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Abstract 

Peer-to-peer (P2P) energy trading enables households to trade electricity with one another, rather than just with their supplier. This can help 

to incentivise the shifting of electrical loads to align with local renewable generation, which leads to decreased dependence on grid electricity 

and can bring financial savings for households. P2P is expected to be particularly suitable to complement embedded PV generation and 

electrical vehicles (EVs), two key technologies for grid decarbonisation. In this work we simulate P2P energy sharing for a local microgrid of 

50 households with PV and EV ownership at various penetrations. In particular, we consider the merits of P2P in combination with uni-

directional EV chargers (‘V1G), and with chargers that can discharge EV battery energy to the home (‘V2H’) or the grid (‘V2G’); we also 

consider the use of community energy storage (‘CES’) as an alternative to storage of energy in EV batteries. We simulate the interactions of 

the households with the P2P energy market over one week, for each of three seasons, and evaluate the microgrid’s energy independence and 

the financial savings for households. Results suggest that P2P trading with V1G can effect an increase in shared energy, modest improvements 

to microgrid self-sufficiency, and improvements to household bills. However, the combination of P2P with V2H brings advantages 

substantially greater than either innovation individually. The typical household can save approaching £100/a (compared to an average bill of 

ca. £540 with no P2P), with savings exceeding £200/a in some situations. Importantly, we find that the P2P can achieve savings regardless of 

technology penetration, and furthermore, all types of household can benefit, including households that own both PV and EV. Under the market 

mechanism considered, we find only negligible impact for allowing V2G in addition to V2H. 
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1. Introduction 

1.1 Outline and key definitions 

 
Two significant aspects of energy decarbonisation that impact the electricity grid at a local level are the 

proliferation of embedded renewable generation (especially PV) and the electrification of transport. In the UK 

there are currently almost a million small scale solar PV installations, still leaving immense scope for growth [1]; 

and whilst electric vehicles (EVs) currently account for around 1% of vehicles on UK roads, the government plans 

to impose a ban on combustion vehicles by 2030 [2], [3] and it has been suggested that the UK fleet will need to 

be 55% electric by that date [3]. These technologies come with challenges and opportunities. High take-up of EVs 

will require considerable extra electrical energy for charging, and existing distribution grid infrastructure may 

struggle to meet peak charging demand [4]. Meanwhile, solar PV is a fluctuating, non-dispatchable resource, and 

generation is not guaranteed to align well with electrical demand (self-consumption for a UK household is 

typically below 50% annually [5]). Exports of solar power from multiple houses simultaneously pose a threat to 

distribution grids, potentially giving rise to voltage violations and line overload [6]. 

Clearly, PV and EVs offer a potential synergy, with EV batteries absorbing surplus power from nearby PV 

installations. However, the conventional energy system, wherein households can only trade power with their 

electricity supplier, provides no incentive for this (unless PV and EV are behind the same meter) [7]–[9]. The 

formation of local energy communities, with energy traded between households (as for instance in [7], [10]) could 

help to address this. An EV using a neighbour’s surplus energy to charge would need to pay a price above the 
supplier’s feed-in tariff but below the retail electricity price; both parties to the transaction would then benefit. 

We term such an exchange of energy a peer-to-peer (P2P) trade. As well as bringing financial savings, 

communities with P2P trading can achieve environmental benefits and reduce stress on the distribution grid [7], 

[11]. 



‘Smart’ scheduling of EV charging (for instance, to absorb renewable generation as described above) is generally 

termed V1G, denoting a one-way flow of power from grid to vehicle [12]. If a two-way charger is available, the 

vehicle can also discharge power to supply its own household (vehicle-to-home, V2H) or to export (vehicle-to-

grid, V2G); the EV thereby becomes an energy storage device, shifting renewable energy to the time when it is 

required [12].  

This work considers the benefits of P2P in combination with PV and V1G/V2H/V2G, in a local community of 

residential households. We will refer to this community as a ‘microgrid’, the term commonly applied to a local 
group of electrical loads and generation capable of a degree of autonomy from the main grid. We combine a 

realistic model for EV usage with a simulation of an iteratively settled P2P market. We compare the relative merits 

of V1G, V2H and V2G, evaluating performance in terms of the savings achieved by households, as well as the 

increased energy autonomy of the microgrid as a whole. Additionally, we consider the combination of the P2P 

market with community energy storage (CES) as an alternative to the use of EV batteries for energy storage. 

The remainder of this section will discuss existing work on P2P energy trading, and V2H/V2G. 

1.2 P2P energy markets 
In traditional energy systems, households are purely consumers of energy, which is bought exclusively from a 

large-scale supplier; thus P2P energy trading represents a disruptive shake-up of this paradigm. Whilst in its 

strictest sense, P2P refers to trades of energy that are negotiated bilaterally between parties, here we use the term 

in its broader sense to denote any energy tariff or market that can incentivise and remunerate the sharing of 

electricity between households, a definition consistent with [7], [10]. Interest in P2P is growing, with companies 

including Centrica and EDF carrying out pilot schemes in recent years [13], [14]; a number of platforms for the 

P2P exchange of energy have also been designed, including among others Piclo and Vandebron [15]. 

In terms of the actual market mechanism through which P2P exchange of power is agreed and paid for, the 

literature covers a number of different possibilities. These include centralised control; centrally issued price 

signals; auctions and iterative markets – where these categories are not exhaustive and may also overlap. Under 

centralised control, optimisation is carried out centrally to determine which microgrid participants should trade 

energy, and how all the microgrid’s flexible devices are to be scheduled. For instance, in [16] central optimisation 

is used to determine P2P energy trades between EVs. Centralised control raises concerns about participants’ 
privacy and autonomy, and may also be computationally intensive unless the number of devices is small. Several 

researchers [17]–[20] pose a centralised optimisation problem, before going on to discuss distributed optimisation 

methods whereby participants need not surrender as much control or data. Another approach is for microgrid 

participants to retain full autonomy and plan their behaviour in response to centrally issued price signals. The 

problem then is for the operator to set the best prices to incentivise desirable behaviour; this problem may be 

interpreted as a Stackelberg game as in [21], [22], whilst in [23] a reinforcement learning approach is used. A 

natural approach to P2P markets is through the use of auctions – which may be designed to emulate traditional 

energy markets, as in [24]. Double auctions, wherein buyers of energy submit ‘ask’ prices and sellers submit ‘bid’ 
prices are typically of most interest. In an auction market the chief problem is for individual participants to set 

their strategies intelligently; the literature includes approaches such as adaptive learning [25], the adaptive 

aggressive strategy [26], ‘eyes on best price’ [27] and ‘zero intelligence’ [27]. Literature covering P2P electricity 

auctions with flexible loads includes [11], [28]. In iteratively settled markets, feedback from each round of 

bidding is used by participants to update their new bids, and the market is settled if and when it converges, 

otherwise requiring an exit mechanism of some kind. Iterative market mechanisms of various kinds are employed 

in [7], [10], [17], [27], [29].  

Liu et al [10] contrived an iterative pricing mechanism for an energy-sharing zone consisting of buildings with 

PV generation and some adjustable loads. The internal tariffs for import and export of power were functions of 

the supply-demand ratio (SDR), i.e. the total of all exported power over all buildings, divided by the total of 

imported power. As such, this pricing mechanism will henceforth be referred to as the SDR tariff; it is the 

mechanism adopted in the present work. When SDR > 1, prices are low (equal to the grid feed-in tariff), 

incentivising demand to be increased or supply reduced. For SDR < 1, prices increase towards the cost of grid 

power, incentivising demand to be reduced or supply increased. Prices are designed so that the operator operates 

a balanced budget – i.e. all payments effectively flow between households and the utility grid, or between different 

households, with the operator not profiting. The final prices and load schedules are decided iteratively; in each 

round, participants optimise their load schedule relative to the most recently issued internal prices. The process 



repeats until convergence is achieved: viz. prices do not significantly change between iterations. In [10], this 

market mechanism was implemented in a case study with a number of residential and commercial/office buildings, 

and was found to achieve modest technical and economic benefits. Zhou et al [7] also consider the SDR tariff. 

This work was focused on (i) possible approaches to improving the convergence of the iterative market 

mechanism; and (ii) the comparison of the SDR tariff to alternatives (mid-market rate and bill-sharing). 

Simulations involved 20 households equipped with PV and flexible loads, with one day simulated at a time. 

Flexible loads considered were water heaters and washing / drying machines in addition to EVs. The methods to 

improve convergence were found to be effective, and the SDR pricing tariff was considered to outperform the 

alternative pricing formulas. 

In this work the SDR tariff with iterative bidding is adopted. Reasoning for this choice is as follows: 

(i) The approach is amenable to use with energy storage. By contrast, strategies for energy storage in 

auction markets can be complex, and the auctioneer may need to process complex bids (as also in 

large scale power markets [30]). 

(ii) Fairness: all households are offered the same prices at each timeslot. 

(iii) Autonomy: except for the constraints imposed by the convergence aids, houses are free to optimise 

their schedules in their own interests. 

(iv) Confidentiality: only the planned net power of a household needs to be shared with the market, and 

no other details. 

