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Abstract

1. Sample size sufficiency is a critical consideration for estimating Resource-Selection Func-

tions (RSFs) from GPS-based animal telemetry. Cited thresholds for sufficiency include a3

number of captured animals M ≥ 30 and as many relocations per animal N as possible.

These thresholds render many RSF-based studies misleading if large sample sizes were

truly insufficient, or unpublishable if small sample sizes were sufficient but failed to meet6

reviewer expectations.

2. We provide the first comprehensive solution for RSF sample size by deriving closed-form

mathematical expressions for the number of animals M and the number of relocations9

per animal N required for model outputs to a given degree of precision. The sample sizes

needed depend on just 3 biologically meaningful quantities: habitat selection strength, vari-

ation in individual selection, and a novel measure of landscape complexity, which we define12

rigorously. The mathematical expressions are calculable for any environmental dataset at

any spatial scale and are applicable to any study involving resource selection (including

sessile organisms). We validate our analytical solutions using globally relevant empirical15

data including 5,678,623 GPS locations from 511 animals from 10 species (omnivores, carni-

vores, and herbivores living in boreal, temperate, and tropical forests, montane woodlands,

swamps, and arctic tundra).18

3. Our analytic expressions show that the required M and N must decline with increasing

selection strength and increasing landscape complexity, and this decline is insensitive to

the definition of availability used in the analysis. Our results demonstrate that the most21

biologically relevant effects on the utilization distribution (i.e. those landscape conditions

with the greatest absolute magnitude of resource selection) can often be estimated with

much fewer than M = 30 animals.24

4. We identify several critical steps in implementing these equations, including (i) a priori
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selection of expected model coefficients, and (ii) regular sampling of background (pseu-

doabsence) data within a given definition of availability. We discuss possible methods to27

identify a priori expectations for habitat selection coefficients, effects of scale on RSF esti-

mation, and caveats for rare species applications. We argue that these equations should be

a mandatory component for all future RSF studies.30

Keywords: bootstrap, habitat selection, p-value, power analysis, Resource Selection Function,

sample size, Species Distribution Model, validation
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Introduction33

Resource selection analysis (RSA) is a broad framework linking the distribution of animals to

their preferences for specific habitat conditions and is a fundamental tool in animal ecology

(Boyce & McDonald 1999; Strickland & McDonald 2006). Obtaining sufficient locations to ascer-36

tain the distribution of animals across landscapes is a fundamental requirement for RSA. Given

that individual animals will differ in the magnitude and direction of preference for different com-

ponents of a landscape (McLoughlin et al. 2010), it is necessary to obtain repeated localizations on39

multiple individuals, now commonly collected using animal-attached GPS sensors (Hebblewhite

& Haydon 2010). GPS data on animal movements are hence commonly employed for RSA and

are often analyzed using Resource Selection Functions (RSFs; Boyce & McDonald 1999; Manly42

et al. 2002; Elith & Leathwick 2009; Hebblewhite & Haydon 2010). RSFs are a class of exponential

models of space use that estimate the probability distribution of animal locations using different

resources/conditions in the landscape, taking into account the availability of each resource, and45

thereby provide a measure of the ‘strength’ of (behavioral) selection for or against each resource

(Manly et al. 2002). RSFs are easily fitted using standard statistical models (commonly logistic or

conditional logistic regression) applied to data on animal locations and resource distributions in48

the landscape and have become a cornerstone of research in spatial ecology (Manly et al. 2002;

Elith & Leathwick 2009; Renner & Warton 2013; Fieberg et al. 2021).

Given the prevalence of RSFs, it is surprising that the central question determining the validity51

of inferences obtained – how much data is needed to estimate a RSF for a given species? –

has not been solved. This issue has been broached for occupancy analysis (Guillera-Arroita &

Lahoz-Monfort 2012) and generalized linear mixed models (Johnson et al. 2015), and has been54

evaluated within individual RSF studies using simulations (Leban et al. 2001; Loe et al. 2012),

yet no analytic expressions exist to determine the number of animals (M) and relocations per

animal (N) required to obtain RSF outputs to a given degree of precision. While the accuracy57

and precision of RSFs generally increase with sample size, leading to a standard rule-of-thumb
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of M ≥ 30 needed for reliable ecological inference (Leban et al. 2001), this rough guideline is

grounded in century-old thinking about statistics in the pre-computation world (James et al.60

2013). Crucially, it is also oblivious to the ecological reality that a multitude of factors may affect

selection strength and determine the required sample size (Manly et al. 2002; McLoughlin et al.

