: 10.1016/j.cell.
2020.07.005

Schwamborn, K., Kriegsmann,M., andWeichert,W. (2017).MALDI imagingmass
spectrometry–from bench to bedside. Biochim. Biophys. Acta Proteins Proteom.

1865, 776–783. doi: 10.1016/j.bbapap.2016.10.014
Scott, A. J., Post, J. M., Lerner, R., Ellis, S. R., Lieberman, J., Shirey, K. A.,

et al. (2017). Host-based lipid inflammation drives pathogenesis in Francisella
infection. Proc. Natl. Acad. Sci. U.S.A. 114, 12596–12601. doi: 10.1073/pnas.
1712887114
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