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Abstract
We give a new take on the error analysis of approximations of stochastic differen-
tial equations (SDEs), utilizing and developing the stochastic sewing lemma of Lê
(Electron J Probab 25:55, 2020. https://doi.org/10.1214/20-EJP442). This approach
allows one to exploit regularization by noise effects in obtaining convergence rates. In
our first application we show convergence (to our knowledge for the first time) of the
Euler–Maruyama scheme for SDEs driven by fractional Brownian motions with non-
regular drift. When the Hurst parameter is H ∈ (0, 1) and the drift is Cα , α ∈ [0, 1]
and α > 1− 1/(2H), we show the strong L p and almost sure rates of convergence to
be ((1/2+αH)∧1)−ε, for any ε > 0. Our conditions on the regularity of the drift are
optimal in the sense that they coincidewith the conditions needed for the strong unique-
ness of solutions fromCatellier andGubinelli (Stoch Process Appl 126(8):2323–2366,
2016. https://doi.org/10.1016/j.spa.2016.02.002). In a second application we consider
the approximation of SDEs driven by multiplicative standard Brownian noise where
we derive the almost optimal rate of convergence 1/2 − ε of the Euler–Maruyama
scheme for Cα drift, for any ε, α > 0.
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1 Introduction

Since the 1970s, it has been observed that the addition of a random forcing into an
ill-posed deterministic system could make it well-posed. Such phenomenon is called
regularization by noise. One of the prime examples concerns differential equations of
the form

dXt = b(Xt ) dt, (1.1)

where b is a bounded vector field.While Eq. (1.1) might have infinitelymany solutions
when b fails to be Lipschitz continuous and might possess no solution when b fails to
be continuous, Zvonkin [39] and Veretennikov [38] (see also the paper of Davie [9])
showed that the stochastic differential equation (SDE)

dXt = b(Xt ) dt + dBt (1.2)

driven by aBrownianmotion B, has a unique strong solutionwhen b ismerely bounded
measurable. This result was extended to the case of the fractional Brownian noise in
[4,8,27,32,33]. These papers study the equation

dXt = b(Xt ) dt + dBH
t , X0 = x0 (1.3)
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Approximation of SDEs: a stochastic sewing approach 977

where BH is a d-dimensional fractional Brownian motion with Hurst parameter H ∈
(0, 1). It is known [8, Theorem 1.9] that this equation has a unique strong solution if b
belongs to the Hölder–Besov space Cα and α > 1−1/(2H). Thus, the presence of the
noise not only produces solutions in situations where there was none but also singles
out a unique physical solution in situations where there were multiple. However, to the
best of our knowledge, no construction of this solution throughdiscrete approximations
has been known (unless H = 1/2). In this article, we develop a new approach which
allows to construct this solution and even obtain rate of convergence of the discrete
approximations. Before the formal setup of Sect. 2, let us informally overview the
results.

First, let us recall that in the standard Brownian case (H = 1/2) the seminal work
of Gyöngy and Krylov [18] established the convergence in probability of the Euler–
Maruyama scheme

dXn
t = b(Xn

κn(t)
) dt + dBH

t , Xn
0 = xn0 , t ≥ 0 (1.4)

to the solution of (1.3). Here b is a bounded measurable function and

κn(t) := �nt�/n, n ∈ N. (1.5)

In the present paper, we significantly extend these results by (a) establishing the
convergence of the Euler–Maruyama scheme for all H ∈ (0, 1); (b) showing that the
convergence takes place in a stronger (L p(�) and almost sure) sense; (c) obtaining
the explicit rate of convergence. More precisely, in Theorem 2.1 we show that if b
is bounded and Hölder-continuous with exponent α > 1 − 1/(2H), then the Euler–
Maruyama scheme converges with rate ((1/2 + αH) ∧ 1) − ε for any ε > 0. Thus,
the approximation results are obtained under the minimal assumption on the drift b
that is needed for strong uniqueness of solutions [8,32] and for the well-posedness of
scheme (1.4). Let us also point out that in particular, for H < 1/2, one does not need to
require any continuity from b to obtain a convergence rate 1/2−ε. Concerning approx-
imations of SDEs driven by fractional Brownian motions with regular coefficients, we
refer the reader to the recent works [15,22] and references therein. Concerning the
implementation of such schemes and in particular the simulation of increments of
fractional Brownian motions we refer to [37, Section 6] and its references.

Our second application is to study equationswithmultiplicative noise in the standard
Brownian case:

dXt = b(Xt ) dt + σ(Xt ) dBt , X0 = x0, t ≥ 0 (1.6)

and their discretisations

dXn
t = b(Xn

κn(t)
) dt + σ(Xn

κn(t)
) dBt , Xn

0 = xn0 , t ≥ 0. (1.7)

Here b, σ are measurable functions, B is a d-dimensional Brownian motion, and κn
is defined in (1.5). To ensure well-posedness, a nondegeneracy assumption on σ has
to be assumed. In the standard Brownian case the rate of convergence for irregular
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b has been recently actively studied, see among many others [2,28–30,36] and their
references. However, the obtained rate deteriorates as b becomes more irregular: in
the setting of (1.6)-(1.7), the best known rate is only proven to be (at least) α/2 for
b ∈ Cα , α > 0 in [2].

It was first shown in [10] that, at least for additive noise, the strong rate does not
vanish as the regularity α approaches 0, and one in fact recovers the rate 1/2 − ε

for arbitrary ε > 0, for all α > 0. In the present paper we establish the same for
multiplicative noise, in which case the rate 1/2 is well-known to be optimal. Our
proof offers several other improvements to earlier results: all moments of the error
can be treated in the same way, the scalar and multidimensional cases are also not
distinguished, and the main error bound (2.9) is uniform in time, showing that X · and
Xn· are close as paths. The topology (in time) where the error is measured is in fact
even stronger, see Remark 2.3.

To obtain these results we develop a new strategy which utilizes the stochastic
sewing lemma (SSL) of Lê [27] as well as some other specially developed tools. We
believe that these tools might be also of independent interest; let us briefly describe
them here.

First, we obtain a new stochastic sewing–type lemma, see Theorem 3.3. It provides
bounds on the L p-norm of the increments of a process, with the correct depen-
dence on p. This improves the corresponding bounds from SSL of Lê (although,
under more restrictive conditions). This improved bound is used for proving stretched
exponential moment bounds that play a key role in the convergence analysis of the
Euler–Maruyama scheme for (1.3), see Sect. 4.3. In particular, using this new sewing-
type lemma, we are able to extend the key bound of Davie [9, Proposition 2.1] (this
bound was pivotal in his paper for establishing uniqueness of solutions to (1.2) when
the driving noise is the standard Brownian motion) to the case of the fractional Brow-
nian noise, see Lemma 4.3.

Second, in Sect. 5we derive density estimates of (a drift-free version of) the solution
of (1.7) viaMalliavin calculus.Classical results in this direction include that ofGyöngy
and Krylov [18], and of Bally and Talay [5,6]: the former gives sharp short time
asymptotics but no smoothness of the density, and the latter vice versa (see Remark
5.1 below). Since our approach requires both properties at the same time, we give a
self-contained proof of such an estimate (5.2).

Finally let us mention that, as in [10,11,34], efficient quadrature bounds play a
crucial role in the analysis. These are interesting approximation problems in their own
right, see, e.g., [25] and the references therein. Such questions in the non-Markovian
setting of fractional Brownian motion have only been addressed recently in [1]. How-
ever, there are a few key differences to our quadrature bounds from Lemma 4.1. First,
we derive bounds in L p(�) for all p, which by Proposition 2.9 also imply the cor-
responding almost sure rate (as opposed to L2(�) rates only in [1]). Second, unlike
the standard fractional Brownian motions considered here, [1] requires starting them
at time 0 from a random variable with a density, which provides a strong smoothing
effect. Third, when approximating the functional of the form

�t :=
∫ t

0
f (BH

s ) ds,
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Approximation of SDEs: a stochastic sewing approach 979

also called ‘occupation time functional’, by the natural discretisation

�n
t =

∫ t

0
f (BH

κn(s)) ds,

our results not only imply pointwise error estimates on |�T −�n
T |, but also on the error

of thewhole path ‖�·−�n· ‖Cβ measured in aHölder norm Cβ with someβ > 1/2. This
is an immediate consequence of the bounds (4.1) in combination with Kolmogorov’s
continuity theorem.

The rest of the article is structured as follows. Our main results are presented in
Sect. 2. In Sect. 3 we outline the main strategy and collect some necessary auxiliary
results, including the newsewing lemma–typeboundTheorem3.3. Section4 is devoted
to the error analysis in the additive fractional noise case. In Sect. 5weprove an auxiliary
bound on the probability distribution of the Euler–Maruyama approximation of certain
sufficiently nice SDEs. The proofs of the convergence in the multiplicative standard
Brownian noise case are given in Sect. 6.

2 Main results

We begin by introducing the basic notation. Consider a probability space (�,F ,P)

carrying a d-dimensional two-sided Brownian motion (Wt )t∈R. Let F = (Ft )t∈R be
the filtration generated by the increments of W . The conditional expectation given Fs

is denoted by E
s . For H ∈ (0, 1)we define the fractional Brownian motion with Hurst

parameter H by the Mandelbrot-van Ness representation [35, Proposition 5.1.2]

BH
t :=

∫ 0

−∞
(|t − s|H−1/2 − |s|H−1/2) dWs +

∫ t

0
|t − s|H−1/2 dWs . (2.1)

Recall that the components of BH are independent and each component is a Gaussian
process with zero mean and covariance

C(s, t) := cH
2

(s2H + t2H − |t − s|2H ), s, t ≥ 0, (2.2)

where cH is a certain positive constant, see [35, (5.1)].
For α ∈ (0, 1] and a function f : Q → V , where Q ⊂ R

k and (V , | · |) is a normed
space, we set

[ f ]Cα(Q,V ) := sup
x �=y∈Q

| f (x) − f (y)|
|x − y|α .