1.3 EVs in P2P power markets 
Existing studies on P2P markets are often preoccupied with demonstrating the feasibility of a particular market 

mechanism; they tend to confine themselves to small scale, ‘proof-of-concept’ case studies. These may involve 
various different technologies, as shown in Table 1. The use of flexible load (either in the abstract, or pertaining 

to appliances like washers/dryers) in case studies is more common than either EVs or energy storage. Kim et al 

[29] performed a case study with eight households, with a mixture of EVs of three types – capable of V2H, V2G, 

or V1G only. PV generation was not included. El-Baz et al [11] carried out a case study for their double auction 

model, wherein ten households all possess PV, an EV and a heat pump; household savings up to 23% were 

achieved. Zhang et al [28] carried out a study where 10 PV systems were matched with 100 flexible loads 

including EVs. The emphasis of this work was the use of flexibility to address inaccuracy in PV forecasting; it 

was found that 78% of forecasting error was able to be absorbed locally in the case study. V2H/V2G were not 

considered. Alvaro-Hermana et al [16] considered the P2P exchange of power between EVs in Belgium, 

employing a detailed data-driven model for EV power consumption and availability. For those EVs requiring 

charging during the daily travel schedule, costs were reduced by 71%. Renewable generation was not modelled: 

the motivation to trade relied on a time-variable grid tariff. Finally, Zhou et al [7], as already noted, include EVs 

in their work comparing the SDR tariff to alternatives. This work is more far-reaching in its consideration of EVs 

than previous references; in particular, it includes sensitivity analysis of EV and PV technology penetration in the 

community of 20 households. This work does not, however, discuss possible household savings in absolute terms. 

Also, although V2H/V2G are available to the EVs in the model, the paper does not discuss the value of these 

options versus V1G. 

Table 1. Aspects included in P2P studies from the literature. N.B. This signifies 

whether such aspects have been used in an actual case study, not whether the P2P 

system could theoretically accommodate them. 

Reference(s) Aspects modelled 

 P2P / 

local 

energy 

market 

Flexible 

load 

PV Stationary 

energy 

storage 

EV V2H/V2G 

[17], [21]–[23] ✓ ✓ - - - - 

[25] ✓ - - ✓ - - 

[16] ✓ - - - ✓ ✓ 

[29] ✓ ✓ - - ✓ ✓ 

[31]  ✓ ✓ ✓ ✓ - - 

[32], [33] ✓ - ✓ ✓ - - 

[18], [34] ✓ ✓ ✓ - - - 



[27] ✓ - ✓ - - - 

[28] ✓ ✓ ✓ - ✓ - 

[11] ✓ ✓ ✓ ✓ ✓ - 

[7] ✓ ✓ ✓ - ✓ ✓ 

 

 

1.4 Contribution of this work 
The aim of this work is specifically to consider the possible advantages of a P2P energy market to complement 

PV generation and EVs, in the setting of a community of households forming a grid-connected microgrid. For this 

purpose, we adopt the SDR tariff introduced in [10]. We are interested in quantifying the possible real-world 

financial benefits for households, as well as the impact on the microgrid’s overall energy autonomy. Additionally, 

since community energy storage (CES) has been proposed in the literature as an interesting alternative to 

household level energy storage [35], [36], we introduce shared CES as an alternative / complementary technology, 

and compare this to the use of the EV batteries for energy storage. 

This paper’s contributions can be summarised as follows: 

 Comparison of the impact of V1G, V2H and V2G operating within a P2P energy sharing market, 

which to the authors’ knowledge has not been addressed before. 
 Estimation of annual savings for households (rarely covered by existing work), and comparison 

between households of different categories. 

 Adaption of the SDR market mechanism to work in tandem with community energy storage (CES); 

comparison of CES to V2H / V2G. 

 

 

 

 

  



2. Method 

2.1 Model overview 
In this work we model an energy community consisting of a number of households. These are assumed to be 

proximately located and to share the same distribution transformer, so as to form a grid-connected microgrid. The 

houses may each own an EV and / or a PV system. We consider different combinations of a P2P tariff with the 

options of V1G, V2H and V2G, and compare these to a baseline with the standard grid tariff. We also consider 

the use of the P2P tariff in tandem with CES. This forms an interesting comparison with the use of EV batteries 

for energy storage: the latter are dispersed, sometimes unavailable, and under the direct control of a subset of 

individual households; whereas the former is always available, and interacts with all the households via the 

market. Figure 1 gives a high-level schematic of the model. 

The various sub-models will now be discussed. 

 

 

Figure 1. Overall schematic of model. All model aspects are implemented in AnyLogic [48], except 

optimisers which use Pyomo [37], [38] with the GLPK solver [39]. Key to note is the exchange of 

information between the coordinator and the households: the coordinator sends prices and receives energy 

schedules back. 

 

  



Solar model 
The solar model utilised here is reported in [40], and uses measured data for global horizontal irradiance to predict 

the radiation incident on an inclined plane. A constant efficiency of 15.4% is then applied to calculate generation; 

this efficiency is calibrated so that a south-facing system with 40° tilt, located in the London area, would have 

capacity factor of 11.8% [41].    

EV model 
EVs in the model follow week-long travel schedules recorded in the UK National Travel Survey, 2017 – 2019 

[42]. The survey includes 27,516 vehicles for these years. Here, we restrict to cars belonging to single-car 

households in an urban location, of which there are 8,948. Further, we restrict to vehicle schedules that can be 

completed by EVs with a 30 kWh battery and 7.2 kW charger, assuming a constant fuel economy of 3.75 

miles/kWh: this is 7,769 vehicles. The final sample of vehicles is then taken as a stratified sample by number of 

trips in the week (vehicles with data inconsistencies are excluded). It is worth noting that around 18% of vehicles 

make no trips at all over the course of a week. 

Table 2. Details of vehicle sample. 

Sample Number 

of 

vehicles 

Distance driven 

(miles) 

Trips taken 

  Mean Median Mean Median 

Urban cars 21,189 99.7 63.7 12.4 12 

Urban cars, one car 

household 

8,948 94.7 61.5 13.3 12 

Urban cars; one car 

household; viable for 

30 kWh EV battery 

7,769 84.0 54 12.2 11 

Final sample 50 78.1 53.3 12.4 12 

      

 

The 30 kWh Nissan Leaf is taken as the template for the modelled EVs. It is assumed that actual available battery 

capacity is 28.5 kWh, and that average fuel economy is 3.75 miles / kWh [43], [44]. This fuel economy is then 

adjusted according to the temperature, as shown in Figure 2. 

 

Figure 2. Adjustment to EV fuel economy according to outdoor temperature [43]. 

 

We use the same trip schedules regardless of the time of year, as the seasonal variation of weekly mileage / number 

of trips in the source data is negligible. The significant seasonal effect comes via the impact of temperature on 

fuel economy, rather than vehicle usage. 



V2X efficiency 

In this work we allow for energy losses of 5% for power conversion between AC and DC, and for 6% losses from 

the battery itself [45], [46]. Thus, the V2G storage efficiency is 84.9%. Although [47], [48] suggest that V2G 

round-trip efficiency may only be 50 – 70%, experimental work published more recently by Schram et al [49] 

suggests a range of 79.2 to 87% is realistic. Schram et al also found that the effects of SOC or temperature on 

charging efficiency are relatively small, so these are neglected here. 

2.2 Microgrid internal pricing and iterative bidding process 
For this work, we adapt the P2P mechanism laid out in Liu et al [10]. This is not a P2P mechanism in the strictest 

sense (trades that are negotiated bilaterally) but in the broader sense that it incentivises and remunerates power 

sharing between peers. Houses receive prices from the microgrid coordinator and plan their battery schedules 

accordingly. The new energy schedules are submitted to the microgrid operator, and new prices are calculated. 

The process iterates until convergence is achieved (or the maximum number of iterations is reached). The 

microgrid operator operates a balanced budget. Details of the process will now be given. 

Pricing formula 

The prices for household import and export of power are set according to the SDR formula [10]. Eqs. (1) – (5) 

give the details. If 𝐸ℎ,𝑡 is the net energy flow for household h during time period i, then the total of all household 

energy surpluses is: 𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠,𝑖 = ∑ 𝑚𝑎𝑥(0, 𝐸ℎ,𝑖)ℎ𝜖𝐻    (1) 

whereas the total of energy deficits is: 𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑡,𝑖 = ∑ 𝑚𝑎𝑥(0, −𝐸ℎ,𝑖)ℎ𝜖𝐻  
(2) 

The supply demand ratio may then be defined: 𝑆𝐷𝑅𝑖 = 𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠,𝑖𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑡,𝑖   (3) 

The prices that will be applied to the households’ bills are then calculated in terms of the SDR, and fixed costs 𝜋ℎ𝑖𝑔ℎ and 𝜋𝑙𝑜𝑤 in £/kWh [10]: 

𝜋𝑒𝑥𝑝𝑜𝑟𝑡(𝑆𝐷𝑅𝑖) = { 𝜋ℎ𝑖𝑔ℎ∙𝜋𝑙𝑜𝑤(𝜋ℎ𝑖𝑔ℎ−𝜋𝑙𝑜𝑤)∙𝑆𝐷𝑅+𝜋𝑙𝑜𝑤      , 𝑆𝐷𝑅 < 1𝜋𝑙𝑜𝑤 ,      𝑆𝐷𝑅 ≥ 1      
(4) 

𝜋𝑖𝑚𝑝𝑜𝑟𝑡(𝑆𝐷𝑅𝑖) =  {𝑆𝐷𝑅 ∙ 𝜋𝑒𝑥𝑝𝑜𝑟𝑡 + (1 − 𝑆𝐷𝑅) ∙ 𝜋ℎ𝑖𝑔ℎ     ,   𝑆𝐷𝑅 < 1𝜋𝑙𝑜𝑤      𝑆𝐷𝑅 ≥ 1    
(5) 

In general, 𝜋ℎ𝑖𝑔ℎ and 𝜋𝑙𝑜𝑤 are respectively equal to the retail price and the feed-in tariff, that is, 𝜋𝑔𝑟𝑖𝑑,𝑖𝑚𝑝 and 𝜋𝑔𝑟𝑖𝑑,𝑒𝑥𝑝; however, they may take different values when CES is used, as detailed below. Note that, as SDR rises 

to 1, import and export prices fall towards 𝜋𝑙𝑜𝑤, whereas they rise towards 𝜋ℎ𝑖𝑔ℎ when SDR approaches 0. 