2010; Hebblewhite & Haydon 2010). These include density-dependence (i.e. certain habitats63

become less attractive when occupied by conspecifics; Fretwell & Lucas 1969; McLoughlin et al.

2010; van Beest et al. 2016), trade-offs in selection for forage and cover under predation risk (Fortin

et al. 2005; McLoughlin et al. 2010), temporal variations in resource dynamics (McLoughlin et al.66

2010; Paolini et al. 2018), or the degree of habitat availability or heterogeneity in a landscape

(Mysterud & Ims 1998; McLoughlin et al. 2010; van Beest et al. 2016; Paolini et al. 2018). There is

no consistency in RSF studies in the number of replicates used (Hebblewhite & Haydon 2010), as69

the only alternative approaches to establishing the number of replicates a priori are ecologically

informed guesswork, or simply to collect as much data as possible.

The crux of the problem lies in the relationship between sample size and ecological complex-72

ity. It is suggested that more complex systems require more data to describe (Wisz et al. 2008), yet

a robust power analysis (Johnson et al. 2015) allowing examination of the relationship between

RSF estimation, system complexity, and data availability is crucially missing. This has obvious75

economic and ethical implications if more animals are tagged and monitored than needed and

affects research aimed at the conservation of species, which requires reliable estimates of animal-

habitat relationships but where it is often impossible to monitor large numbers of animals. Here,78

we provide a solution to the sample size problem in RSFs by deriving analytic expressions for

the values of M and N (the number of animals and relocations per animal respectively) required

to estimate RSFs to a required degree of accuracy, taking into account landscape complexity and81

the strength of selection for the resources. We validate these expressions using simulations and a

large dataset of GPS-tagged animals (including 10 species from different continents and biomes)

and show that the most biologically relevant effects of landscapes on animal distributions can84

often be estimated with far fewer animals and locations than commonly stated.
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Methods

We begin by describing mathematically how to determine the number of locations per animal87

(N) and the number of animals (M) for RSsF. Generally speaking, RSA seeks to parametrize a

model of space use that has the following form (Boyce & McDonald 1999):

u(x) =
A(x)W(x)

∫

Ω
A(x′)W(x′)dx′

, (1)90

where u(x) is the utilization distribution of the study species (i.e. the probability density function

of the study animals’ locations), A(x) is a function denoting the availability of the point x to93

the animals, Ω is the study area, and W(x) is the RSF. (Note: throughout this manuscript, bold

fonts imply that the quantity is a vector.) For the purposes of our analytic calculations, our

RSF will be dependent upon a single resource layer R(x). This could denote, for example, the96

vegetation quality or prey availability at point x. However, in general, R(x) represents a map of

any environmental feature which is hypothesized to covary with space use. Although we only

look at one resource layer at a time for our analytic calculations, we show in our empirical study99

(below) that the resulting formulae work when the RSF has multiple layers.

As is the standard method for RSA, we make 3 simplifying assumptions (Manly et al. 2002):

(i) our weighting function is of the form W(x|β) = exp[βR(x)], where β is a parameter to be102

estimated; (ii) the availability kernel A(x) is a uniform distribution; and (iii) relocations are

independent. Consequently, our model of space use from Equation (1) becomes:

u(x|β) =
exp[βR(x)]

∫

Ω
exp[βR(x′)]dx′

. (2)105

The aim of this section is to understand how many independent samples are required to give an

accurate parametrization of the model in Equation (2). Note that when applying our theory to108

empirical data, one will need to test that the assumption of independence between samples is

reasonable. This is a standard assumption in resource selection studies and the techniques for
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testing independence are no different for our theory than for resource selection in general. Much111

has already been written in the literature about this independence assumption (e.g. Millspaugh

et al. 1998; Manly et al. 2002; Gillies et al. 2006) and we refer the reader there for guidance in this

regard.114

Locations from a Single Individual (N)

We first need to phrase the question ”How many locations?” in a concrete, mathematical way.