For α ∈ (0,∞) we denote by Cα(Q, V ) the space of all functions f : Q → V having
derivatives ∂
 f for all multi-indices 
 ∈ (Z+)k with |
| < α such that

‖ f ‖Cα(Q,V ) :=
∑
|
|<α

sup
x∈Q

|∂
 f (x)| +
∑

α−1<|
|<α

[∂
 f ]Cα−|
|(Q,V ) < ∞.
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If 
 = (0, . . . , 0), then as usual, we use the convention ∂
 f = f . In particular, the Cα

norm always includes the supremum of the function. We also set C0(Q, V ) to be the
space of bounded measurable functions with the supremum norm. We emphasize that
in our notation elements of C0 need not be continuous! If α < 0, then by Cα(Rd ,R)

we denote the space of all distributions f ∈ D′(Rd), such that

‖ f ‖Cα := sup
ε∈(0,1]

ε−α/2‖Pε f ‖C0(Rd ,R) < ∞,

where Pε f is the convolution of f with the d-dimensional Gaussian heat kernel at
time ε.

In some cases we use shorthands: if Q = R
d , or V = R

d or V = R
d×d , they

are omitted from the notation. For instance, the reader understands that requiring
the diffusion coefficient σ of (1.6) to be of class Cα is to require it to have finite
‖ · ‖Cα(Rd ,Rd×d ) norm. If V = L p(�) for some p ≥ 2, we write

[] f []C α
p ,Q := ‖ f ‖Cα(Q,L p(�)). (2.3)

Convention on constants: throughout the paper N denotes a positive constant whose
value may change from line to line; its dependence is always specified in the corre-
sponding statement.

2.1 Additive fractional noise

Our first main result establishes the convergence of the numerical scheme (1.4) to the
solution of Eq. (1.3). Fix H ∈ (0, 1). It is known ( [8, Theorem 1.9]) that if the drift
b ∈ Cα with α ∈ [0, 1] satisfying α > 1 − 1/(2H), then for any fixed x0 ∈ R

d , Eq.
(1.3) admits a unique strong solution, which we denote by X . For any n ∈ N we take
xn0 ∈ R

d and denote the solution of (1.4) by Xn . For a given α ∈ [0, 1] and H ∈ (0, 1),
we set

γ = γ (α, H) := (1/2 + αH) ∧ 1. (2.4)

Now we are ready to present our first main result. Its proof is placed in Sect. 4, a brief
outline of it is provided in Sect. 3.1.

Theorem 2.1 Let α ∈ [0, 1] satisfy

α > 1 − 1/(2H). (2.5)

Suppose b ∈ Cα , let ε, δ > 0 and p ≥ 2. Then there exists a constant τ = τ(α, H , ε) >

1/2 such that for all n ∈ N the following bound holds

‖X − Xn‖Cτ ([0,1],L p(�)) ≤ Nnδ|x0 − xn0 | + Nn−γ+ε+δ (2.6)

with some constant N = N (p, d, α, H , ε, δ, ‖b‖Cα ).
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Approximation of SDEs: a stochastic sewing approach 981

Remark 2.2 An interesting question left open is whether one can reach α = 0 in the
H = 1/2 case. In dimension 1, this is positively answered [10] using PDEmethods, but
the sewing approach at the moment does not seem to handle such endpoint situations.
For H �= 1/2 even weak existence or uniqueness is not known for the endpoint
α = 1 − 1/(2H).

Remark 2.3 From (2.6), Kolmogorov’s continuity theorem, and Jensen’s inequality,
one gets the bound

∥∥‖X − Xn‖Cτ−ε′ ([0,1],Rd )

∥∥
L p(�)

≤ Nnδ|x0 − xn0 | + Nn−γ+ε+δ. (2.7)

for any ε′ > 0 (with N also depending on ε′). In the literature it is more common to
derive error estimates in supremum norm, which of course follows:

∥∥ sup
t∈[0,1]

|Xt − Xn
t |

∥∥
L p(�)

≤ Nnδ|x0 − xn0 | + Nn−γ+ε+δ,

but (2.7) is quite a bit stronger.

Remark 2.4 A trivial lower bound on the rate of convergence of the solutions is the
rate of convergence of the initial conditions. In (1.4) we lose δ compared to this rate,
but δ > 0 can be chosen arbitrarily small. This becomes even less of an issue if one
simply chooses xn0 = x0.

Remark 2.5 The fact that the error is well-controlled even between the gridpoints
is related to the choice of how we extend Xn to continuous time from the points
Xn
0 , X

n
1/n, . . .. For other type of extensions and their limitations we refer the reader to

[31].

Corollary 2.6 Assume α ∈ [0, 1] satisfies (2.5) and suppose b ∈ Cα . Take x0 = xn0 for
all n ∈ N. Then for a sufficiently small θ > 0 and any ε > 0 there exists an almost
surely finite random variable η such that for all n ∈ N, ω ∈ � the following bound
holds

sup
t∈[0,1]

|Xt − Xn
t | ≤ ‖X − Xn‖C1/2+θ ([0,1],Rd ) ≤ ηn−γ+ε,

where γ was defined in (2.4).

Proof An immediate consequence of (2.7), Proposition 2.9 below, and the fact that
τ > 1/2. ��

2.2 Multiplicative Brownian noise

In the multiplicative case we work under the ellipticity and regularity conditions

σ ∈ C2, σσ T � λI , (2.8)
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982 O. Butkovsky et al.

in the sense of positive definite matrices, with some λ > 0. This, together with b ∈ C0,
guarantees the strong well-posedness of equations (1.6) and (1.7) [38, Theorem 1],
whose solutions we denote by X and Xn , respectively. The second main result then
reads as follows, its proof is the content of Sect. 6.

Theorem 2.7 Let α ∈ (0, 1]. Suppose b ∈ Cα , let ε > 0, τ ∈ [0, 1/2), and p ≥ 2.
Suppose σ satisfies (2.8). Then for all n ∈ N the following bound holds

‖X − Xn‖Cτ ([0,1],L p(�)) ≤ N |x0 − xn0 | + Nn−1/2+ε (2.9)

with some N = N (p, d, α, ε, τ, λ, ‖b‖Cα , ‖σ‖C2).

Corollary 2.8 Let α ∈ (0, 1], assume x0 = xn0 for all n ∈ N, suppose b ∈ Cα , and
suppose σ satisfies (2.8). Let ε > 0, τ ∈ [0, 1/2). Then there exists an almost surely
finite random variable η such that for all n ∈ N, ω ∈ � the following bound holds

sup
t∈[0,1]

|Xt − Xn
t | ≤ ‖X − Xn‖Cτ ([0,1],Rd ) ≤ ηn−1/2+ε.

Proof An immediate consequence of (2.9), Kolmogorov’s continuity theorem, and
Proposition 2.9 below. ��

Let us conclude by invoking a simple fact used in the proof of Corollaries 2.6 and
2.8, which goes back to at least [20, proof of Theorem 2.3] (see also [13, Lemma 2]).

Proposition 2.9 Let ρ > 0 and let (Zn)n∈N be a sequence of random variables such
that for all p > 0 and all n ∈ N one has the bound

‖Zn‖L p(�) ≤ Nn−ρ

for some N = N (p). Then for all ε > 0 there exists an almost surely random variable
η such that for all n ∈ N, ω ∈ �

|Zn| ≤ ηn−ρ+ε.

Proof Notice that for any q > 0

∑
n∈N

P(|Zn| > n−ρ+ε) ≤
∑
n∈N

E|Zn|q
nq(−ρ+ε)

≤
∑
n∈N

Nn−qε.

Choosing q = 2/ε, the above sum is finite, so by the Borel-Cantelli lemma there exists
an almost surely finite N-valued random variable n0 such that |Zn| ≤ n−ρ+ε for all
n > n0. This yields the claim by setting

η := 1 ∨ max
n≤n0

(|Zn|nρ−ε).

��
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3 Preliminaries

3.1 The outline of the strategy

The purpose of this section is to outline the main steps in a simple example. Hopefully
this gives a clear picture of the strategy to the reader, which otherwise may be blurred
by the some complications arising in the proofs of Theorems 2.1 and 2.7.

The ‘simple example’ will be the setting of (1.3) and (1.4) with H = 1/2 and
f ∈ Cα for some α > 0. We furthermore assume x0 = xn0 and that the time horizon
is given by [0, T0] instead of [0, 1], with some small 1 ≥ T0 > 0 to be chosen later.
Finally, we will only aim to prove (2.6) with τ = 1/2.

Step 1 (“Quadrature bounds”). Our first goal is to bound the quantity

AT0 :=
∫ T0

0
b(Br ) − b(Bκn(r)) dr . (3.1)

From the Hölder continuity of b, one would have the trivial bound of order n−α/2 in
any L p(�) norm, but in fact one can do much better, as follows. Fix ε ∈ (0, 1/2) and
define (recall that by E

s we denote the conditional expectation given Fs)

As,t = E
s(At − As) = E

s
∫ t

s
b(Br ) − b(Bκn(r)) dr .