 

Figure 3. Internal microgrid prices as a function of SDR. 

 

Iterative bidding process 

The P2P market in this work is for periods of one day at half hour resolution. Days run from 5.30am, since very 

few cars have trips earlier than this; this time can be regarded as the ‘beginning of the EV day’. k is used to index 

the iterations of the bidding process, whereas i is used to index the day’s 48 time periods. Thus, 𝐸ℎ,𝑖𝑘  is the signed 

net energy production of house h for time interval i, as scheduled at iteration k of the market mechanism (where 

a positive sign indicates power export). 𝑆𝐷𝑅𝑃𝑅𝐸,𝑖𝑘  is the SDR corresponding to the prices issued to households for bidding round k. 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖𝑘  is the SDR 

resulting from the re-optimisation of household schedules at round k. 

For each household, 𝐸ℎ,𝑖0  is initialised according to the inelastic demand 𝐸𝑙𝑜𝑎𝑑,𝑖 and generation 𝐸𝑃𝑉,𝑖, i.e. 𝐸ℎ,𝑖0   =  𝜂𝑖𝑛𝑣 ∙ 𝐸𝑃𝑉,𝑖 − 𝐸𝑙𝑜𝑎𝑑,𝑖 (6) 

 

(𝜂𝑖𝑛𝑣 represents the efficiency of the household’s inverter.) From this, 𝑆𝐷𝑅𝑃𝑅𝐸,𝑖1  can be calculated, and hence 

prices 𝜋𝑖𝑚𝑝𝑜𝑟𝑡,𝑖1 , 𝜋𝑒𝑥𝑝𝑜𝑟𝑡,𝑖1 . For each subsequent iteration, k ≥ 1, each household with an EV optimises its EV battery 

schedule in response to the latest prices {𝜋𝑒𝑥𝑝𝑜𝑟𝑡,𝑖𝑘 , 𝜋𝑖𝑚𝑝𝑜𝑟𝑡,𝑖𝑘 }. The optimisation model employed by households 

uses MILP and is detailed in Section 2.5. The new values of 𝐸ℎ,𝑖𝑘  are then used to calculate the resulting supply 

demand ratio 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖𝑘 . 

For the next round,  𝑆𝐷𝑅𝑃𝑅𝐸,𝑖𝑘+1  is calculated as 𝑆𝐷𝑅𝑃𝑅𝐸,𝑖𝑘+1 = 0.5 ∙ 𝑆𝐷𝑅𝑃𝑅𝐸,𝑖𝑘 +  0.5 ∙ 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖𝑘                  (∀𝑘 ≥ 1)  (7) 

 

An alternative would be to set 𝑆𝐷𝑅𝑃𝑅𝐸,𝑖𝑘+1 =  𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖𝑘  as in [10] but we find that the approach given in Eq. (7) can 

achieve better convergence. New prices are then calculated according to the SDR and the iteration continues. To 

improve convergence, we impose a maximum adjustment ∆𝐸𝑚𝑎𝑥 to the net household energy flow at each time 

interval; this applies from the second iteration onward, and the value of ∆𝐸𝑚𝑎𝑥 is reduced in subsequent rounds: 

|𝐸ℎ,𝑖𝑘 − 𝐸ℎ,𝑖𝑘−1| ≤ ∆𝐸𝑚𝑎𝑥,𝑘 ≔ { 0.5 kWh     ,     2 ≤ k < 6    0.1 kWh     ,     6 ≤ k < 12  0.05 kWh     ,     12 ≤ k  
(8) 

 

  



Convergence criteria 

Satisfactory convergence is considered to be achieved at round �̂� if the following hold: 

1. SDR has converged to a fixed point so that values before and after the round of optimisations are close: 

 |𝑆𝐷𝑅𝑃𝑅𝐸,𝑖�̂� − 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖�̂� | < 0.02 (9) 

        

2. No household has incremented its energy flow by the maximum permitted amount, and in the same 

direction, for two consecutive steps. This can be expressed as: (𝐸ℎ,𝑖�̂� − 𝐸ℎ,𝑖�̂�−1)(𝐸ℎ,𝑖�̂�−1 − 𝐸ℎ,𝑖�̂�−2) < 0.052,       ∀ℎ, 𝑖  (10) 

   

When convergence is achieved, households are committed to the energy bids submitted at the last iteration. The 

final prices will be calculated according to 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖�̂� . If convergence has not been achieved after 25 iterations, 

the prices and schedules for the 25th iteration are implemented.  

 

 

Adaption of process for community energy storage 

When CES is present, it is scheduled by the microgrid operator to benefit the whole microgrid as a collective. The 

iterative bidding process is adapted to incorporate CES as follows. At each iteration, dispatch of the CES is 

optimized immediately after households submit their own newly optimised schedules. The objective function for 

minimisation is the total cost of energy exchanged with the grid, plus a penalty term to encourage peak shaving: 

∑ {−𝜋𝑔𝑟𝑖𝑑,𝑒𝑥𝑝 ∙ 𝑚𝑎𝑥 (𝐸𝐶𝐸𝑆,𝑖 + ∑ 𝐸ℎ,𝑖ℎ , 0) + 𝜋𝑔𝑟𝑖𝑑,𝑖𝑚𝑝 ∙ 𝑚𝑎𝑥 (−𝐸𝐶𝐸𝑆,𝑖 − ∑ 𝐸ℎ,𝑖ℎ , 0)}𝑖  

+ 𝜋𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∙ 𝑚𝑎𝑥𝑖 (2 |𝐸𝐶𝐸𝑆,𝑖 + ∑ 𝐸ℎ,𝑖ℎ |) 

 

 

 

 

(11) 

where 𝐸𝐶𝐸𝑆,𝑖 is the net energy from the CES at time interval i (with positive sign corresponding to energy 

generation) and 𝜋𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is a nominal cost per kW for the peak usage of the grid connection (N.B. this does not 

actually form part of the retail tariff).  

The contribution of CES is excluded from the calculation of SDR as specified in Eq. (3). The discharge of CES 

does not make energy cheaper to buy for households at the specific time it occurs (conversely, when the CES 

charges, the households do not get an increased export tariff at that specific time). Instead, the value gained by 

use of the CES is distributed to households throughout the day, by adjusting the value of 𝜋ℎ𝑖𝑔ℎ and 𝜋𝑙𝑜𝑤 in Eqs. 

(4) and (5): 𝜋ℎ𝑖𝑔ℎ = 𝜋𝑔𝑟𝑖𝑑,𝑖𝑚𝑝 −  𝜆 𝜋𝑙𝑜𝑤 = 𝜋𝑔𝑟𝑖𝑑,𝑒𝑥𝑝 +  𝜆 

 

 

(12) 

The value of 𝜆 is chosen to ensure that the microgrid operator has a balanced budget – i.e. net cash flow of zero 

for the day. Prices for the next bidding iteration are then calculated as per Eqs. (12), (4) and (5). This approach 

ensures that the dispatch of CES is not detrimental to the convergence of the bidding process. 

2.3 Case study 
We consider a grid-connected microgrid consisting of 50 households, notionally located in the south-east of 

England. The number of households is intentionally larger than in most previous literature; this is to help ensure 

that the model captures the diversity between demand profiles and vehicle schedules for different households, 

since such diversity is a motivating factor for P2P. These households are assumed to share a single distribution 

transformer, and may each have an EV, a 3 kW PV installation, or both. 3 kW is the average capacity for small-



scale solar installations in the UK [1]. The houses’ basic electrical load comes from half-hourly measured data 

recorded by UK Power Networks in 2013 [50]. Measured irradiance data used for the PV model was recorded at 

Rothamsted in 2013, by UK Environmental Change Network [51]. PV systems are assumed to be split roughly 

evenly between south-facing, east-facing and west-facing systems; tilt angle of 40° is assumed in each case. The 

retail price of electricity is assumed to be £0.15/kWh and the feed-in tariff £0.05/kWh. Sizes of CES considered 

are 100 kWh, corresponding to ca. five hours of storage with respect to the load, and 500 kWh, corresponding to 

roughly a day of storage. 

Representative climate weeks 
We simulate the microgrid over one week for each of three seasons, with low, medium and high irradiance. Thus, 

21 days are simulated overall (more than in most extant work), enabling estimation of annual performance. Details 

of the representative weeks are given in Table 3. Estimation of annual household savings is done by assuming 52 

weeks to a year, and giving double weighting to the Autumn week. This weighting corresponds to annual 

insolation of 982 kWh / m2, which is reasonable given that insolation for Southern England is typically 950 – 

1100 kWh / m2 / a (equivalently, 108 - 126 W/m2) [52]. 