Suppose we wish to test the null hypothesis H0 : β = 0 against the alternative H1 : β 6= 0117

at a significance level p ∈ (0, 1). An experiment to test this hypothesis involves measuring N

samples and using (conditional) logistic regression to infer β and test the null hypothesis (as

is the standard method for resource selection, e.g. Manly et al. 2002). We define Nα,p(β) to be120

the minimum number of samples required so that we expect to reject the null hypothesis in

100(1 − α)% of experiments. An approximate analytical formula for Nα,p(β) is given as follows

(derived in Supplementary Appendix A):123

Nα,p(β) ≈
(zα + zp/2)

2

Var[R(Xβ)]
β−2. (3)

Here, zα = Φ−1(1− α) where Φ(·) is the cumulative distribution function for the standard normal126

distribution (e.g. z0.05 ≈ 1.645, z0.025 ≈ 1.96), Xβ is a random variable whose probability density

function is given by Equation (2), and Var[R(Xβ)] is the variance of R(Xβ). An explicit functional

expression for Var[R(Xβ)] can be written as follows:129

Var[R(Xβ)] =

∫

Ω
R2(x) exp [βR(x)]dx
∫

Ω
exp [βR(x)]dx

−

(

∫

Ω
R(x) exp [βR(x)]dx
∫

Ω
exp [βR(x)]dx

)2

. (4)

We call Var[R(Xβ)] ”landscape complexity”. Critically, this form of landscape complexity is de-132

termined in part by multiplying the landscape layer by the expected β, so it should be understood

as representing the landscape complexity as viewed by the animal.
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The formula in Equation (3) is approximate due to two assumptions: (i) it relies on the stan-135

dard error, σ, of the maximum likelihood function being approximately normally distributed,

and (ii) it uses a standard result relating the standard error for the estimator of β to the sec-

ond derivative of the log-likelihood function (see Supplementary Appendix A for more details).138

Therefore it is necessary to investigate the magnitude of these approximating assumptions using

simulated data.

To test how effective the approximate expression from Equation (3) is at capturing the actual141

number of samples required to infer β with a given level of accuracy, we constructed a simulated

resource layer which describes an example of the function R(x) (Fig. 1a). This test layer is

a Gaussian random field, previously used in the context of resource selection by Potts et al.144

(2014). It was generated by the R function GaussRF() from the RandomFields package (Schlather

et al., 2016), using the exponential model with mean=0, variance=1, nugget=0, and scale=10, and

consists of L = 100 by L = 100 pixels. By sampling N times from Equation (2) for various147

N with R(x), we can compute empirical values for Nα,p(β) for different β (full method given

in Supplementary Appendix B). Comparison of these empirically-derived values alongside the

analytical expression from Equation (3) reveals remarkably strong agreement (Fig. 1b). This150

suggests that Equation (3) gives an accurate estimation of the number of independent samples

required to estimate β.

Locations from multiple individuals (M)153

Now we assume that there are M individuals and they each select resources with different β.

To model this, let β1, . . . , βM ∼ N(β, s2) be independent draws from a normal distribution with

mean β and variance s2. (Note that this assumes that the individuals’ responses to resources are156

normally distributed, which needs to be checked when applying out results to any specific study

system). Then βi is the coefficient of resource selection for individual i ∈ {1, . . . , M}. Suppose for

each individual i we have gathered Ni locations. Let β̂i be the maximum likelihood estimator for159

βi. Then the standard deviation of β̂i can be estimated as (Supplementary Appendix A, Equation
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15):

σi =
1

√

NiVar[R(Xβi
)]

. (5)162

If β̂ is the mean of β̂1, . . . , β̂M, then β̂ is normally distributed as follows (Supplementary Appendix

C):165

β̂ ∼ N

(

β,
1

M2

M

∑
i=1

σ2
i +

s2

M

)

. (6)

Thus β̂ is an unbiased estimator of β. Notice that the variance decays as M increases. If the168

practitioner has some prior expectation of the possible values of β and s2, Equation (6) can be

used to calculate the number of animals, M, required to obtain an empirical estimate of β to a

given degree of accuracy.171

As well as calculating an estimate of β, it is also possible to estimate s2. The following is an

unbiased estimator of s2 for M ≥ 2 (Supplementary Appendix C):

ŝ2 =
1

M − 1

M

∑
i=1

(

β̂i −
1

M

M

∑
j=1

β̂ j

)2

−
1

M

M

∑
i=1

σ2
i . (7)174

We could not derive a closed analytic formula for the uncertainty in the estimator given in

Equation (7); however, we provide code for estimating this using random sampling (see Supple-177

mentary Appendix D). In general, the estimator becomes more precise for lower σi and higher

M. This is shown in Supplementary Appendix D, where we also verify numerically Equations

(6) and (7).180

Equation (6) allows us to calculate the minimum number of animals, Mα,p(β), for which we

would expect to reject the null hypothesis that β = 0, at significance level p, 100(1 − α)% of the

time (two-tailed test). Mα,p(β) is the minimum integer, M, that satisfies the following inequality:183
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M ≥
s2(zp/2 + zα)2 +

√

s4(zp/2 + zα)4 + 4β2(zp/2 + zα)2 ∑
M
i=1 σ2

i

2β2
. (8)

Note that Mα,p(β) is a non-decreasing function of s2, meaning that more variation amongst indi-186

viduals is likely to mean one has to sample a higher number of animals.