The stochastic sewing lemma, Proposition 3.2 below, allows one to bound A through
bounds on A. Given the preceding field As,t , provided that the conditions (3.8) and
(3.9) are satisfied, it is easy to check that the unique adapted processA constructed in
Proposition 3.2 coincides with the one in (3.1). Indeed, the process in (3.1) satisfies
(3.10) and (3.11) with ε1 = ε, ε2 = 1, K1 = ‖b‖C0 and K2 = 0. Therefore it
remains to find C1 and C2. In fact, it is immediate that one can choose C2 = 0, since
E
sδAs,u,t = E

s(As,t − As,u − Au,t ) = 0.
We now claim that one can take C1 = Nn−1/2−α/2+ε in (3.8). Since ‖b(Br ) −

b(Bκn(r))‖L p(�) ≤ ‖b‖Cαn−α/2, if |t − s| ≤ 2n−1, then one easily gets by the condi-
tional Jensen’s inequality

‖As,t‖L p(�) ≤ N |s − t |n−α/2 ≤ N |s − t |1/2+εn−1/2−α/2+ε. (3.2)

If |t − s| > 2n−1, let s′ = κn(s) + 2n−1 be the second gridpoint to the right of s.
In particular, r ≥ s′ implies κn(r) ≥ s. Let us furthermore notice that for any u ≥ v
and any bounded measurable function f , one has Ev f (Bu) = Pu−v f (Bv), where P
is the standard heat kernel (see (3.22) below for a precise definition). One can then
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984 O. Butkovsky et al.

write

‖As,t‖L p(�) ≤
∫ s′

s
‖b(Br ) − b(Bκn (r))‖L p(�) dr + ∥∥

∫ t

s′
E
sb(Br ) − E

sb(Bκn(r)) dr
∥∥
L p(�)

≤ Nn−1−α/2 +
∫ t

s′
‖(Pr−s − Pκn (r)−s)b‖C0 dr

≤ Nn−1−α/2 + N
∫ t

s′
(r − s′)−1/2+εn−1/2−α/2+ε dr

≤ N |t − s|1/2+εn−1/2−α/2+ε (3.3)

where in the third line we used awell-known estimate for heat kernels, see Proposition
3.7 (ii) with exponents β = 0, δ = 1/2+ α/2− ε, and time points κn(r) − s in place
of s, r − s in place of t . We also used that for r ≥ s′, one has κn(r) − s ≥ r − s′. By
(3.2) and (3.3) we indeed get (3.8) withC1 = Nn−1/2−α/2+ε. Applying the stochastic
sewing lemma, (3.12) yields

‖At − As‖L p(�) = ∥∥
∫ t

s
b(Br ) − b(Bκn(r)) dr

∥∥
L p(�)

≤ N |t − s|1/2+εn−1/2−α/2+ε

for all 0 ≤ s ≤ t ≤ T0. Here the constant N depends on p, ε, α, d, ‖b‖Cα , but not on
T0.

Step 1.5 (Girsanov transform). An easy application of Girsanov’s theorem yields

∥∥ ∫ t

s
b(Xn

r ) − b(Xn
κn(r)

) dr
∥∥
L p(�)

≤ N |t − s|1/2+εn−1/2−α/2+ε. (3.4)

In general (for example, for fractional Brownianmotions) the Girsanov transformation
can become involved, but for our present example this is completely straightforward.

Step 2 (“regularization bound”). Next, we estimate the quantity

AT0 =
∫ T0

0
b(Br + ψr ) − b(Br + ϕr ) dt

for some adapted processes ψ, ϕ whose Lipschitz norm is bounded by some constant
K . As suggested by the above notation, we use the stochastic sewing lemma again,
with As,t defined as

As,t = E
s
∫ t

s
b(Br + ψs) − b(Br + ϕs) dr .

We do not give the details of the calculations at this point. It is an instructive exercise
to the interested reader to verify that (3.8) and (3.9) are satisfied with ε1 = α/2,
C1 = N []ψ − ϕ[]C 0

p ,[0,T0] and ε2 = α/2, C2 = N []ψ − ϕ[]
C 1/2

p ,[0,T0]. Here N depends

on p, α, d, K , ‖b‖Cα , but not on T0. The bound (3.10) is straightforward, with K1 =
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‖b‖C0 . Concerning (3.11), one can write

|Es(At − As − As,t )| ≤ E
s
∫ t

s

∣∣b(Br + ψr )

−b(Br + ψs)
∣∣ + ∣∣b(Br + ϕr ) − b(Br + ϕs)

∣∣ dr ,
and so K2 = 2K‖b‖Cα does the job. Therefore, by (3.12), we get

‖At − As‖L p(�) = ∥∥ ∫ t

s
b(Br + ψr ) − b(Br + ϕr ) dr

∥∥
L p(�)

≤ N |t − s|1/2+α/2[]ψ − ϕ[]C 0
p ,[0,T0]

+N |t − s|1+α/2[]ψ − ϕ[]
C 1/2

p ,[0,T0].

We will only apply the following simple corollary of this bound: if ψ0 = ϕ0, then

∥∥
∫ t

s
b(Br + ψs) − b(Br + ϕs) dr

∥∥
L p(�)

≤ N |t − s|1/2+α/2[]ψ − ϕ[]
C 1/2

p ,[0,T0].

(3.5)

Step 3 (“Buckling”)Letψ andψn be the drift component of X and Xn , respectively:

ψt = x0 +
∫ t

0
b(Xr ) dr , ψn

t = x0 +
∫ t

0
b(Xn

κn(r)
) dr .

We apply (3.4) and (3.5) with ϕ = ψn , to get

‖(ψ − ψn)t − (ψ − ψn)s‖L p(�) ≤ Nn−1/2−α/2+ε|t − s|1/2+ε

+N |t − s|1/2+α/2[]ψ − ψn[]
C 1/2

p ,[0,T0].

Dividing by |t − s|1/2 and take supremum over 0 ≤ s ≤ t ≤ T0, one gets

[]ψ − ψn[]
C 1/2

p ,[0,T0] ≤ Nn−1/2−α/2+ε + NT α/2
0 []ψ − ψn[]

C 1/2
p ,[0,T0].

Since so far N does not depend on T0, one can choose T0 sufficiently small so that
NT α/2

0 ≤ 1/2. This yields the desired bound

[]X − Xn[]
C 1/2

p ,[0,T0] = []ψ − ψn[]
C 1/2

p ,[0,T0] ≤ Nn−1/2−α/2+ε.

��
Let us point out that the rate of convergence is determined by only the first step.Also,

the second step is similar in spirit to the ‘averaging bounds’ appearing in sewing-based
uniqueness proofs for SDEs (see e.g. [8,27]).
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In the proof of Theorem 2.1, the more difficult part will be the regularization bound.
Applying only the stochastic sewing lemma of Lê apparently does not lead to an opti-
mal result for H > 1/2. Therefore at some point one has to move from almost sure
bounds (which are similar to [8]) to L p bounds. This requires an extension of the
Davie’s moment bound [9, Proposition 2.1] to the case of the fractional Brownian
motion. This is done in Lemma 4.3 using the new stochastic sewing lemma (Theo-
rem 3.3).

In contrast, forTheorem2.7 establishing the quadrature boundwill bemore difficult.
In the above arguments, the heat kernel bounds have to be replaced by estimates on
the transition densities of the Euler–Maruyama scheme. These bounds are established
via Malliavin calculus, this is the content of Sect. 5.

3.2 Sewing lemmas

As mentioned above, the proof strategy relies on the sewing and stochastic sewing
lemmas. For the convenience of the reader, we recall them here. The first two lemmas
are well-known, the third one is new.

We define for 0 ≤ S ≤ T ≤ 1 the set [S, T ]≤ := {(s, t) : S ≤ s ≤ t ≤ T }. If A·,·
is a function [S, T ]≤ → R

d , then for s ≤ u ≤ t we put δAs,u,t := As,t − As,u − Au,t .
The first statement is the sewing lemma of Gubinelli.

Proposition 3.1 [14, Lemma 2.1], [19, Proposition 1] Let 0 ≤ S ≤ T ≤ 1 and let
A·,· be a continuous function from [S, T ]≤ to R

d . Suppose that for some ε > 0 and
C > 0 the bound

|δAs,u,t | ≤ C |t − s|1+ε (3.6)

holds for all S ≤ s ≤ u ≤ t ≤ T . Then there exists a unique functionA : [S, T ] → R
d

such that AS = 0 and the following bound holds for some constant K > 0:

|At − As − As,t | ≤ K |t − s|1+ε, (s, t) ∈ [S, T ]≤. (3.7)

Moreover, there exists a constant K0 depending only on ε, d such thatA in fact satisfies
the above bound with K ≤ K0C.