     

Table 3. Representative weeks for three seasons. 

Season Dates Average irradiance 

(W/m2)  

Load excluding 

EVs 

(kWh/house/day) 

Weighting 

Winter 23rd – 30th Nov 2013 26.3 13.7 0.25 

Autumn 22nd – 29th Sept 2013 97.7 10.0 0.5 

Summer 4th – 11th June 2013 226.7 10.0 0.25 

 

 

  



Systems and scenarios 
We compare seven different microgrid setups, or ‘systems’; these are shown in Table 4. G_V1G is the baseline 

system, whereby households are billed according to the grid tariff. EVs cannot engage in V2H or V2G; however, 

households with an EV and PV can optimise EV charging against their own generation. Subsequent systems allow 

different combinations of tariff with V2H or V2G. Note that all EV households are assumed to have the same 

capability regarding V2H / V2G. In the final two systems, CES sized at respectively 100 kWh (ca. five hours of 

storage) and 500 kWh (ca. one day of storage) is used for energy storage, but there is no V2H or V2G.  

Table 4. Microgrid systems. 

System name Description 

G_V1G Grid tariff; V1G. 

G_V2H Grid tariff; V2H. 

P2P_V1G P2P tariff; V1G. 

P2P_V2H P2P tariff; V2H. 

P2P_V2G P2P tariff; V2G. 

P2P_CES_100 P2P tariff; V1G, community energy storage 100 kWh 

P2P_CES_500 P2P tariff; V1G, community energy storage 500 kWh 

 

We consider penetrations of EV and PV ownership of 10%, 20%, 40%, 60%, 80% and 90%, so that there are 36 

penetration scenarios overall. We do not consider 0% or 100% penetration, since it is more interesting to observe 

the performance of households that are in a minority, rather than completely eliminate a type of household. For 

some of the analysis in Section 3, we also group aggregate scenarios into four quadrants Q1 – Q4; see Figure 4. 

Penetration scenarios assume that EV and PV ownership are statistically independent. Thus, for instance, if EV 

and PV penetration are respectively 60% and 20%, then 12% of houses will have both technologies. 

 
Figure 4. Shows the 36 technology penetration scenarios. These are also grouped into four quadrants Q1 – Q4. 

 

2.4 Performance metrics 
Self-sufficiency ratio (SSR) is defined as the proportion of load which is procured locally within the microgrid, 

i.e. not procured from grid imports. As such this provides a measure of the microgrid’s energy independence, and 
a rough indication of emissions curtailment: 𝑆𝑆𝑅 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 − 𝑡𝑜𝑡𝑎𝑙 𝑔𝑟𝑖𝑑 𝑖𝑚𝑝𝑜𝑟𝑡𝑠𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  

(13) 

 

Here, ‘total energy consumed’ includes energy charged to cars, as well as energy required for the basic 
household load. 

Energy balance index (EBI) is a measure introduced in [7]. Like SSR, it is a measure of grid independence, but 

penalises exports to the grid as well as imports: 𝑆𝑆𝑅 = 1 − 𝑡𝑜𝑡𝑎𝑙 𝑔𝑟𝑖𝑑 𝑖𝑚𝑝𝑜𝑟𝑡𝑠 + 𝑡𝑜𝑡𝑎𝑙 𝑔𝑟𝑖𝑑 𝑒𝑥𝑝𝑜𝑟𝑡𝑠𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 + 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 
(14) 



 

We also consider the total energy shared between households: 𝑡𝑜𝑡𝑎𝑙 𝑠ℎ𝑎𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑚𝑖𝑛(𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠,𝑖 , 𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑡,𝑖)𝑖  
  (15) 

We also consider the maximum power flow through the transformer at the microgrid’s grid coupling in either 

direction. The grid connection is assumed to balance the microgrid’s net energy demand, whenever sharing energy 

/ CES cannot wholly do so. 

2.5 Optimisation of a household’s EV dispatch 

 
The optimisation model employed by households for scheduling of EV batteries is based on the ‘BASOPRA’ 
model reported in [53]. The model has been adapted to represent an EV battery by introducing parameters to 

represent battery availability and battery discharge to the EV. Unlike in [53], the battery may be permitted to 

export power to the grid. Additional constraints can also impose a minimum state-of-charge for the battery at the 

end of the optimisation time frame (one day), and a minimum state-of-charge at which V2X can take place. A 

variable is also introduced to allow rapid charge of EV batteries while the car is away from home. This energy is 

priced at £0.30/kWh [54], [55]. The availability of rapid charge ensures that individual optimisations are always 

feasible, although the high cost of this energy means that use of rapid charging will always be as minimal as 

possible. Optimisation is conducted using the GLPK solver. 

 

Table 5. Nomenclature for EV battery optimisation 

Description Symbol Unit Set, or default value 

Optimisation parameters    

Time parameters    

Time instant t - 𝑇 =  {0,1, … 48} 

Time step i - 𝐼 =  {1,2, … 48} 

Length of time step dt hours 0.5 

Settings    

Permit EV battery discharge (V2X) 𝛣𝑉2𝑋 - {0, 1} 

Permit household power export 𝛣𝑒𝑥𝑝 - {0, 1} 

Valuation of final energy stored 𝜋𝑓𝑖𝑛𝑎𝑙 £ / kWh 0.06 

Price for rapid charge during trip 𝜋𝑟𝑎𝑝𝑖𝑑,𝑖 £ / kWh 0.30 

Capacity tariff 𝜋𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 £ / kW 0 

Battery and inverter    

Battery nominal capacity 𝐶𝑏𝑎𝑡𝑡𝑛𝑜𝑚 kWh 30 

Battery DC efficiency 𝜂𝑏𝑎𝑡𝑡 - 0.94 

Battery initial energy stored 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_𝑖𝑛𝑖𝑡 kWh [0, ∞) 

Minimum final energy stored 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_min_𝑓𝑖𝑛𝑎𝑙 kWh [0, ∞) 

Minimum battery energy for V2X 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_min_𝑉2𝑋 kWh [0, ∞) 

Battery maximum charge power 𝑃𝑚𝑎𝑥−𝑐ℎ𝑎𝑟 kW 7.2 

Battery maximum discharge power 𝑃𝑚𝑎𝑥−𝑑𝑖𝑠𝑐ℎ kW 7.2 

Battery maximum state of charge 𝑆𝑂𝐶𝑚𝑎𝑥 - 0.95 

Batter minimum state of charge 𝑆𝑂𝐶𝑚𝑖𝑛 - 0.05 

Inverter efficiency 𝜂𝑖𝑛𝑣 - 0.95 

Inverter power 𝑃𝑖𝑛𝑣 kW 10 

Time series inputs    

Price for household power import 𝜋𝑖𝑚𝑝𝑜𝑟𝑡,𝑖 £ / kWh [0, ∞)|𝐼| 
Price for household power export 𝜋𝑒𝑥𝑝𝑜𝑟𝑡,𝑖 £ / kWh [0, ∞)|𝐼| 
Household load 𝐸𝑙𝑜𝑎𝑑,𝑖 kWh [0, ∞)|𝐼| 
PV generation 𝐸𝑃𝑉,𝑖 kWh [0, ∞)|𝐼| 
Energy required for driving 𝐸𝑑𝑟𝑖𝑣𝑒,𝑖 kWh [0, ∞)|𝐼| 
Availability of EV battery 𝛼𝑖 - [0, 1]|𝐼| 
Optimisation decision variables    

Energy stored in battery 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑡 kWh [0, ∞)|𝑇| 



DC kWh for battery charge 𝐸𝑐ℎ𝑎𝑟,𝑖 kWh [0, ∞)|𝐼| 
DC kWh from battery discharge 𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 kWh [0, ∞)|𝐼| 
Binary variable for battery charge 𝛣𝑐ℎ𝑎𝑟,𝑖 - {0, 1}|𝐼| 
Binary variable for battery discharge 𝛣𝑑𝑖𝑠,𝑖 - {0, 1}|𝐼| 
Net AC energy for inverter 𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 kWh ℝ|𝐼| 
Net energy flow for household 𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 kWh ℝ|𝐼| 
Energy from rapid charger 𝐸𝑟𝑎𝑝𝑖𝑑,𝑖 kWh [0, ∞)|𝐼| 
Net cashflow 𝐶𝐹𝑖 £ ℝ|𝐼| 
Max powerflow 𝑃ℎ𝑜𝑢𝑠𝑒,𝑚𝑎𝑥 kW [0, ∞) 

 𝛣𝑐ℎ𝑎𝑟,𝑖 and 𝛣𝑑𝑖𝑠,𝑖 are initialised to random values before solving. This encourages households to find different 

solutions, aiding convergence of prices. 