Data and Resource Selection Functions

Equations (3) and (8) give predicted values for the number of relocations N and the number of189

animals M required for RSF estimation. To test our analytical predictions, we compiled GPS-

based relocation datasets from 10 separate species with accompanying landscape data in raster

format (Table S1; Fig. 2). Landscape data were either categorical (i.e. discrete landscover) or192

numeric (e.g. elevation, precipitation, etc.). To ensure comparability between model outputs

for each species, we centered and scaled each numeric landscape raster in R using the scale()

function with default parameters. We converted categorical landcover rasters to binary raster195

layers for each landcover classification of interest (e.g. deciduous forest, croplands, etc.) to

acquire estimates of Var[R(Xβ)] for a given categorical raster.

We generated a 1:1 sample of availability (i.e. 1 available location per animal relocation)198

within each animal’s 99% home range as estimated using the function kernelUD() in R pack-

age adehabitatHR with the default bandwidth estimator. For each availability set, we extracted

centered-and-scaled (numeric) and binary (categorical) landscape data to animal relocations and201

available locations and fit a RSF to each animal in each dataset using logistic regression (i.e. 511

individual models; Table S2). For simplicity, we used only linear main effects for each predictor

in a given RSF; however, we emphasize that more complex effects (e.g. non-linear and interac-204

tion terms) may be identically investigated using the appropriate non-linear transformation or

multiplicative product on the resource layer(s) prior to calculation. Note that, although our equa-

tions operate on a single resource layer at a time, our analysis uses RSFs with multiple layers.207
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This procedure thus tests whether multiple layers may be analyzed one-at-a-time to ascertain the

number of animals and fixes required to estimate the β-value for each layer.

Empirical Validation: M210

After fitting each RSF, we calculated the mean selection coefficient β̄ for each landscape layer

across individuals within a species. Assuming β̄ was an accurate estimate of population-level

selection β, we asked: how many animals M were necessary to estimate β? We calculated213

Var[R(Xβ)] for each centered-and-scaled or binary raster within each animal’s 99% range accord-

ing to Equation (4) and the resulting values of N according to Equation (3). We generated em-

pirical distributions of β̂ and ŝ2 as described in Supplementary Appendix D for M ∈ {2, . . . , 30}216

using the average N and Var[R(Xβ)] as population-level estimates of each. We computed the em-

pirical 95% intervals at a given M (i.e. α = 0.05). The value of M at which the empirical interval

no longer contains 0 is the predicted minimum M necessary to estimate β with 95% confidence,219

Mpred (i.e. the minimum integer M0.05,0.05(β); Equation (8)).

For comparison with observation, we then resampled the estimated selection coefficients for

each individual within a species. For a given M ∈ {2, . . . , 30} as above, we generated 4000222

samples of Mi observed selection coefficients and calculated β̄ for each (i.e. 4000 mean selection

coefficients assuming Mi animals). This represents the observed distribution of possible β̄ for

Mi sampled animals, assuming the total pool of animals is a representative sample. Finally, for225

each M we calculated the grand mean β̄G and the empirical 95% interval of β̄. The value of M

at which the empirical interval no longer contains 0 is the observed minimum M necessary to

estimate β with 95% confidence, Mobs, and should correspond to Mpred228

Empirical Validation: N

The M validation procedure described above assumes that, on average, sufficient relocations N

were available to estimate M. Now we consider: for a given individual-level selection coefficient231

β, do we have sufficient N to reject the null hypothesis for a given animal? We randomly sampled
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1 animal from each dataset and calculated Var[R(Xβ)] within the animal’s 99% range using the

animal’s specific RSF model coefficients as β. From this we calculated the predicted number of234

relocations Npred necessary to estimate β given Var[R(Xβ)] (i.e. N0.05,0.05(β); Equation (3)).