The next statement is the stochastic extension of the above result obtained by Lê.
Recall that for any s ≥ 0 we are using the convention E

s[...] := E[...|Fs].
Proposition 3.2 [27, Theorem 2.4]. Let p ≥ 2, 0 ≤ S ≤ T ≤ 1 and let A·,· be a
function [S, T ]≤ → L p(�,Rd) such that for any (s, t) ∈ [S, T ]≤ the random vector
As,t is Ft -measurable. Suppose that for some ε1, ε2 > 0 and C1,C2 the bounds

‖As,t‖L p(�) ≤ C1|t − s|1/2+ε1 , (3.8)

‖EsδAs,u,t‖L p(�) ≤ C2|t − s|1+ε2 (3.9)

hold for all S ≤ s ≤ u ≤ t ≤ T . Then there exists a unique (up to modification)
F-adapted process A : [S, T ] → L p(�,Rd) such that AS = 0 and the following
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bounds hold for some constants K1, K2 > 0:

‖At − As − As,t‖L p(�) ≤ K1|t − s|1/2+ε1 + K2|t − s|1+ε2 , (s, t) ∈ [S, T ]≤,

(3.10)

‖Es(At − As − As,t
)‖L p(�) ≤ K2|t − s|1+ε2 , (s, t) ∈ [S, T ]≤. (3.11)

Moreover, there exists a constant K depending only on ε1, ε2, d such that A satisfies
the bound

‖At − As‖L p(�) ≤ KpC1|t − s|1/2+ε1 + KpC2|t − s|1+ε2 , (s, t) ∈ [S, T ].
(3.12)

The final statement of this section is new. It provides bounds on ‖As − At‖L p(�)

with the correct dependence on p: namely these bounds are of order
√
p, rather than

p as in (3.12). This will be crucial for the proof of Theorem 2.1; in particular, this
would allow to extend the corresponding Davie bound [9, Proposition 2.1] to the case
of fractional Brownian motion. The price to pay though is that the assumptions of
this theorem are more restrictive than the corresponding assumptions of [27, Theorem
2.4].

Theorem 3.3 Fix 0 ≤ S ≤ T ≤ 1. Let (At )t∈[S,T ] be an F–adapted process with
values inRd . For (s, t) ∈ [S, T ]≤ we will writeAs,t := At −As . Let p ≥ 2. Suppose
that for some m ≥ 2, ε1 > 0, ε2 ≥ 0, ε3 ≥ 0, and C1,C2,C3 > 0 the bounds

‖As,t‖L p∨m (�) ≤ C1|t − s|1/2+ε1 (3.13)

‖EsAu,t − E
uAu,t‖Lm (�) ≤ C1|u − s|1/m+ε1 (3.14)

‖EsAs,t‖L p(�) ≤ C2|t − s|ε2 (3.15)∥∥Es[(EsAu,t − E
uAu,t )

2]∥∥L p/2(�)
≤ C3|u − s||t − s|ε3 (3.16)

hold for all S ≤ s ≤ u ≤ t ≤ T . Then there exist a universal constant K =
K (d, ε2, ε3) > 0 which does not depend on p, C j , such that

‖At − As‖L p(�) ≤ C2K |t − s|ε2 + K
√
p C1/2

3 |t − s|1/2+ε3/2. (3.17)

Remark 3.4 Note that the right–hand side of bound (3.17) does not depend on C1.

Remark 3.5 Let us recall that the proof of stochastic sewing lemma in [27] requires
to apply the BDG inequality infinitely many times but each time to a discrete-time
martingale, thus yielding a constant p in the right–hand side of bound (3.12). In our
proof we apply the BDG inequality only once, but to a continuous time martingale.
This allows to get a better constant (namely

√
p instead of p), since the constant in

the BDG inequality for the continuous-time martingales is better than in the BDG
inequality for general martingales.
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Proof of Theorem 3.3 This proof is inspired by the ideas of [3, proof of Proposition
3.2] and [8, proof of Theorem 4.3]. For the sake of brevity, in this proof we will
write L p for L p(�). Fix s, t ∈ [S, T ]≤ and for i ∈ {1, . . . , d} consider a martingale
Mi = (Mi

r )r∈[s,t], where

Mi
r := E

r [Ai
s,t ], r ∈ [s, t].

We will frequently use the following inequality. For s ≤ u ≤ v ≤ t one has

|Mi
u − Mi

v| ≤ |Ai
u,v| + |EuAi

u,v| + |EuAi
v,t − E

vAi
v,t |. (3.18)

We begin by observing that

‖As,t‖L p(�) ≤
d∑

i=1

‖Ai
s,t‖L p(�) =

d∑
i=1

‖Mi
t ‖L p(�)

≤
d∑

i=1

‖Mi
s‖L p(�) +

d∑
i=1

‖Mi
t − Mi

s‖L p(�)

=:
d∑

i=1

I i1 +
d∑

i=1

I i2. (3.19)

The first term in (3.19) is easy to bound. By assumption (3.15) we have

I i1 = ‖EsAi
s,t‖L p(�) ≤ C2|t − s|ε2 . (3.20)

To estimate I i2 we first observe that for each i = 1, . . . , d the martingale Mi is
continuous. Indeed, for any s ≤ u ≤ v ≤ t we have using (3.18), (3.13), and (3.14)

‖Mi
u − Mi

v‖Lm ≤ 2‖Ai
u,v‖Lm + ‖EuAi

v,t − E
vAi

v,t‖Lm

≤ 3C1|u − v|1/m+ε1 .

Therefore, the Kolmogorov continuity theorem implies that the martingale Mi is con-
tinuous. Hence, its quadratic variation [Mi ] equals its predictable quadratic variation
〈Mi 〉 [24, Theorem I.4.52]. Thus, applying a version of the Burkholder–Davis–Gundy
inequality with a precise bound on the constant [7, Proposition 4.2], we get that there
exists a universal constant N > 0 such that

‖Mi
t − Mi

s‖L p(�) ≤ N
√
p ‖〈Mi 〉t‖1/2L p/2

. (3.21)

For n ∈ N, j ∈ {1, . . . , n} put tnj := s + (t − s) j/n. Then, it follows from [23,

Theorem2] that
∑n−1

j=0 E
tnj [(Mi

tnj+1
−Mi

tnj
)2] converges to 〈Mi 〉t in L1(�). In particular,

a subsequence indexed over nk converges almost surely. Therefore, applying Fatou’s
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lemma, Minkowski’s inequality, (3.18) and using the assumptions of the theorem, we
deduce

‖〈Mi 〉t‖L p/2 =
∥∥∥ lim
k→∞

nk−1∑
j=0

E
t
nk
j (Mi

t
nk
j+1

− Mi
t
nk
j

)2
∥∥∥
L p/2

≤ lim inf
k→∞

nk−1∑
j=0

∥∥Et
nk
j (Mi

t
nk
j+1

− Mi
t
nk
j

)2
∥∥
L p/2

≤ 3 lim
k→∞

nk−1∑
j=0

(
2‖Ai

t
nk
j ,t

nk
j+1

‖2L p(�) + ‖Et
nk
j (E

t
nk
j Ai

t
nk
j+1,t

− E
t
nk
j+1Ai

t
nk
j+1,t

)2
∥∥
L p/2

)

≤ lim
k→∞ 6C2

1T
1+2ε1n−2ε1

k + 3 lim
k→∞C3|t − s|1+ε3n−1−ε3

k

nk−1∑
j=0

(nk − j)ε3

≤ NC3|t − s|1+ε3 .

Substituting this into (3.21) and combining this with (3.19) and (3.20), we obtain
(3.17). ��

3.3 Some useful estimates

In this section we establish a number of useful technical bounds related to Gaussian
kernels. Their proofs are mostly standard, however we were not able to find them in
the literature. Therefore for the sake of completeness, we provide the proofs of these
results in the “Appendix A”.

Fix an arbitrary H ∈ (0, 1). Define

c(s, t) :=
√

(2H)−1|t − s|H , 0 ≤ s ≤ t ≤ 1.

Let pt , t > 0, be the density of a d-dimensional vector with independent Gaussian
components each of mean zero and variance t :

pt (x) = 1

(2π t)d/2 exp
(
−|x |2

2t

)
, x ∈ R

d . (3.22)

For a measurable function f : Rd → R we write Pt f := pt ∗ f , and occasionally we
denote by p0 the Dirac delta function.

Our first statement provides a number of technical bounds related to the fractional
Brownian motion. Its proof is placed in the “Appendix A”.

Proposition 3.6 Let p ≥ 1. The process BH has the following properties:

(i) ‖BH
t − BH

s ‖L p(�) = N |t − s|H , for all 0 ≤ s ≤ t ≤ 1, with N = N (p, d, H);

(ii) for all 0 ≤ s ≤ u ≤ t ≤ 1, i = 1, . . . , d, the random variable Es BH ,i
t − E

u BH ,i
t

is independent of F s ; furthermore, this random variable is Gaussian with mean 0
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and variance

E(Es BH ,i
t − E

u BH ,i
t )2 = c2(s, t) − c2(u, t) =: v(s, u, t); (3.23)

(iii) E
s f (BH

t ) = Pc2(s,t) f (E
s BH

t ), for all 0 ≤ s ≤ t ≤ 1;
(iv) |c2(s, t) − c2(s, u)| ≤ N |t − u||t − s|2H−1, for all 0 ≤ s ≤ u ≤ t such that

|t − u| ≤ |u − s|, with N = N (H);
(v) ‖Es BH

t − E
s BH

u ‖L p(�) ≤ N |t − u||t − s|H−1, for all 0 ≤ s ≤ u ≤ t such that
|t − u| ≤ |u − s|, with N = N (p, d, H);

The next statement gives the heat kernel bounds which are necessary for the proofs
of the main results. Its proof is also placed in the “Appendix A”. Recall the definition
of the function v in (3.23).