Optimisation Constraints 

Constraints on EV battery 

Eqs. (16) to (19), below, describe the stored energy in the EV battery 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖, including the initial and final 

values. 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,0 =  𝐸𝑠𝑡𝑜𝑟𝑒𝑑_𝑖𝑛𝑖𝑡  (16) 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖 =  𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖−1 + 𝜂𝑏𝑎𝑡𝑡 ∙ 𝐸𝑐ℎ𝑎𝑟,𝑖 − 𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 − 𝐸𝑑𝑟𝑖𝑣𝑒,𝑖 + 𝐸𝑟𝑎𝑝𝑖𝑑,𝑖 , 𝑖 > 0  (17) 

𝑆𝑂𝐶𝑚𝑖𝑛 ∙ 𝐶𝑏𝑎𝑡𝑡𝑛𝑜𝑚  ≤  𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖 ≤  𝑆𝑂𝐶𝑚𝑎𝑥 ∙ 𝐶𝑏𝑎𝑡𝑡𝑛𝑜𝑚    (18) 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑,48 ≥  𝐸𝑠𝑡𝑜𝑟𝑒𝑑_min_𝑓𝑖𝑛𝑎𝑙  (19) 

Eqs. (20) and (21) impose the availability of the EV battery, the maximum charge/discharge power; and the binary 

on/off state for charge/discharge. Eq. (22) ensures that charge and discharge are not simultaneous. 𝐸𝑐ℎ𝑎𝑟,𝑖 ≤  𝛼𝑖 ∙ 𝑃𝑚𝑎𝑥−𝑐ℎ𝑎𝑟 ∙ 𝛣𝑐ℎ𝑎𝑟,𝑖 ∙ 𝑑𝑡   (20) 

𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 ≤  𝛼𝑖 ∙ 𝑃𝑚𝑎𝑥−𝑑𝑖𝑠𝑐ℎ ∙ 𝛣𝑑𝑖𝑠𝑐ℎ,𝑖 ∙ 𝑑𝑡   (21) 

𝛣𝑐ℎ𝑎𝑟,𝑖 + 𝛣𝑑𝑖𝑠𝑐ℎ,𝑖  ≤ 1  (22) 

 

     

Eq. (23) prevents discharge of the battery if V2X is not permitted; Eq. (24) imposes the minimum battery state-

of-charge for V2X. Eq. (25) ensures that rapid charging only occurs while the vehicle is away from home. 𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 ≤  𝛣𝑉2𝑋 ∙ 106  (23) 

𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 ≤  𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖−1 − 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_min_𝑉2𝑋 ∙ 𝛣𝑑𝑖𝑠𝑐ℎ,𝑖  (24) 

𝐸𝑟𝑎𝑝𝑖𝑑,𝑖 ≤  (1 − 𝛼𝑖) ∙ 106  (25) 

Inverter constraints 

Eqs. (26) and (27) constrain the net power on the AC side of the inverter; Eq. (26) covers the case of power export 

through the inverter, whilst Eq. (27) covers the case of power import. Eq. (28) imposes the inverter capacity. The 

inverter can curtail power if necessary. 



𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 ≤ 𝜂𝑖𝑛𝑣 ∙ (𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 − 𝐸𝑐ℎ𝑎𝑟,𝑖 + 𝐸𝑃𝑉,𝑖)    (26) 

𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 ≤ 1𝜂𝑖𝑛𝑣 (𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 −  𝐸𝑐ℎ𝑎𝑟,𝑖 + 𝐸𝑃𝑉,𝑖)   (27) 

−𝑃𝑖𝑛𝑣 ∙ 𝑑𝑡 ≤  𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 ≤ 𝜂𝑖𝑛𝑣 ∙ 𝑃𝑖𝑛𝑣 ∙ 𝑑𝑡 (28) 

 

Household constraints 

Eq. (29) gives the overall net load for the household; Eq. (30) controls whether export of power is allowed. Eqs. 

(31) and (32) control the net payments for export / import of energy. 𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 =  𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 − 𝐸𝑙𝑜𝑎𝑑,𝑖   (29) 

𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 ≤  𝛣𝑒𝑥𝑝 ∙ 106  (30) 

𝐶𝐹𝑖 ≤  𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 ∙  𝜋𝑒𝑥𝑝𝑜𝑟𝑡,𝑖   (31) 

𝐶𝐹𝑖 ≤  𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 ∙  𝜋𝑖𝑚𝑝𝑜𝑟𝑡,𝑖   (32) 

 

Objective function 

This consists of the nominal value assigned to final energy stored, the payment for rapid charging, and the net bill 

for import and export of power. 𝑂𝐵𝐽 =  𝜋𝑓𝑖𝑛𝑎𝑙 ∙ 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,48 − 𝜋𝑟𝑎𝑝𝑖𝑑 ∙ ∑ 𝐸𝑟𝑎𝑝𝑖𝑑,𝑖𝑖 + ∑ 𝐶𝐹𝑖𝑖  
(33) 

3. Results 
This section is organised as follows. We first present results for the operation of the microgrid over the summer 

week, and consider the overall performance in terms of the technical performance indicators, and household 

savings. We then assess the impact of season on the microgrid’s performance, before focusing specifically on the 

annual savings for households, and how these are distributed to households of different classifications. 

3.1 Results for summer 
To illustrate the operation of the microgrid, Figure 5 shows simulation results for system P2P_V2G over the 

course of the summer week, for a scenario with 80% PV penetration and 40% EV penetration. Shown are energy 

production, energy consumption, self-consumed vs. shared power, and internal microgrid prices. By comparison 

of Figures 5 (a) and 5 (b), it will be seen that the charging of EVs tends to track the rise and fall of solar generation. 

Conversely, the discharging of EVs at night time tracks the standard (inflexible) electric load. As shown in Figure 

5 (c), this flexibility is accomplished both by self-consumption within houses, and also to a significant extent by 

power sharing via the P2P market. The total shared energy over the week was 1681 kWh, compared to 619 kWh 

for the baseline system G_V1G at the same technology penetration levels. Grid imports across the week are 

reduced by 59%, from 1714 to 701 kWh; grid exports by 55% from 2012 kWh to 908 kWh; self-sufficiency 

increases from 55% to 86%. Consequently the average household is £3.19 better off across the week compared to 

the baseline system. 
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Figure 5. Operation of microgrid P2P_V2G over the simulated week, with 80% PV penetration and 40% EV penetration. 

(Hour zero is Monday 5.30am.)  

(a) Power generation 

(b) Power consumption 

(c) Power self-consumed by households / shared between households / imported from grid 

(d) Internal microgrid prices 

 

 

 

 



 

 

Figure 6. Performance indicators for the microgrid, for the various systems and scenarios, over the summer week. In each block, PV penetration increases from left to right, and 

EV penetration increases from top to bottom. Shading has highest values coloured green and lowest values red, except for ‘Max transformer load’ where this colour scheme is 

reversed.  



Figure 6 summarises the performance of the microgrid over all systems and technology penetration levels for the 383 

summer week. Performance indicators shown are SSR, EBI, maximum transformer loading at the grid connection, 384 

shared kWh and average household savings (versus the baseline scenario, G_V1G). Certain broad observations 385 

can be made: the impact of PV penetration on these metrics is generally strong, whereas the impact of EV 386 

penetration tends to be more subtle, even when V2H / V2G are permitted. Whilst SSR naturally climbs with 387 

increasing PV penetration, shared energy and household savings (relative to the grid tariff) tend to peak at 388 

middling PV penetration. Peak transformer loading and EBI also achieve their best values for middling PV 389 

penetration. 390 

In G_V1G (the baseline system) SSR for the week varies between 11% and 58%, EBI between 21% and 57%, 391 

and maximum transformer loading between 40.5 kW and 91.7 kW, according to the technology penetration. Power 392 

shared varies between 282 and 873 kWh (N.B. this is power which is physically shared, although not traded). SSR 393 

and EBI improve strongly as PV penetration increases. Increasing EV penetration tends to have a more modest, 394 

downward impact on these metrics. However, additional EVs can improve EBI if PV penetration is high, owing 395 

to the reduction in grid exports. 396 

In G_V2H, EV households are permitted to discharge their batteries as V2H. Without a P2P trading system or 397 

time-of-use tariff, only the households in possession of EV and PV can profit by this. Thus the impact is negligible 398 

unless PV and EV penetration are high. With high enough penetration, we see moderate improvements in the 399 

microgrid’s SSR and EBI, and decreased transformer loading; the highest SSR and EBI achieved are now 72% 400 

and 70%. Shared power decreases somewhat under G_V2H, since PV households can store surplus power for 401 

later use. 402 

P2P_V1G introduces the P2P market mechanism (but does not allow V2H). There is now an incentive for 403 

households with EVs, but no PV, to schedule their charging to synchronise with peaks in solar generation. The 404 

effect is best demonstrated by observing the increase in energy shared between households, relative to the baseline 405 

G_V1G. This increase is typically at least 20%, representing up to 250 additional shared kWh across the week; 406 

across all technology penetration scenarios, the maximum shared energy is now 1,119 kWh (for 40% PV, 90% 407 

EV penetration). The increases in shared power correspond to modest improvements in SSR and EBI, although 408 

less than the improvements effected by G_V2H. No improvement is seen in the maximum transformer loading. 409 

The P2P tariff achieves household savings averaging up to £2.28 for the week; the best savings are seen when EV 410 

penetration is high and PV penetration is medium. 411 

For most penetration scenarios, performance indicators for P2P_V2H are significantly improved versus G_V1G, 412 

G_V2H and P2P_V1G. Thus, the combination of V2H and a P2P tariff achieves much more than either innovation 413 

individually, a point we wish to emphasize. (However, for PV penetration below 20%, performance is similar to 414 