For comparison, we resampled Nsam relocations with replacement from the animal’s dataset,

where Nsam =
⌊

iNtotal
50

⌋

, i ∈ {1, . . . , 25}, and Ntotal is the total number of relocations recorded237

for that animal. This unconventional sequence was selected because (i) it produced a compara-

ble number of observed values of N to that in the M validation procedure (25 observed N vs.

29 pairings of Mpred and Mobs) while (ii) keeping the increments small enough to retain detail240

given that estimates of N can be orders of magnitude larger than those of M. We generated 4000

samples of Nsam,i relocations and fit an RSF to each individual sample (i.e. 4000 RSFs assuming

Nsam,i relocations). We retained all originally generated available locations in each RSF so as to243

maintain a constant availability kernel between RSFs with different relocations. We then calcu-

lated the mean selection coefficient β̄ and its 95% empirical interval at a given Nsam. The value of

Nsam at which the empirical interval no longer contains 0 is the observed minimum N necessary246

to reject H0 : β = 0 at significance level p ≤ 0.05, Nobs, and should correspond to Npred.

Results

The equations (3, 8) at the basis of our methods provide analytically predicted values for the249

number of relocations N and the number of animals M required to paramaterize an RSF. Simple

1-to-1 plots of Npred vs. Nobs and Mpred vs. Mobs across all 10 species revealed strong agreement

between observation and prediction (Fig. 3). Interestingly, 1 outlier was identified for N and 1252

for M. Visual inspection of the data revealed that these outliers occurred alongside availability

samples within individual RSFs that did not properly describe the true spatial integral of re-

source availability (i.e.
∫

Ω
A(x′)W(x′)dx′; Equation (1)). That is, the 1:1 used/available sampling255

protocol undersampled the available space. Thus, Npred and Mpred can be sensitive to insufficient

spatial sampling of availability, and care should be taken to avoid such undersampling before
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applying these methods.258

Given this, we then asked, what is the role of the definition of availability (sensu Johnson

1980) in shaping these relationships? We estimated RSFs as described above using 2 additional

availability definitions that varied the spatial extent of availability for a given animal: (i) within261

the entire collection of 99% KDEs (i.e. animals have access to resources within all KDEs equally),

and (ii) within the entire site (i.e. animals have access to all resources within the study site,

including those outside of 99% KDEs). This mimics the problem of sufficiently sampling avail-264

ability described above, but now availability is driven by conceptual or ecological definitions

rather than by the sampling protocol itself. Similar consistency in β̂ was observed across M

within a given definition of availability, but the sign and magnitude of β̂ varied with availability267

from individual- to site-level (Fig. 4). Despite the change in sign and magnitude, Equation (8) is

able to calculate Mpred consistent with observation across availability definitions. By inclusion,

given that Npred is a component of Mpred (see Equation (5)), we also observe that Equation (3) is270

consistent with observation across availability definitions.

Lastly we asked, what are the primary drivers of Npred and Mpred as estimated by Equa-

tions (3, 8)? A key outcome of our method is that this question can be answered analytically, by273

simply inspecting Equations (3, 8). Equation (3) shows that Npred is inversely correlated to both

Var[R(Xβ)] and β2, indicating that as either landscape variation or selection strength increase,

so must Npred. Similarly, because β2 is contained in the denominator of Equation (8), Mpred276

must decrease with increasing selection strength. To demonstrate this graphically, we plotted

log-log regressions of Npred and Mpred against Var[R(Xβ)] and |β|, respectively, using data from

all 10 species to evaluate whether these analytical predictions bear out under real data scenarios279

(Fig. 5). Per the analytical predictions, both Npred and Mpred declined as their respective pre-

dictors (landscape variation or habitat selection strength) increased. It is also worth noting that

inclusion of both predictors within the same log-log regression (i.e. Mpred as a function of both282

Var[R(Xβ)] and |β|) returned R2 = 1, as expected given that Npred and Mpred are determined only

by Var[R(Xβ)] and β.
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Discussion285

It is common in studies using RSFs to assume that a sample size of M ≥ 30 animals tagged is

necessary for consistent and reliable inference (Leban et al. 2001; Hebblewhite & Haydon 2010).

Further, it has been suggested that more complex landscapes (i.e. those with higher landscape288

variance Var[R(Xβ)]) require more relocations per animal N to characterize selection (Wisz et al.

2008). Our analytical models and validation procedures return a rather different set of results.