Proposition 3.7 Let f ∈ Cα , α ≤ 1 and β ∈ [0, 1]. The following hold:

(i) There exists N = N (d, α, β) such that

‖Pt f ‖Cβ(Rd ) ≤ Nt
(α−β)∧0

2 ‖ f ‖Cα(Rd ),

for all t ∈ (0, 1].
(ii) For all δ ∈ (0, 1] with δ ≥ α

2 − β
2 , there exists N = N (d, α, β, δ) such that

‖Pt f − Ps f ‖Cβ(Rd ) ≤ N‖ f ‖Cα(Rd )s
α
2 − β

2 −δ(t − s)δ,

for all 0 ≤ s ≤ t ≤ 1.
(iii) For all H ∈ (0, 1), there exists N = N (d, α, β, H) such that

‖Pc2(s,t) f − Pc2(u,t) f ‖Cβ (Rd ) ≤ N‖ f ‖Cα(Rd )(u − s)
1
2 (t − u)(H(α−β)− 1

2 )∧0,

for all 0 < s ≤ u ≤ t ≤ 1.
(iv) For all H ∈ (0, 1), p ≥ 2, there exists N = N (d, α, H , p) such that

‖Pc2(u,t) f (x) − Pc2(u,t) f (x + ξ)‖L p(�) ≤ N‖ f ‖Cα (u − s)
1
2 (t − u)(Hα− 1

2 )∧0;

for all x ∈ R
d , 0 < s ≤ u ≤ t ≤ 1 and all random vectors ξ whose components

are independent, N (0, v(s, u, t)) random variables.

Our next statement relates to the properties of Hölder norms. Its proof can be found
in “Appendix A”.

Proposition 3.8 Let α ∈ R, f ∈ Cα(Rd ,Rk), δ ∈ [0, 1]. Then there exists N =
N (α, δ, d, k) such that for any x ∈ R

d

‖ f (x + ·) − f (·)‖Cα−δ ≤ N |x |δ‖ f ‖Cα .

Finally, we will also need the following integral bounds. They follow immediately
from a direct calculation.
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Proposition 3.9 (i) Let a, b > −1, t > 0. Then for some N = N (a, b) one has

∫ t

0
(t − r)arb dr = Nta+b+1. (3.24)

(ii) Let a > −2, b < 1, t > 0. Then for some N = N (a, b) one has

∣∣∣
∫ t

0
(t − r)a(tbr−b − 1) dr

∣∣∣ = Nta+1. (3.25)

3.4 Girsanov theorem for fractional Brownianmotion

One of the tools which are important for the proof of Theorem 2.1 is the Girsanov
theorem for fractional Brownian motion [12, Theorem 4.9], [32, Theorem 2]. We will
frequently use the following technical corollary of this theorem. For the convenience
of the reader we put its proof into “Appendix B”.

Proposition 3.10 Let u : � × [0, 1] → R
d be an F–adapted process such that with a

constant M > 0 we have

‖u‖L∞(0,1) ≤ M, (3.26)

almost surely. Further, assume that one of the following holds:

(i) H ≤ 1/2;

or

(ii) H > 1/2 and there exists a random variable ξ such that

∫ 1

0

(∫ t

0

(t/s)H−1/2|ut − us |
(t − s)H+1/2 ds

)2
dt ≤ ξ (3.27)

and E exp(λξ) < ∞ for any λ > 0.

Then there exists a probability measure P̃which is equivalent toP such that the process
B̃H := BH +∫ ·

0 us ds is a fractional Brownain motion with Hurst parameter H under
P̃. Furthermore for any λ > 0 we have

E

(dP
dP̃

)λ ≤
{
exp(λ2NM2) if H ∈ (0, 1/2]
exp(λ2NM2)E[exp(λNξ)] if H ∈ (1/2, 1)

< ∞, (3.28)

where N = N (H).

In order to simplify the calculation of the integral in (3.27), we provide the following
technical but useful lemma. Since the proof is purely technical, we put its proof in the
“Appendix B”.
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Lemma 3.11 Let H ∈ (1/2, 1) and let ρ ∈ (H − 1/2, 1]. Then there exists a constant
N = N (H , ρ), such that for any function f ∈ Cρ([0, 1],Rd) and any n ∈ N one has

∫ 1

0

(∫ t

0

(t/s)H−1/2| fκn(t) − fκn(s)|
(t − s)H+1/2 ds

)2
dt ≤ N [ f ]2Cρ . (3.29)

∫ 1

0

(∫ t

0

(t/s)H−1/2| ft − fs |
(t − s)H+1/2 ds

)2
dt ≤ N [ f ]2Cρ . (3.30)

4 Additive fractional noise

In this section we provide the proof of Theorem 2.1.We follow the strategy outlined on
Sect. 3.1: In Sects. 4.1 and 4.2 we prove the quadrature bound and the regularization
bound, respectively. Based on these bounds, the proof of the theorem is placed in
Sect. 4.3.

4.1 Quadrature estimates

The goal of this subsection is to prove the quadrature bound (4.7). The proof consists of
two steps. First, in Lemma 4.1 we prove this bound for the case of fractional Brownian
motion; then we extend this result to the process X by applying the Girsanov theorem.

Recall the definition of functions κn in (1.5) and γ in (2.4).

Lemma 4.1 Let H ∈ (0, 1), α ∈ [0, 1], p > 0, and take ε ∈ (0, 1/2]. Then for all
f ∈ Cα , 0 ≤ s ≤ t ≤ 1, n ∈ N, one has the bound

∥∥∥
∫ t

s
( f (BH

r ) − f (BH
κn(r))) dr

∥∥∥
L p(�)

≤ N‖ f ‖Cαn−γ (α,H)+ε|t − s|1/2+ε, (4.1)

with some N = N (p, d, α, ε, H).

Proof It suffices to prove the bound for p ≥ 2. Define for 0 ≤ s ≤ t ≤ 1

As,t := E
s
∫ t

s
( f (BH

r ) − f (BH
κn(r))) dr .

Then, clearly, for any 0 ≤ s ≤ u ≤ t ≤ 1

δAs,u,t : = As,t − As,u − Au,t

= E
s
∫ t

u
( f (BH

r ) − f (BH
κn(r))) dr − E

u
∫ t

u
( f (BH

r ) − f (BH
κn(r))) dr .

Let us check that all the conditions of the stochastic sewing lemma (Proposition 3.2)
are satisfied. Note that

E
sδAs,u,t = 0,
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and so condition (3.9) trivially holds,withC2 = 0. To establish (3.8), let s ∈ [k/n, (k+
1)/n) for some k ∈ {0, . . . , n − 1}. Suppose first that t ∈ [(k + 4)/n, 1]. We write

|As,t | ≤
( ∫ (k+4)/n

s
+

∫ t

(k+4)/n

)
|Es( f (BH

r ) − f (BH
κn(r))

)| dr =: I1 + I2. (4.2)

The bound for I1 is straightforward: by conditional Jensen’s inequality, the defini-
tion of Cα norm, and Proposition 3.6 (i) we have

‖I1‖L p(�) ≤
∫ (k+4)/n

s
‖ f (BH

r ) − f (BH
κn(r))‖L p(�) dr

≤ N‖ f ‖Cαn−1−αH ≤ N‖ f ‖Cαn−γ+ε|t − s|1/2+ε, (4.3)

where the last inequality follows from the fact that n−1 ≤ |t − s|.
Now let us estimate I2. Using Proposition 3.6 (iii), we derive

I2 ≤
∫ t

(k+4)/n
|Pc2(s,r) f (E

s BH
r ) − Pc2(s,κn(r)) f (E

s BH
r )| dr

+
∫ t

(k+4)/n
|Pc2(s,κn(r)) f (E

s BH
r ) − Pc2(s,κn(r)) f (E

s BH
κn(r))| dr

=:I21 + I22. (4.4)

To bound I21, we apply Proposition 3.7 (ii) with β = 0, δ = 1 and Proposition 3.6
(iv). We get

‖I21‖L p(�) ≤ N‖ f ‖Cα

∫ t

(k+4)/n

(
c2(s, r) − c2(s, κn(r))

)
cα−2(s, κn(r)) dr

≤ N‖ f ‖Cα

∫ t

(k+4)/n
n−1|r − s|2H−1|r − s|H(α−2) dr

≤ N‖ f ‖Cαn−1
∫ t

s
|r − s|−1+αH dr

≤ N‖ f ‖Cαn−1|t − s|αH . (4.5)

To deal with I22, we use Proposition 3.7 (i) with β = 1 and Proposition 3.6 (v). We
deduce

‖I22‖L p(�) ≤ N‖ f ‖Cα

∫ t

(k+4)/n
‖Es BH

r − E
s BH

κn(r)‖L p(�)c
α−1(s, κn(r)) dr

≤ N‖ f ‖Cα

∫ t

(k+4)/n
n−1|r − s|H−1|r − s|−H(1−α) dr

≤ N‖ f ‖Cαn−1|t − s|αH , (4.6)
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where in the second inequalitywe have also used that κn(r)−s ≥ (r−s)/2.Combining
(4.5) and (4.6), and taking again into account that n−1 ≤ |t − s|, we get

‖I2‖L p(�) ≤ N‖ f ‖Cαn−γ+ε|t − s|1/2+ε.

Recalling (4.3), we finally conclude

‖As,t‖L p(�) ≤ N‖ f ‖Cαn−γ+ε|t − s|1/2+ε.