P2P_V1G, as there is insufficient surplus energy to store for V2H.) The increase in shared power versus the 415 

baseline is often several hundred kWh, with the largest increases of over 1 MWh additional shared power, 416 

occurring for PV penetration ≥ 60% and EV penetration 10 – 40%. Imported power is much reduced; for instance 417 

at 60% PV, 40% EV penetration, imports fall from 1,952 kWh baseline to 1,071 kWh under P2P_V2H (-45%). 418 

The reduced grid interaction is also reflected in improved SSR and EBI scores, with the best values now 88% and 419 

87% respectively. Further, the maximum loading on the microgrid’s transformer is also reduced; for instance, 420 

90% penetration of both PV and EV can be accommodated with a peak loading of 58 kW, compared to 90 kW 421 

under G_V1G; a 36% reduction (although it should be remembered that this peak reduction is just over a one-422 

week duration). The savings for households across the week can average up to £3.54.  423 

P2P_V2G additionally allows all EV households to export power from EV batteries (V2G). In these results, the 424 

impact of allowing V2G is minimal to non-existent, so that P2P_V2G and P2P_V2H have very similar 425 

performance across all performance indicators. At middling PV penetration, V2G does result in an increase in 426 

shared power, but this increase is small. A possible explanation would be that households prefer to expend all 427 

energy stored in the EV battery on offsetting their own local electrical load. However, the average daily load for 428 

a household is only ca. 10 kWh, compared to 15 kWh of EV battery storage made available for V2X. Thus, the 429 

average household carrying out V2X should have enough battery capacity for V2G as well as V2H. The other 430 

explanation is simply that the iterative market mechanism is not good at incentivising V2G. Specifically, the SDR 431 

approach cannot allow a large proportion of supply to be exported from EV batteries, as the price paid for 432 

household export inevitably falls as the power exported from EVs increases. To incentivise V2G, some form of 433 

double auction is preferable, since this allows owners of EV batteries (or other flexible generation / storage) to 434 



make energy bids contingent on securing a given price. This power to dictate prices is absent from the market 435 

mechanism used here. 436 

The final two systems introduce stationary CES (respectively 100, 500 kWh) but do not allow V2H or V2G. The 437 

energy independence measures, SSR and EBI, are improved substantially versus the baseline, reaching SSR = 438 

73%, EBI = 74% for P2P_CES_100; and SSR =  87%, EBI = 86% for P2P_CES_500. The 500 kWh CES 439 

outperforms the 100 kWh CES only when PV penetration exceeds 60%; this is reflected in the scores for SSR, 440 

EBI and transformer loading, as well as the household savings.  Thus it seems that for the lower PV penetration, 441 

100 kWh of community storage is adequate. Broadly speaking, P2P_CES_500 achieves similar levels of energy 442 

independence to P2P_V2H across most technology penetration scenarios. On the other hand, the CES is 443 

significantly more successful at reducing peak transformer load. For example, P2P_CES_500 can accommodate 444 

90% penetration of both EV and PV ownership, with a peak load of 39 kW – compared to 58 kW under P2P_V2H 445 

and 90 kW under G_V1G. This is expected since the CES is controlled with peak shaving as an explicit objective, 446 

whereas for previous systems, any peak shaving is an incidental consequence of households pursuing their self-447 

interest. 448 

Besides the clear advantages of combining P2P with V2H, a further point to emphasize is that doing so can achieve 449 

benefits regardless of EV and PV penetration. This contradicts a result of Zhou et al [7] who suggested that P2P 450 

becomes redundant when PV and EV penetrations are both high, as households can charge their own EV with 451 

their own generation. In our results, the average household saves £3.23 when EV and PV penetration are at 90% 452 

thanks to the P2P system. 453 

Seasonal variation 454 

The results up to this point have been for the typical summer week; we now introduce the impact of seasons. 455 

Figure 7 shows SSR and mean household savings for the various microgrid systems, across three seasons, with 456 

the penetration scenarios averaged into four quadrants (see Section 2.3). Season has a pronounced effect on both 457 

measures. In autumn, the P2P systems can still achieve notable improvements to SSR and to bills, although the 458 

improvements are reduced in magnitude. Generally, the relative performance of the different systems in summer 459 

and autumn is very similar; in particular, P2P_V2H still clearly outperforms G_V2H and P2P_V1G in autumn. 460 

For winter, savings and SSR are around an order of magnitude less than in summer, and the P2P systems can 461 

make only negligible impact. In the next section, we discuss the annual savings for households, which are 462 

estimated as a weighted combination of weekly savings in summer, autumn and winter.  463 
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(a) 

 

(b) 

Figure 7. Impact of season on (a) SSR and (b) weekly household savings, for each of the seven microgrid systems. 

Household savings are relative to the baseline system with no P2P (G_V1G). Quadrants Q1 – Q4 are used for 

technology penetration (see Section 2.3). 

 

 

3.2 Household savings and distribution of benefits 468 

In this section we discuss the possible annual savings for households participating in the microgrid’s market. 469 

Under G_V1G the average annual bill is £590 for a household with no EV or PV, £770 for a household with an 470 

EV; £380 for a household with PV; £440 for a household with both technologies. Figure 8 shows estimated annual 471 

savings across all microgrid systems and penetration scenarios, with households classified according to ownership 472 

of PV / EV. Figure 9 uses additional classifications of households (commuter / non-commuter; PV orientation), 473 

and shows results for P2P_V1G, P2P_V2H and P2P_CES_500.  474 



  

 

Figure 8. Average improvement in annual household bill, relative to G_V1G, for different household types and 

scenarios. In each block, PV penetration increases from left to right, and EV penetration increases from top to bottom. 

Blocks with no possibility of households making a saving are left blank. Unit is GBP. 

 475 

Annual bill savings enabled by the various P2P systems tend to average up to £100, but can be over £200 for some 476 

household types in some scenarios. It is important to note that all types of households can benefit from the P2P. 477 

For instance, even for households with both PV and EV, P2P_V2H achieves markedly higher savings than 478 

G_V2H. Thus, these households evidently benefit from the ability to trade energy with neighbours, despite 479 

possessing their own generation and energy storage. This even remains true even at 90% penetration of the 480 

technologies. Households with neither PV nor EV can also benefit, although usually to a lesser extent than 481 

households with EV/PV.  The largest savings (>£200/a) from P2P are enjoyed by households with an EV but no 482 

PV of their own, in scenarios with high PV penetration creating a buyer’s market. Conversely, large benefits can 483 

also be felt by households with PV but no EV, especially when low PV penetration and high EV penetration create 484 

a seller’s market.  485 

Under G_V2H (given that the grid tariff is assumed constant) households must have both PV and EV in order to 486 

benefit economically; for these households, the benefits to the annual bill average ca. £44. Under P2P_V1G, 487 

household savings average £38/a across all household types and technology penetrations; savings are greatest at 488 

middling PV penetration, reaching a maximum of £54/a. Middling PV penetration allows that different households 489 

can simultaneously be in deficit or surplus, so that the P2P is most beneficial. 490 

As with the technical performance measures, P2P_V2H achieves notably greater household savings than either 491 

G_V2H or P2P_V1G; the average across all household types and scenarios is £60/a. The savings are most 492 

significant at middling to high PV penetration, which allows households to charge cheap power to their vehicles 493 

during the day for use after sunset. Unlike P2P_V1G, savings do not peak at mid-range PV penetration, suggesting 494 

that more generation can always be put to use; savings reach ca. £90/a when PV penetration is high.  Again, the 495 

biggest savings versus G_V1G (sometimes >£200) are made by households with EVs but no PV. Interestingly 496 

though, the jump in savings from P2P_V1G to P2P_V2H is actually less for the EV owners than the PV owners, 497 

who evidently benefit from the competition to buy power for V2H. 498 



As already discussed, the market mechanism is not well-designed to incentivise V2G. Thus savings under 499 

P2P_V2G are very similar to P2P_V2H, with the average benefit again being £60/a across all tech penetration 500 

levels. Household savings for P2P_CES_100 and P2P_CES_500 average respectively £51 and £60. Because the 501 

CES enables microgrid prices to be smoother throughout the day, avoiding extreme values, distribution of benefits 502 

to different classes of households is somewhat more even than under P2P_V2H (see also Figure 9). The magnitude 503 

of household savings is broadly comparable for systems P2P_V2H and P2P_CES_500. 504 

 505 

EV usage and PV orientation 506 

For an EV owner, pay-off from the P2P systems comes from charging the vehicle when power is cheap, i.e. when 507 

PV generation is high. Thus it would be expected that commuter vehicles, that are often away at work during the 508 

daytime, will benefit less. This does indeed prove to be the case in our results (wherein we define a commuter 509 

household to be any household with four or more trips to work in the morning, over the week-long travel schedule). 510 

For instance, under P2P_V1G, average annual benefits for commuter EV households are £29, but £47 for non-511 

commuters; under P2P_V2H the discrepancy is £60 to £77. Figure 9 shows that the discrepancy in earnings 512 

between commuters and non-commuters is greater when EV penetration is higher (3.5 (b) and (d)); whereas higher 513 

PV penetration is beneficial to both groups of EV drivers (3.5 (c) and (d)). 514 

Additionally, we consider the orientation of PV systems (east, west, or south). Overall the benefits of the P2P 515 

mechanisms for each orientation appear very similar (see Figure 9). There is some indication that high PV 516 

penetration in the microgrid is more detrimental to the households with south-facing PV (see particularly Figure 517 