First, we found that Mpred was often (but not always) substantially less than 30, and this pre-291

diction strongly agreed with observation based on resampling of GPS-based telemetry across a

variety of ecologically contrasting species (Figs. 3, S1-S20). Strikingly, our analytical results show

conclusively that M can only decline with increasing absolute magnitude of β (Equation (8)). Al-294

though M indeed increases with increasing variation in individual selection (Equation (8)), this

indicates that the most biologically relevant effects (i.e. those with the greatest |β|) can often be

estimated with only a few animals (Fig. 5).297

This reveals important ethical and budgetary implications for wildlife studies. For example,

consider the mule deer dataset containing 106 tagged individuals (Table S1). Our findings show

that the strongest effects on the utilization distribution (i.e. selection for temperature, evergreen300

forest, and shrublands) may be estimated with fewer than 20 animals (Fig. S20), i.e. 80% fewer

animals than were used. This means that, using a conservative estimate of US$2,450 for each GPS

collar and data fees (K. L. Monteith, pers. obs.), for the aspects of the study focused on identifying303

the relevant resource drivers of animal distributions as in typical RSF studies, this project could

have spent $210,700 less than it did (excluding researcher/technician effort, which has significant

costs in itself). Of course, it may still be necessary to tag more animals, for aspects of the study306

beyond resource selection analysis, but this financial discrepancy is still worth bearing in mind

as it is not a trivial amount.

Compared to the popular approach of tagging as many animals as possible and construct-309

ing phenomenological models to identify ecological mechanisms post hoc (colloquially referred
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to as “collar-and-foller”; Dunn 2004; Fieberg & Johnson 2015), our analytical results suggest re-

searchers start with efforts aimed at constructing a priori hypotheses and associated models, then312

use our Equations (3, 8) to estimate the number of animals and locations per animal required for

the study aims (Johnson et al. 2015).

Second, Npred (the number of independent relocations per individual) also strongly agreed315

with observation, with both predicted and observed N in the 1000s or larger (Fig. 3). This agrees

with findings that within-replicate sample sizes should generally be large (e.g. Wisz et al. 2008);

however, our analytical expressions also conclusively demonstrate that N is directly calculable318

(Equation (3)) and as with M is expected to generally decline with increasing Var[R(Xβ)] and

β. These conclusions for both M and N are not only analytically proven but are additionally

supported by real data bearing out the analytical predictions (Figs. 3–5). As such, our findings321

demonstrate that not only are M and N imminently calculable given a known landscape and

some expectation of β, but the expected trends in M and N with respect to landscape complexity

and the strength of animal preference are opposite to those predicted by previous studies.324

Why are our results contrary to so much of the preceding literature? One possibility could

lie in the ”golden rule” of sample size, i.e. that M ≥ 30 is required for a sample size sufficient to

invoke the Central Limit Theorem and assume a roughly normal distribution of possible sample327

means (Aho 2014, p. 154), or to ignore non-normality because a model structure is somehow ”ro-

bust” to non-normality (e.g. Hector 2015, p. 48). This is reinforced by an absence of mathematical

attention to the sample size question. Previous studies have used simulation or empirical analy-330

ses to explore sample size sufficiency within particular species or systems (e.g. Leban et al. 2001;

Loe et al. 2012; Sequeira et al. 2019), leading to conclusions that are quite specific to a given study

but then are widely adopted as inferring pattern across all systems. By defining the problem333

mathematically (i.e. at what values of M and N do we reject the null hypothesis 100(1 − α)%

of the time at significance p?), we instead arrive at general analytical solutions that then may

be tested with simulations and empirical analyses that are specifically designed for those solu-336

tions, rather than relying on intuitive but incorrect assumptions about the relationships between
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landscape variation relative to selection strength and RSF sample size sufficiency.

Our calculations show that the required M and N for a given study are dependent entirely339

on |β| and Var[R(Xβ)]. The latter can be directly calculated given a landscape and an expectation

for β, but selecting an appropriate expected β is a critical step in estimating M and N. For

a priori planning this could be accomplished using expert knowledge and previous literature;342

however, there may be no conceivable prior expectation of β in some RSF exercises. In such a

case, one may elect to perform for example a sensitivity analysis given a range of β to select

conservative estimates of M and N. Further, observe that β is often affected by a variety of345

ecological phenomena, including resource availability, competitor density, and seasonal effects

(Mysterud & Ims 1998; McLoughlin et al. 2010; van Beest et al. 2016; Paolini et al. 2018). This

implies that Equations (3 & 8) estimating N and M respectively are in fact hierarchical with348

dependencies not only on landscape variance (i.e. Var[R(Xβ)]) but also landscape composition

and structure as they determine β. In scenarios where we are uncertain about possible values of

β, we may construct informed models suggesting likely values of β given an expectation for how351

the animal should behave as resource availability changes (e.g. generalized functional response

models; Matthiopoulos et al. 2011). Such a hierarchical approach ”borrows” information from

the functional response model to provide a more ecologically informed range of possible β for a354

sensitivity analysis (Hobbs & Hooten 2015).