It remains to show the same bound for t ∈ (s, (k + 4)/n]. However this is almost
straightforward. We write

‖As,t‖L p(�) ≤
∫ t

s
‖ f (BH

r ) − f (BH
κn(r))‖L p(�) dr

≤ N‖ f ‖Cαn−αH |t − s| ≤ N‖ f ‖Cαn−γ+ε|t − s|1/2+ε,

where the last inequality uses that in this case |t − s| ≤ 4n−1. Thus, (3.8) holds, with
C1 := N‖ f ‖Cαn−γ+ε, ε1 := ε.

Thus all the conditions of the stochastic sewing lemma are satisfied. The process

Ãt :=
∫ t

0
( f (BH

r ) − f (BH
κn(r))) dr

is also F-adapted, satisfies (3.11) trivially (the left-hand side is 0), and

‖Ãt − Ãs − As,t‖L p(�) ≤ ‖ f ‖C0 |t − s| ≤ N |t − s|1/2+ε,

which shows that it also satisfies (3.10). Therefore by uniquenessAt = Ãt . The bound
(3.12) then yields precisely (4.1). ��
Lemma 4.2 Let H ∈ (0, 1),α ∈ [0, 1] such thatα > 1−1/(2H), p > 0, ε ∈ (0, 1/2].
Let b ∈ Cα and Xn be the solution of (1.4). Then for all f ∈ Cα , 0 ≤ s ≤ t ≤ 1,
n ∈ N, one has the bound

∥∥∥
∫ t

s
( f (Xn

r ) − f (Xn
κn(r)

)) dr
∥∥∥
L p(�)

≤ N‖ f ‖Cα |t − s|1/2+εn−γ+ε (4.7)

with some N = N (‖b‖Cα , p, d, α, ε, H).

Proof Without loss of generality, we assume α < 1. Let

ψn(t) :=
∫ t

0
b(Xn

κn(t)
) dt .

Let us apply the Girsanov theorem (Theorem 3.10) to the function u(t) = b(Xn
κn(t)

).
First let us check that all the conditions of this theorem hold.
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Approximation of SDEs: a stochastic sewing approach 995

First, we obviously have |u(t)| ≤ ‖b‖C0 , and thus (3.26) holds with M = ‖b‖C0 .
Second, let us check condition (3.27) in the case H > 1/2. Fix λ > 0 and small

δ > 0 such that α(H − δ) > H − 1/2; such δ exists thanks to the assumption α >

1− 1/(2H). We apply Lemma 3.11 for the function f := b(Xn) and ρ := α(H − δ).
We have

∫ 1

0

(∫ t

0

(t/s)H−1/2|b(Xn
κn(t)

) − b(Xn
κn(s)

)|
(t − s)H+1/2 ds

)2
dt

≤ N [b(Xn)]2Cα(H−δ)

= N‖b‖2Cα [Xn]2αCH−δ

≤ N‖b‖2Cα (‖b‖2αC0 + [BH ]2αCH−δ ) =: ξ

Therefore,

Eeλξ ≤ N (‖b‖Cα , α, δ, H , λ) < ∞, (4.8)

where we used the fact that the Hölder constant [BH ]CH−δ satisfies E exp(λ[BH ]2αCH−δ )

≤ N for any λ ≥ 0. Thus, condition (3.27) is satisfied. Hence all the conditions of
Theorem 3.10 hold. Thus, there exists a probability measure P̃ equivalent to P such
that the process B̃H := BH + ψn is a fractional H -Brownian motion on [0, 1] under
P̃.

Now we can derive the desired bound (4.7). We have

E
P

∣∣∣
∫ t

s

(
f (Xn

r ) − f (Xn
κn(r)

)
)
dr

∣∣∣p

= E
P̃

[∣∣∣
∫ t

s

(
f (Xn

r ) − f (Xn
κn(r)

)
)
dr

∣∣∣p dP
dP̃

]

≤
(
E
P̃

∣∣∣
∫ t

s

(
f (Xn

r ) − f (Xn
κn(r)

)
)
dr

∣∣∣2p
)1/2(

E
P̃

[dP
dP̃

]2)1/2

=
(
E
P̃

∣∣∣
∫ t

s

(
f (B̃H

r + xn0 ) − f (B̃H
κn(r) + xn0 )

)
dr

∣∣∣2p
)1/2(

E
P
dP

dP̃

)1/2

=
(
E
P

∣∣∣
∫ t

s

(
f (BH

r + xn0 ) − f (BH
κn(r) + xn0 )

)
dr

∣∣∣2p
)1/2(

E
P
dP

dP̃

)1/2
. (4.9)

Taking into account (4.8), we deduce by Theorem 3.10 that

E
P
dP

dP̃
≤ N (‖b‖Cα , α, δ, H , λ).

Hence, using (4.1), we can continue (4.9) in the following way:

E
P

∣∣∣
∫ t

s

(
f (Xn

r ) − f (Xn
κn(r)

)
)
dr

∣∣∣p ≤ N‖ f ‖p
Cαn

−p(γ (α,H)+ε)|t − s|p(1/2+ε),
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which implies the statement of the theorem. ��

4.2 A regularization lemma

The goal of this subsection is to establish the regularization bound (4.26). Its proof
consists of a number of steps. First, in Lemma 4.3 we derive an extension of the
corresponding bound of Davie [9, Proposition 2.1] for the fractional Brownian motion
case. It is important that the right–hand side of this bound depends on p as

√
p (rather

than p); this will be crucial later in the proof of Lemma 4.6 and Theorem 2.1. Then in
Lemma 4.6 we obtain the pathwise version of this lemma and extend it to a wider class
of processes (fractional Brownian motion with drift instead of a fractional Brownian
motion). Finally, in Lemma 4.7 we obtain the desired regularization bound.

Lemma 4.3 Let H ∈ (0, 1), α ∈ (−1/(2H), 0]. Let f ∈ C∞. Then there exists a
constant N = N (d, α, H) such that for any p ≥ 2, s, t ∈ [0, 1] we have

∥∥∥
∫ t

s
f (BH

r ) dr
∥∥∥
L p(�)

≤ N
√
p‖ f ‖Cα (t − s)Hα+1. (4.10)

Remark 4.4 Note that the right–hand side of bound (4.10) depends only on the norm
of f in Cα and does not depend on the norm of f in other Hölder spaces.

Proof of Lemma 4.3 Fix p ≥ 2. We will apply Theorem 3.3 to the process

At :=
∫ t

0
f (BH

r ) dr , t ∈ [0, 1].

As usual, we write As,t := At − As . Let us check that all the conditions of that
theorem hold with m = 4

It is very easy to see that

‖As,t‖L p∨4(�) ≤ ‖ f ‖C0 |t − s|.

Thus (3.13) holds. By Proposition 3.6 (iii) and Proposition 3.7 (i) we have for some
N1 = N1(d, α, H) (recall that by assumptions α ≤ 0)

|EsAs,t | ≤
∫ t

s
|Pc2(s,r) f (Es BH

r )|dr ≤ N1‖ f ‖Cα (t − s)Hα+1. (4.11)

Hence

‖EsAs,t‖L p(�) ≤ N1‖ f ‖Cα (t − s)Hα+1

and condition (3.15) is met. We want to stress here that the constant N1 here does not
depend on p (this happens thanks to the a.s. bound (4.11); it will be crucial later in
the proof)
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Approximation of SDEs: a stochastic sewing approach 997

Thus, it remains to check conditions (3.14) and (3.16). Fix 0 ≤ s ≤ u ≤ t ≤ 1.
Using Proposition 3.6 (iii), we get

E
sAu,t − E

uAu,t =
∫ t

u

(
Pc2(s,r) f (E

s BH
r ) − Pc2(u,r) f (E

u BH
r )

)
dr

=
∫ t

u

(
Pc2(s,r) f (E

s BH
r ) − Pc2(s,r) f (E

u BH
r )

)
dr

+
∫ t

u

(
Pc2(s,r) f (E

u BH
r ) − Pc2(u,r) f (E

u BH
r )

)
dr

=: I1 + I2. (4.12)

Note that by Proposition 3.6 (ii), the random vector Eu BH
r − E

s BH
r is independent

of F s . Taking this into account and applying the conditional Minkowski inequality,
we get

(
E
s |I1|4

) 1
4 ≤

∫ t

u

(
E
s[Pc2(s,r) f (Es BH

r ) − Pc2(s,r) f (E
u BH

r )
]4) 1

4
dr

≤
∫ t

u
gr (E

s BH
r ) dr , (4.13)

where for x ∈ R
d , r ∈ [u, t] we denoted

gr (x) := ‖Pc2(s,r) f (x) − Pc2(s,r) f (x + E
u BH

r − E
s BH

r )‖L4(�).

By Proposition 3.6 (ii), the random vector Eu BH
r − E

s BH
r is Gaussian and consists

of d independent components with each component of mean 0 and variance v(s, u, t)
(recall its definition in (3.23)). Hence Proposition 3.7 (iv) yields now for some N2 =
N2(d, α, H) and all x ∈ R

d , r ∈ [u, t]

gr (x) ≤ N2‖ f ‖Cα (u − s)
1
2 (r − u)Hα− 1

2 .