9 (c)). However, it’s important to note that the bills for households with south-facing systems are already lower 518 

in absolute terms (average £362/a for south-facing PV, versus £431/a for the other orientations, under G_V1G). 519 

 520 

 

(a) Q1 

(b) Q2 

(c) Q3 



(d) Q4 

Figure 9. Average improvement in household net daily bill relative to G_V1G, for different household categories 

and microgrid systems. Estimated for one full year. Systems shown are P2P_V1G, P2P_V2H and P2P_CES_500. 
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4. Discussion 523 

This work has developed a simulation model to investigate a P2P market mechanism based on iterative bidding, 524 

in combination with realistic models for EV usage and PV generation. We have confirmed that P2P trading can 525 

achieve significant benefits, both technical and economic. These are particularly interesting when the P2P market 526 

is combined with V2H technology. For instance, at 40% penetration for EV and PV ownership, average bills over 527 

a summer week improve by £2.42 (around 33% of the average summer weekly bill) and SSR increases from 41 528 

to 60%. The benefits of V2H and P2P in tandem exceed the benefits of either in isolation. Perhaps counter-529 

intuitively, this is still true when PV penetration and EV penetration are both high, so that most households possess 530 

both: for 90% penetration of each, V2H alone achieves average weekly savings of £1.02; P2P achieves £1.52; but 531 

the two in combination save households an average of £3.23. That P2P trading is profitable even when most 532 

households have PV and EV makes sense when considering two factors (i) EVs are not always available and (ii) 533 

they can charge at higher power than the output of typical rooftop solar (respectively 7.2 kW and 3 kW in this 534 

work). Thus, an available vehicle can utilise all the surplus PV from its own household, and still benefit from 535 

buying additional power from a neighbour whose car is unavailable. 536 

We find some indication that the benefits of the P2P market for commuters, whose cars are likely to be unavailable 537 

during the day, may be less than for non-commuters. For the system with V2H and P2P, the annual benefits for 538 

non-commuters are 28% greater, averaged over all scenarios. We also compared the usage of EVs for energy 539 

storage with shared, stationary CES. This was controlled to minimise the microgrid’s aggregate net bill, whilst 540 

also peak shaving for the grid connection. Because the CES schedule is controlled directly – whereas the schedules 541 

of EV batteries can only be influenced by market conditions – CES proved more successful at reducing peak loads 542 

than V2H; whereas household cost savings and improvements in energy autonomy were similar for V2H / CES. 543 

The iterative bidding market mechanism used for this study has various strengths and weaknesses. Optimisation 544 

of household schedules in response to published prices is a simple and intuitive problem. Unlike in other market 545 

mechanisms, energy bids are never declined – rather, adjustments are encouraged by the price changes for the 546 

next iteration. Thus, there are no ‘lucky’ or ‘unlucky’ participants in the daily market. On the other hand, the need 547 

for constraints to encourage convergence of prices means that a level of central control is still present – the 548 

households are not fully free in their decision making. Pricing can tend to favour consumers more than generators. 549 

In particular, this market mechanism would need adapting in order to incorporate generation with non-zero 550 

marginal cost (V2G, CHP) as the mechanism currently assumes prices must be low whenever most supply is 551 

procured internally. Thus in this work, making V2G available achieved negligible benefits versus V2H – but there 552 

is no reason why this has to be true in general. Future work could compare this iterative market mechanism with 553 

other mechanisms: for instance, full central control; one-shot double auction; continuous double auction. 554 

It is worth noting that passive participants in the microgrid (who have neither an EV or a PV) still benefit from 555 

the P2P market, especially in a buyer’s market scenario (see Figures 8, 9). These benefits are always less than 556 

households with flexible load, but can sometimes be greater than the benefits to PV households. This is not 557 

necessarily reasonable, as these households are essentially profiting at the energy supplier’s expense whilst taking 558 

no actions to benefit the community. The rationale for allowing these households to participate is that the market 559 

mechanism should not necessarily be aware of, or care about, what is ‘behind’ a household’s meter. However, it 560 

might be worthwhile to consider market designs that more explicitly reward flexibility in demand. One possibility 561 

could be to reward load adjustments which are made to alleviate forecasting uncertainty or unforeseen fluctuations 562 

– see for instance [28]. Another possibility might be to impose a fee to join the P2P market, and thus recoup the 563 

average benefit of passive participants. It’s also worth noting that participants without EV or PV could still 564 

contribute to the microgrid through control of smaller flexible loads (e.g. dishwashers, fridges) although these 565 

have not been modelled here. 566 

5. Conclusions and future work 567 

The authors believe that this work has demonstrated P2P to be a very interesting innovation that could greatly 568 

assist the integration of a high penetration of PV and EVs in the built environment. It can enable significant gains 569 

in energy independence (which should correspond to a reduction in emissions) and significant reduction of 570 

household bills, especially when PV penetration is high (see Figure 7). In particular, the coupling of P2P with 571 

V2H chargers is of interest, bringing greater benefits than either innovation individually.  572 

 573 



Suggested topics for future work include: 574 

 P2P market mechanisms that can take account of forecasting uncertainty. Uncertainty in forecasting 575 

generation / demand has received some attention; in contrast, forecasting of EV usage / availability has 576 

received little if any. 577 

 Simulation of P2P mechanisms at higher time resolution. Existing work, including the present work, 578 

tends to use hourly or half-hourly resolution. Real life management of a microgrid demands attention to 579 

shorter term fluctuations. 580 

 Coupling of markets for heat and power. Some proposals have been made for this (e.g. [31]) but such 581 

work is rare. 582 

 583 

6. Acknowledgements 584 

Grateful acknowledgement is made of the financial support of the Engineering and Physical Sciences Research 585 

Council (EPSRC) in the form of the ‘Energy Storage and its Applications’ Centre for Doctoral Training under 586 

grant code EP/L0168/18; also of the Electric Power Research Institute. The final author would like to acknowledge 587 

the support of the Royal Academy of Engineering through the Industrial Fellowship (Reference: IF\192046). 588 

This research makes use of data from the UK Environmental Change Network and UK Power Networks. 589 

 590 

References 591 

[1] Department for Business Energy & Industrial Strategy, “Feed-in Tariff statistics,” gov.uk, 2021. [Online]. 592 

Available: https://www.gov.uk/government/collections/feed-in-tariff-statistics. [Accessed: 15-Apr-593 

2021]. 594 

[2] R. Harrabin, “Ban on new petrol and diesel cars in UK from 2030 under PM’s green plan - BBC News,” 595 

Nov-2020. . 596 

[3] T. Wills, “The UK’s transition to electric vehicles,” 2020. 597 

[4] P. Papadopoulos, S. Skarvelis-Kazakos, I. Grau, L. M. Cipcigan, and N. Jenkins, “Electric vehicles’ 598 

impact on British distribution networks,” IET Electr. Syst. Transp., vol. 2, no. 3, pp. 91–102, Sep. 2012. 599 

[5] E. McKenna, J. Pless, and S. J. Darby, “Solar photovoltaic self-consumption in the UK residential sector: 600 

New estimates from a smart grid demonstration project,” Energy Policy, vol. 118, no. April, pp. 482–491, 601 

2018. 602 

[6] R. Gupta et al., “Spatial analysis of distribution grid capacity and costs to enable massive deployment of 603 

PV, electric mobility and electric heating,” Appl. Energy, vol. 287, no. December 2020, p. 116504, 2021. 604 

[7] Y. Zhou, J. Wu, and C. Long, “Evaluation of peer-to-peer energy sharing mechanisms based on a 605 

multiagent simulation framework,” Appl. Energy, vol. 222, no. November 2017, pp. 993–1022, 2018. 606 

[8] W. Tushar, T. K. Saha, C. Yuen, D. Smith, and H. V. Poor, “Peer-to-Peer Trading in Electricity Networks: 607 

An Overview,” IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3185–3200, Jul. 2020. 608 

[9] Z. Li and T. Ma, “Peer-to-peer electricity trading in grid-connected residential communities with 609 

household distributed photovoltaic,” Appl. Energy, vol. 278, p. 115670, Nov. 2020. 610 

[10] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, “Energy-Sharing Model with Price-Based Demand 611 

Response for Microgrids of Peer-to-Peer Prosumers,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3569–612 

3583, 2017. 613 

[11] W. El-Baz, P. Tzscheutschler, and U. Wagner, “Integration of energy markets in microgrids: A double-614 

sided auction with device-oriented bidding strategies,” Appl. Energy, vol. 241, no. November 2018, pp. 615 

625–639, 2019. 616 

[12] N. S. Pearre and H. Ribberink, “Review of research on V2X technologies, strategies, and operations,” 617 

Renewable and Sustainable Energy Reviews, vol. 105. Elsevier Ltd, pp. 61–70, May-2019. 618 



[13] Centrica, “Centrica joins community energy blockchain trial,” centrica.com, 2018. [Online]. Available: 619 

https://www.centrica.com/media-centre/news/2018/centrica-joins-community-energy-blockchain-trial. 620 

[Accessed: 20-Feb-2021]. 621 

[14] P. Gordon, “EDF launches blockchain-enabled renewables trading pilot,” smart-energy.com, 2019. 622 

[Online]. Available: https://www.smart-energy.com/industry-sectors/distributed-generation/edf-623 

launches-blockchain-p2p-solar-and-storage-trading-pilot/. [Accessed: 20-Feb-2021]. 624 