Our results also provide new insight into the importance of sufficient spatial sampling of

availability. There was 1 outlier in the 1-to-1 comparison of Npred and Nobs, and 1 in that of Mpred357

and Mobs (Fig. 3). These occurred because the 99% range of the animals under observation was so

large, and the underlying landscape rasters so finely grained, that our 1:1 use/availability sample

did not accurately portray the spatial integral of availability
∫

Ω
A(x′)W(x′)dx′ (Equation (1)).360

This caused Mpred and Npred to be based on a different, incomplete availability set compared

to the fitted RSFs. This highlights a now well-established conclusion: the sampling intensity

for availability in RSF-styled models should be as large as necessary to correctly characterize363

the availability integral. Previous RSF-styled studies (including SSF) have almost exclusively
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sampled availability as we did here using ratios (i.e. 1:1, 1:10, 1:100, etc.; e.g. Boyce & McDonald

1999; Fortin et al. 2005; Street et al. 2016). This encourages potentially sampling at an intensity366

insufficient to approximate the spatial integral (as occurred here for outlying points in Fig. 3;

Benson 2013). Our findings reinforce that availability sampling should be conducted in a regular

(non-random) fashion at a spatial interval equal to the resolution of the underlying landscape369

data such that every possible location within the availability boundary is considered (Benson

2013; Fieberg et al. 2021). This would produce an availability observation for every raster pixel

and thus overlap between used and available locations. Although it is suggested that such overlap372

is to be avoided (e.g. Wisz et al. 2008), logically a used location must also be available otherwise it

cannot be selected, and removing used locations from availability can potentially omit important

effects from the availability sample. Our equations indicate that this overlap is required by the375

mathematics of resource selection.

This finding reinforces that defining resource availability at the scale of the estimated model is

a critical first step in planning a RSF. Our multi-scale analysis of mule deer produced remarkably378

different estimates for M at each of the three definitions of availability (site-wide, population-

wide, and individual availability; Fig. 4), indicating that failure to properly define the available

space can lead to incorrect estimates of both M and N. This is not a new finding; the importance381

of properly defining what is available for an animal to select is a long-standing issue in RSA re-

search (e.g. Johnson 1980; Boyce & McDonald 1999; Fortin et al. 2005). However, the difficulty of

calculating M and N for planning a RSA study increases with the biological scale of the intended384

model. Site-wide availability assumes all animals have access to resources on the entire land-

scape and is similar in concept to first-order selection (i.e. where the species is located; Johnson

1980), but availability may be sampled as a regular grid across the entire site. Population-wide387

availability refines the scale toward second-order selection (i.e. where animals situate their home

ranges), but accurately defining a perimeter for the likely population range a priori within which

to sample availability is non-trivial. This becomes even more difficult under individual availabil-390

ity; how can we anticipate the size and placement of individual home ranges? A feasible solution
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may be to delineate population boundaries and within this delineation generate random ranges

with area determined by the literature and expert knowledge. This would enable calculation393

of an average theoretical availability for any animal in the study site with appropriate standard

error. This could then be used to produce an average prediction for M and N, and associated

confidence limits, across the average home range composition.396

We approached this analysis with the aim of evaluating how many GPS-tagged animals M

are needed for RSF estimation, but there are many RSF applications that do not seek M or

require GPS-tagging (e.g. plant distributions). For example, RSFs estimated for rare species399

will typically lack sufficient data for individual-based estimation of the utilization distribution

u(x) such that M is irrelevant and only N need be evaluated. RSFs can be sensitive to small

sample sizes (Wisz et al. 2008), yet they often generate accurate predictions for rare species with402

small datasets (McCune 2016), suggesting that for some rare species smaller N is sufficient to

achieve a robust model. Our findings permit evaluation of this. Consider a hypothetical scenario

where an RSF is estimated for a rare species with 100 observations and β is recorded. Here,405

Equations (3–4) could be used to calculate Npred as a post hoc metric of confidence assuming

β is the true population/species-level average selection coefficient. If Npred ≤ 100, then one

could trust the outcome of the RSF; conversely, Npred > 100 would indicate additional data408

collection is necessary. Where that is not possible, one could systematically adjust zα and zp/2

(Equation (3)) to determine the confidence interval that rejects the null hypothesis H0 : β = 0 and

establish a degree of confidence for model outcomes. Although we performed validation using411

GPS-based datasets, Equation (3) is agnostic to how data are collected and may also be applied

to sessile organisms. Provided we can plausibly accept that β is roughly true and individual

variation is either minimal or accommodated by the population-level β (presumably what has414

been estimated), our equations may be easily extended to evaluate almost any RSF-based study.