Substituting this into (4.13), we finally get

(
E
s |I1|4

) 1
4 ≤ N2‖ f ‖Cα (u − s)

1
2

∫ t

u
(r − u)Hα− 1

2 dr

≤ N3‖ f ‖Cα (u − s)
1
2 (t − u)Hα+ 1

2 , (4.14)

for some N3 = N3(d, α, H) where we used that, by assumptions, Hα − 1/2 > −1.
Similarly, using Proposition 3.7 (iii) with β = 0, we get for some N4 =

N4(d, α, H)

|I2| ≤ N‖ f ‖Cα (u − s)
1
2

∫ t

u
(r − u)Hα− 1

2 dr ≤ N4‖ f ‖Cα (u − s)
1
2 (t − u)Hα+ 1

2 ,

(4.15)
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where again we used that, by assumptions, Hα − 1/2 > −1. We stress that both N3,
N4 do not depend on p.

Now to verify (3.14), we note that by (4.12), (4.14),(4.15), we have

‖EsAu,t − E
uAu,t‖L4(�) ≤ ‖I1‖L4(�) + ‖I2‖L4(�)

≤ (
E[Es |I1|4]

) 1
4 + ‖I2‖L4(�)

≤ (N3 + N4)‖ f ‖Cα (u − s)
1
2 . (4.16)

Thus, condition (3.14) holds.
In a similar manner we check (3.16). We have

E
s[|EsAu,t − E

uAu,t |2] ≤ 2Es |I1|2 + 2Es |I2|2 ≤ 2
(
E
s |I1|4

)1/2 + 2Es |I2|2
≤ 2(N 2

3 + N 2
4 )‖ f ‖2Cα (u − s)(t − u)2Hα+1.

Thus,

∥∥Es[|EsAu,t − E
uAu,t |2]

∥∥
L p/2(�)

≤ 2(N 2
3 + N 2

4 )‖ f ‖2Cα (u − s)(t − u)2Hα+1

and the constant 2(N 2
3 + N 2

4 ) does not depend on p. Therefore condition (3.16) holds.
Thus all the conditions of Theorem 3.3 hold. The statement of the theorem follows

now from (3.17). ��
To establish the regularization bound we need the following simple corollary of the

above lemma.

Corollary 4.5 Let H ∈ (0, 1), δ ∈ (0, 1], α − δ ∈ (−1/(2H), 0]. Let f ∈ C∞. Then
there exists a constant N = N (d, α, H , δ) such that for any p ≥ 2, s, t ∈ [0, 1],
x, y ∈ R

d we have

∥∥∥
∫ t

s
( f (BH

r + x) − f (BH
r + y)) dr

∥∥∥
L p(�)

≤ N
√
p‖ f ‖Cα (t − s)H(α−δ)+1|x − y|δ.

(4.17)

Proof Fix x, y ∈ R
d . Consider a function g(z) := f (z + x) − f (z + y), z ∈ R

d .
Then, by Lemma 4.3

∥∥∥
∫ t

s
( f (BH

r + x) − f (BH
r + y)) dr

∥∥∥
L p(�)

=
∥∥∥
∫ t

s
g(BH

r ) dr
∥∥∥
L p(�)

≤ N
√
p‖g‖Cα−δ (t − s)H(α−δ)+1.

The corollary follows now immediately from Proposition 3.8. ��
The next lemma provides a pathwise version of bound (4.17). It also allows to

replace fractional Brownian motion by fractional Brownian motion with a drift.
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Approximation of SDEs: a stochastic sewing approach 999

Lemma 4.6 Let H ∈ (0, 1), α > 1 − 1/(2H), α ∈ [0, 1], f ∈ C∞. Let ψ : � ×
[0, 1] → R

d be an F–adapted process such that ψ0 is deterministic and for some
R > 0

‖ψ‖C1([0,1],Rd ) ≤ R, a.s. (4.18)

Suppose that for some ρ > H + 1/2 we have for any λ > 0

E exp
(
λ‖ψ‖2Cρ([0,1],Rd )

) =: G(λ) < ∞. (4.19)

Then for any M > 0, ε > 0, ε1 > 0 there exists a constant N =
N (d, α, H , ε, ε1,G, R, M) and a random variable ξ finite almost everywhere such
that for any s, t ∈ [0, 1], x, y ∈ R, |x |, |y| ≤ M we have

∣∣∣
∫ t

s
( f (BH

r + ψr + x) − f (BH
r + ψr + y))dr

∣∣∣
≤ ξ‖ f ‖Cα (t − s)H(α−1)+1−ε|x − y| (4.20)

and

E exp(ξ2−ε1) < N < ∞. (4.21)

Proof First we consider the case ψ ≡ 0. Fix ε, ε1 > 0. By the fundamental theorem
of calculus we observe that for any x, y ∈ R

d , 0 ≤ s ≤ t ≤ 1

∫ t

s
( f (BH

r + x) − f (BH
r + y)) dr

= (x − y) ·
∫ 1

0

∫ t

s
∇ f (BH

r + θx + (1 − θ)y) dr dθ. (4.22)

Consider the process

F(t, z) :=
∫ t

0
∇ f (BH

r + z) dr .

Take δ > 0 such that α − 1 − δ > 1/(2H). By Lemma 4.3 and Corollary 4.5, there
exists N1 = N1(α, d, H , δ) such that for any p ≥ 2, s, t ∈ [0, 1], x, y ∈ R

d we have

‖F(t, x) − F(s, y)‖L p(�) ≤ ‖F(t, x) − F(s, x)‖L p(�) + ‖F(s, x) − F(s, y)‖L p(�)

≤ N1
√
p‖∇ f ‖Cα−1((t − s)H(α−1)+1 + |x − y|δ).

We stress that N1 does not depend on p. Taking into account that the process F is
continuous (because f ∈ C∞), we derive from the above bound and the Kolmogorov
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continuity theorem ( [26, Theorem 1.4.1]) that for any p large enough one has

sup
x,y∈Rd ,|x |,|y|≤M

s,t∈[0,1]

|F(t, x) − F(s, y)|
(t − s)H(α−1)+1−ε + |x − y|δ/2 =: ξ‖ f ‖Cα < ∞ a.s., (4.23)

and ‖ξ‖L p(�) ≤ NN1
√
p, where N = N (α, d, H , δ, ε, M). Since N and N1 do not

depend on p, we see that by the Stirling formula

E exp(ξ2−ε1) =
∞∑
n=0

Eξn(2−ε1)

n! ≤
∞∑
n=0

(NN1)
n(2−ε1)nn(1−ε1/2)

n! < ∞ (4.24)

Therefore we obtain from (4.22) that for any x, y ∈ R
d , |x |, |y| ≤ M we have

∣∣∣
∫ t

s
( f (BH

r + x) − f (BH
r + y)) dr

∣∣∣

≤ |x − y|
∫ 1

0
|(F(t, θx + (1 − θ)y) − F(s, θx + (1 − θ)y))| dθ

≤ ξ‖ f ‖Cα (t − s)H(α−1)+1−ε|x − y|. (4.25)

Now we consider the general case. Assume that the function ψ satisfies (4.19).
Then by Proposition 3.10, bound (3.30) and assumption (4.19) the process

B̃t := Bt + ψt − ψ0

is a fractional Brownian motion with Hurst parameter H under some probability
measure P̃ equivalent toP. This yields from (4.25) (we apply this boundwithM+|ψ0|
in place of M)

∣∣∣
∫ t

s
( f (BH

r + ψr + x) − f (BH
r + ψr + y)) dr

∣∣∣
=

∣∣∣
∫ t

s
( f (B̃H

r + x + ψ0) − f (B̃H
r + y + ψ0)) dr

∣∣∣
≤ η‖ f ‖Cα |x − y|

where η is a random variable with E
P̃ exp(η2−ε1) < ∞. Note that we have used here

our assumption that ψ0 is non-random. The latter implies that for any ε2 > ε1

E
P exp(η2−ε2) = E

P̃

[
exp(η2−ε2)

dP

dP̃

]

≤
(
E
P̃ exp(2η2−ε2)

)1/2(
E
P
dP

dP̃

)1/2

≤
(
E
P̃ exp(2η2−ε2)

)1/2
eN R

E
P exp(N‖ψ‖2Cρ([0,1],Rd )

)
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where the last inequality follows from (3.28) and (3.30). This concludes the proof of
the theorem. ��

Now we are ready to present the main result of this subsection, the regularization
lemma.

Lemma 4.7 Let H ∈ (0, 1), α > 1 − 1/(2H), α ∈ [0, 1], p ≥ 2, f ∈ Cα , ε, ε1 > 0.
Let τ ∈ (H(1−α), 1). Let ϕ,ψ : �×[0, 1] → R

d be F–adapted processes satisfying
condition (4.18). Assume that ψ satisfies additionally (4.19) for some ρ > H + 1/2,
ρ ∈ [0, 1]. Suppose that ψ0 and ϕ0 are deterministic.

Then there exists a constant N = N (H , α, p, d, τ,G, R, ε, ε1) such that for any
L > 0, and any s, t ∈ [0, 1] we have
∥∥∥
∫ t

s
( f (BH

r + ϕr ) − f (BH
r + ψr )) dr

∥∥∥
L p(�)

≤ NL‖ f ‖Cα (t − s)H(α−1)+1−ε
(‖ϕs − ψs‖L p(�) + ‖[ϕ − ψ]Cτ ([s,t])‖L p(�)(t − s)τ

)
+ N‖ f ‖C0 |t − s| exp(−L2−ε1). (4.26)

Proof We begin with assuming further that f ∈ C∞(Rd ,Rd). Fix S, T ∈ [0, 1]≤,
ε1 > 0. Choose any ε > 0 small enough such that

H(α − 1) − ε + τ > 0. (4.27)

Let us apply the deterministic sewing lemma (Proposition 3.1) to the process

As,t :=
∫ t

s
( f (BH

r + ψr + ϕs − ψs) − f (BH
r + ψr )) dr , (s, t) ∈ [S, T ]≤.