[15] C. Zhang, J. Wu, C. Long, and M. Cheng, “Review of Existing Peer-to-Peer Energy Trading Projects,” in 625 

Energy Procedia, 2017, vol. 105, pp. 2563–2568. 626 

[16] R. Alvaro-Hermana, J. Fraile-Ardanuy, P. J. Zufiria, L. Knapen, and D. Janssens, “Peer to Peer Energy 627 

Trading with Electric Vehicles,” IEEE Intell. Transp. Syst. Mag., vol. 8, no. 3, pp. 33–44, Sep. 2016. 628 

[17] Z. Guo, P. Pinson, S. Chen, Q. Yang, and Z. Yang, “Chance-Constrained Peer-to-Peer Joint Energy and 629 

Reserve Market Considering Renewable Generation Uncertainty,” IEEE Trans. Smart Grid, vol. 12, no. 630 

1, pp. 798–809, 2021. 631 

[18] J. Li, C. Zhang, Z. Xu, J. Wang, J. Zhao, and Y. J. A. Zhang, “Distributed transactive energy trading 632 

framework in distribution networks,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 7215–7227, 2018. 633 

[19] P. Samadi, A.-H. Mohsenian-Rad, R. Schober, V. W. S. Wong, and J. Jatskevich, “Optimal Real-Time 634 

Pricing Algorithm Based on Utility Maximization for Smart Grid,” in 2010 First IEEE International 635 

Conference on Smart Grid Communications, 2010, vol. 2015-March, no. March, pp. 415–420. 636 

[20] E. Oh and S. Y. Son, “Peer-to-Peer Energy Transaction Mechanisms Considering Fairness in Smart 637 

Energy Communities,” IEEE Access, vol. 8, pp. 216055–216068, 2020. 638 

[21] C. Chen, S. Kishore, and L. V. Snyder, “An innovative RTP-based residential power scheduling scheme 639 

for smart grids,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., pp. 5956–5959, 2011. 640 

[22] P. Yang, G. Tang, and A. Nehorai, “A game-theoretic approach for optimal time-of-use electricity 641 

pricing,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 884–892, 2013. 642 

[23] B. Kim, Y. Zhang, M. van der Schaar, and J. Lee, “Dynamic Pricing and Energy Consumption Scheduling 643 

With Reinforcement Learning,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2187–2198, Sep. 2016. 644 

[24] C. Zhang, J. Wu, Y. Zhou, M. Cheng, and C. Long, “Peer-to-Peer energy trading in a Microgrid,” Appl. 645 

Energy, vol. 220, no. December 2017, pp. 1–12, 2018. 646 

[25] J. Wang, Q. Wang, N. Zhou, and Y. Chi, “A novel electricity transaction mode of microgrids based on 647 

blockchain and continuous double auction,” Energies, vol. 10, no. 12, pp. 1–22, 2017. 648 

[26] A. M. C. Marufu, A. V. D. M. Kayem, and S. D. Wolthusen, “A distributed continuous double auction 649 

framework for resource constrained microgrids,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes 650 

Artif. Intell. Lect. Notes Bioinformatics), vol. 9578, pp. 183–196, 2016. 651 

[27] Z. Li and T. Ma, “Peer-to-peer electricity trading in grid-connected residential communities with 652 

household distributed photovoltaic,” Appl. Energy, vol. 278, no. July, p. 115670, 2020. 653 

[28] Z. Zhang, R. Li, and F. Li, “A Novel Peer-to-Peer Local Electricity Market for Joint Trading of Energy 654 

and Uncertainty,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1205–1215, 2020. 655 

[29] B. G. Kim, S. Ren, M. Van Der Schaar, and J. W. Lee, “Bidirectional energy trading and residential load 656 

scheduling with electric vehicles in the smart grid,” IEEE J. Sel. Areas Commun., vol. 31, no. 7, pp. 1219–657 

1234, 2013. 658 

[30] NEMO Committee, “EUPHEMIA Public Description,” 2019. 659 

[31] Y. Liu, K. Zuo, X. (Amy) Liu, J. Liu, and J. M. Kennedy, “Dynamic pricing for decentralized energy 660 

trading in micro-grids,” Appl. Energy, vol. 228, no. June, pp. 689–699, 2018. 661 

[32] W. Tushar et al., “A coalition formation game framework for peer-to-peer energy trading,” Appl. Energy, 662 

vol. 261, no. January, p. 114436, 2020. 663 

[33] M. H. Cintuglu, H. Martin, and O. A. Mohammed, “Real-time implementation of multiagent-based game 664 



theory reverse auction model for microgrid market operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 665 

1064–1072, Mar. 2015. 666 

[34] A. Paudel and H. B. Gooi, “Pricing in Peer-to-Peer Energy Trading Using Distributed Optimization 667 

Approach,” pp. 1–5, 2020. 668 

[35] D. Parra, S. A. Norman, G. S. Walker, and M. Gillott, “Optimum community energy storage system for 669 

demand load shifting,” Appl. Energy, vol. 174, pp. 130–143, Jul. 2016. 670 

[36] S. Dong, E. Kremers, M. Brucoli, R. Rothman, and S. Brown, “Establishing the value of community 671 

energy storage: A comparative analysis of the UK and Germany,” J. Energy Storage, vol. 40, p. 102709, 672 

Aug. 2021. 673 

[37] W. E. Hart et al., Pyomo — Optimization Modeling in Python, vol. 67. Cham: Springer International 674 

Publishing, 2017. 675 

[38] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and solving mathematical programs in 676 

Python,” Math. Program. Comput., vol. 3, no. 3, pp. 219–260, Sep. 2011. 677 

[39] A. Makhorin, “GLPK (GNU Linear Programming Kit),” 2012. [Online]. Available: 678 

https://www.gnu.org/software/glpk/. [Accessed: 06-Apr-2021]. 679 

[40] T. D. Hutty, S. Dong, and S. Brown, “Suitability of energy storage with reversible solid oxide cells for 680 

microgrid applications,” Energy Convers. Manag., vol. 226, p. 113499, Dec. 2020. 681 

[41] N. B. Mason, “Solar PV yield and electricity generation in the UK,” IET Renew. Power Gener., vol. 10, 682 

no. 4, pp. 456–459, 2016. 683 

[42] Department for Transport, “National Travel Survey,” gov.uk, 2020. [Online]. Available: 684 

https://www.gov.uk/government/collections/national-travel-survey-statistics. [Accessed: 01-May-2020]. 685 

[43] C. Argue, “To what degree does temperature impact EV range?,” geotab.com, 2020. [Online]. Available: 686 

https://www.geotab.com/blog/ev-range/. [Accessed: 28-Jan-2021]. 687 

[44] EV Database, “Nissan Leaf 30 kWh,” Electric Vehicle Database, 2021. . 688 

[45] B. Gundogdu, D. T. Gladwin, and D. A. Stone, “Battery SOC Management Strategy for Enhanced 689 

Frequency Response and Day-Ahead Energy Scheduling of BESS for Energy Arbitrage,” in IECON 2017 690 

- 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017. 691 

[46] T. Feehally et al., “Battery energy storage systems for the electricity grid: UK research facilities,” IET 692 

Conf. Publ., vol. 2016, no. CP684, pp. 1–6, 2016. 693 

[47] E. Apostolaki-Iosifidou, P. Codani, and W. Kempton, “Measurement of power loss during electric vehicle 694 

charging and discharging,” Energy, vol. 127, pp. 730–742, 2017. 695 

[48] E. Apostolaki-Iosifidou, W. Kempton, and P. Codani, “Reply to Shirazi and Sachs comments on 696 

‘Measurement of Power Loss During Electric Vehicle Charging and Discharging,’” Energy, vol. 142, pp. 697 

1142–1143, 2018. 698 

[49] W. Schram, N. Brinkel, G. Smink, T. Van Wijk, and W. Van Sark, “Empirical evaluation of V2G round-699 

trip efficiency,” SEST 2020 - 3rd Int. Conf. Smart Energy Syst. Technol., 2020. 700 

[50] UK Power Networks, “SmartMeter Energy Consumption Data in London Households,” 2015. . 701 

[51] S. Rennie et al., “UK Environmental Change Network (ECN) meteorology data: 1991-2015. Centre for 702 

Ecology & Hydrology (Natural Environment Research Council),” 2017. 703 

[52] World Bank Group, ESMAP, and Solargis, “Map and data downloads,” globalsolaratlas.info, 2019. 704 

[Online]. Available: https://globalsolaratlas.info/download. [Accessed: 04-Jun-2021]. 705 

[53] A. Pena-Bello, E. Barbour, M. C. Gonzalez, M. K. Patel, and D. Parra, “Optimized PV-coupled battery 706 

systems for combining applications: Impact of battery technology and geography,” Renew. Sustain. 707 

Energy Rev., vol. 112, no. May, pp. 978–990, 2019. 708 

[54] C. Moldrich, “How much does it cost to charge an electric car? Running costs explained,” 709 

carmagazine.co.uk, 2020. [Online]. Available: https://www.carmagazine.co.uk/electric/how-much-ev-710 



charging-and-running-cost/. [Accessed: 04-Jun-2021]. 711 

[55] Pod Point, “Cost of charging an electric car,” pod-point.com, 2021. [Online]. Available: https://pod-712 

point.com/guides/driver/cost-of-charging-electric-car. [Accessed: 04-Jun-2021]. 713 

 714 

 715 