We must emphasize that although M may only decline with increasing β, Equation (3) allows

for a turning point to occur such that N initially decreases with |β| but eventually increases at417

very large |β| (see Supplemental Information, Equation (25)). When selection strength is particu-
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larly strong, smaller sample sizes make it much more likely to obtain perfect separation between

used and unused resources. In such a case one must collect more data to observe the animal not420

using a resource unit it should strongly prefer (or in the case of negative selection, to observe it

using a resource it should strongly avoid). Practically, this means that sampling intensity for RSA

is a greater concern for specialist organisms than generalists because specialists should exhibit423

typically larger |β| for preferred/avoided resource units than generalists. Although the equations

identified here allow us to directly calculate N for any landscape and expected selection strength,

we should generally expect that specialists will require larger N for precise RSF estimation.426

The equations identified here explicitly evaluate the compatibility of a dataset with a given

hypothetical model (i.e. β). Calculating their solutions across gradients of N and M reveals

how the number of data points (relocations) and number of replicates (animals) affect deter-429

mination of compatibility. Rather than the values of N and M required to achieve statistical

significance, we instead suggest these be used to determine the relevant sample sizes necessary

to achieve ”consistent” results, i.e. if we increase sampling intensity would we see substantial432

change in estimated coefficients? From this perspective, we conclude that the number of ani-

mals M required to consistently estimate the most biologically relevant effects in an RSF can be

well below commonly touted sample size thresholds (i.e. M ≥ 30), particularly when selection435

strength is strong (Fig. 3, 5). Moreover, the number of required relocations N can also be quite

small but tends toward larger sample sizes when landscape variation is small. The sufficiency

of samples sizes M and N is dependent entirely on the strength of selection (|β|) and landscape438

variation with respect to selection strength (Var[R(Xβ)]). Rather than simply reporting sample

sizes in RSF studies, researchers should pay explicit attention to the effect their sample size has

on their findings. Regardless of study organism, ecosystem, or scenario, our equations may be441

equally applied to any RSF-based study to evaluate the consistency of expected outcomes given

a dataset of a particular size. This will partially address the so-called ”replicability crisis” by

explicitly characterizing the consistency of model outputs in relation to sample sizes and effect444

sizes, thereby increasing reader (and reviewer) confidence in such studies. Similarly, editors and
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reviewers should abandon preconceived notions of what makes a sufficient sample size in RSF

in favor of evaluating the sensitivity of findings to sample size based on the mathematical rules447

identified here, for it is also feasible (and indeed demonstrable) that consistent findings can be

achieved with as few as N = 100 relocations per animal and M = 2 animals (Fig. 3). Because

M and N can be easily calculated provided knowledge of ecological and landscape effects, we450

argue that such calculations should henceforth be a mandatory component for all RSF studies.
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Figure 1: Performance of analytic expression on simulated data. Panel (a) shows a simulated
resource layer, R(x), which was used to construct the utilisation distribution (Equation 2) from
which the simulated animal locations were samples. The circles (resp. triangles) in Panel (b)
show the empirically-derived values of N0.5,0.05(β) (resp. N0.05,0.05(β)), the minimum number of
samples required so that there is a 50% chance (resp. 95% chance) of rejecting the null hypothesis
that β = 0 at a significance level of p = 0.05. The solid line (resp. dashed line) in Panel (b) shows
the corresponding analytic approximations given by Equation (3) and the remarkable agreement
with the empirically-derived values.
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Figure 2: Data distribution. Geographic locations of GPS datasets (5,678,623 GPS relocations)
across 511 individually collared members of 10 species.
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Figure 3: 1-to-1 comparison of predicted and observed M and N. Two outliers are observed for
N and one for M due to mismatch between sampled and true availability within the animals’
99% ranges. Dashed lines are those with gradient 1 crossing through the origin.
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access to resources across the entire site). If no vertical dotted line occurs, then Mpred > 30.
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