Let us check that all the conditions of the above lemma are satisfied.
First, the process A is clearly continuous, since f is bounded. Then, using

Lemma 4.6 with M := 4R, we derive that for any S ≤ s ≤ u ≤ T there exists a ran-
dom variable ξ with E exp(ξ2−ε1) ≤ N = N (d, α, H , ε, ε1,G, |ϕ0|, |ψ0|, R) < ∞
such that

|δAs,u,t | =
∣∣∣
∫ t

u
( f (BH

r + ψr + ϕu − ψu) − f (BH
r + ψr + ϕs − ψs)) dr

∣∣∣
≤ ξ‖ f ‖Cα |(ψu − ϕu) − (ψs − ϕs)|(t − s)H(α−1)+1−ε

≤ ξ‖ f ‖Cα [ψ − ϕ]Cτ ([S,T ])(t − s)H(α−1)+1−ε+τ .

Since, by (4.27), H(α − 1) + 1 − ε + τ > 1, we see that condition (3.6) is satisfied
with C = ξ‖ f ‖Cα [ψ − ϕ]Cτ ([S,T ]). Thus, all the conditions of Proposition 3.1 hold.
By setting now

Ãt :=
∫ t

s
( f (BH

r + ϕr ) − f (BH
r + ψr )) dr ,
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we see that for S ≤ s ≤ t ≤ T

|Ãt − Ãs − As,t | =
∣∣∣
∫ t

s
( f (BH

r + ϕr ) − f (BH
r + ψr + ϕs − ψs)) dr

∣∣∣
∣∣∣

≤ ‖ f ‖C1 [ψ − ϕ]Cτ ([S,T ])|t − s|1+τ

≤ ‖ f ‖C1 [ψ − ϕ]Cτ ([S,T ])|t − s|H(α−1)+1−ε+τ .

Thus, the process Ã satisfies (3.7) and therefore coincides with A. Proposition 3.1
implies now that for any S ≤ s ≤ t ≤ T

∣∣∣
∫ t

s
( f (BH

r + ϕr ) − f (BH
r + ψr )) dr

∣∣∣
≤ |As,t | + Nξ‖ f ‖Cα [ψ − ϕ]Cτ ([S,T ])(t − s)H(α−1)+1−ε+τ

≤ Nξ‖ f ‖Cα (t − s)H(α−1)+1−ε
(|ψ − ϕ|C0([S,T ]) + [ψ − ϕ]Cτ ([S,T ])(t − s)τ

)
,

where the bound on |As,t | follows again from Lemma 4.6. By putting in the above
bound s = S and t = T and using that |ψ − ϕ|C0([S,T ]) ≤ |ψS − ϕS| + [ψ −
ϕ]Cτ ([S,T ])(T − S)τ , we obtain for S, T ∈ [0, 1]≤

∣∣∣
∫ T

S
( f (BH

r + ϕr ) − f (BH
r + ψr )) dr

∣∣∣
≤ Nξ‖ f ‖Cα (T − S)H(α−1)+1−ε

(|ψS − ϕS| + [ψ − ϕ]Cτ ([S,T ])(T − S)τ
)
.

On the other hand, we have the following trivial bound.

∣∣∣
∫ T

S
( f (BH

r + ϕr ) − f (BH
r + ψr )) dr

∣∣∣ ≤ 2‖ f ‖C0 |T − S|.

Therefore,

∥∥∥
∫ T

S
( f (BH

r + ϕr ) − f (BH
r + ψr )) dr

∥∥∥
L p(�)

≤
∥∥∥1ξ≤L

∫ T

S
( f (BH

r + ϕr ) − f (BH
r + ψr )) dr

∥∥∥
L p(�)

+
∥∥∥1ξ≥L

∫ T

S
( f (BH

r + ϕr ) − f (BH
r + ψr )) dr

∥∥∥
L p(�)

≤ LN‖ f ‖Cα (T − S)H(α−1)+1−ε
(‖ψS − ϕS‖L p(�) + ‖[ψ − ϕ]Cτ ([S,T ])‖L p(�)(T − S)τ

)
+2

(
P(ξ ≥ L)

)1/p‖ f ‖C0 |T − S|.

By Chebyshev inequality and (4.21), we finally get (4.26) for the case of smooth f .
Now we are ready to remove the extra assumption on the smoothness of f . Let us

set fn = P1/n f ∈ C∞. By applying the statement of the lemma to fn and using that
‖ fn‖Cβ ≤ ‖ f ‖Cβ for β = α, 0 we get
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∥∥∥
∫ t

s
( fn(B

H
r + ϕr ) − fn(B

H
r + ψr )) dr

∥∥∥
L p(�)

≤ NL‖ f ‖Cα (t − s)H(α−1)+1−ε(‖ϕs − ψs‖L p(�) + ‖[ϕ − ψ]Cτ ([s,t])‖L p(�)(t − s)τ )

+ N‖ f ‖C0 |t − s| exp(−L2−ε1 ). (4.28)

If α > 0, then fn(x) → f (x) for all x ∈ R
d and the claim follows by Fatou’s lemma.

So we only have to consider the case α = 0. Clearly, it suffices to show that for each
r > 0, almost surely

( fn(B
H
r + ϕr ) − fn(B

H
r + ψr )) → ( f (BH

r + ϕr ) − f (BH
r + ψr )),

as n → ∞. Notice that almost surely fn(BH
r ) → f (BH

r ) as n → ∞, since the law
of BH

r is absolutely continuous (for r > 0). Moreover, since α = 0, we have by
assumption that H < 1/2. By Proposition 3.10 (recall that ϕ satisfies (4.18), therefore
is Lipschitz) there exists a neasure equivalent to P under which BH +ϕ is a fractional
brownian motion. Consequently, for all r > 0, almost surely

fn(B
H
r + ϕr ) → f (BH

r + ϕr ),

as n → ∞. With the same reasoning we obtain that almost surely fn(BH
r + ψr ) →

f (BH
r + ψr ). The lemma is now proved. ��

4.3 Proof of Theorem 2.1

Proof Without loss of generality we assume α �= 1. Let us denote

ψt := x0 +
∫ t

0
b(Xr ) dr , ψn

t := xn0 +
∫ t

0
b(Xn

κn(r)
) dr , t ∈ [0, 1].

Fix ε > 0 such that

ε <
1

2
+ H(α − 1). (4.29)

By assumption (2.5) such ε exists. Fix now large enough p ≥ 2 such that

d/p < ε/2. (4.30)
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Fix 0 ≤ S ≤ T ≤ 1. Then, taking into account (4.7), for any S ≤ s ≤ t ≤ T we
have

‖(ψt − ψs) − (ψn
t − ψn

s )‖L p(�)

=
∥∥∥
∫ t

s
(b(Xr ) − b(Xn

κn(r)
)) dr

∥∥∥
L p(�)

≤
∥∥∥
∫ t

s
(b(Xr ) − b(Xn

r )) dr
∥∥∥
L p(�)

+ N |t − s|1/2+εn−γ+ε. (4.31)

Let M ≥ 1 be a parameter to be fixed later. We wish to apply Lemma 4.7 with ψn

in place of ϕ, 1
2 + H(α − 1) − ε in place of ε, and τ := 1/2 + ε/2. Let us check

that all the conditions of this lemma are satisfied. First, we note that by (4.29) we
have 1

2 + H(α − 1) − ε > 0, which is required by the assumptions of the lemma.
Second, we note that 1/2 + ε/2 > H(1 − α) thanks to (2.5), thus this choice of τ is
allowed. Next, it is clear that ψ0 and ψn

0 are deterministic. Further, since the function
b is bounded, we see ψ and ψn satisfy (4.18). Finally, let us verify that ψ satisfies
(4.19). If H < 1/2, this condition holds automatically thanks to the boundedness of
b. If H ≥ 1/2 then pick H ′ ∈ (0, H) such that

αH ′ > H − 1

2
. (4.32)

Note that such H ′ exists thanks to assumption (2.5). Then, by definition of ψ , we
clearly have

[ψ]C1+αH ′ ≤ |x0| + ‖b‖C0 + [b(X ·)]CαH ′ ≤ |x0| + ‖b‖C0 + ‖b‖α
C0 + [BH ]αCH ′ .

Therefore for any λ > 0 we have

Ee
λ[ψ]2

C1+αH ′ ≤ N (|x0|, ‖b‖C0)E exp([BH ]2αCH ′ ) < ∞.

By taking ρ := 1 + αH ′ and recalling (4.32), we see that ρ > H + 1/2 and thus
condition (4.19) holds. Therefore all conditions of Lemma 4.7 are met. Applying this
lemma, we get

∥∥∥
∫ t

s
(b(Xr ) − b(Xn

r )) dr
∥∥∥
L p(�)

=
∥∥∥
∫ t

s
(b(BH

r + ψr ) − b(BH
r + ψn

r )) dr
∥∥∥
L p(�)

≤ MN |t − s| 12+ε‖ψS − ψn
S‖L p(�)

+ MN |t − s|1+3ε/2‖[ψ − ψn]C1/2+ε/2([s,t])‖L p(�) + N exp(−M2−ε0)|t − s|
≤ MN |t − s| 12+ε‖ψS − ψn

S‖L p(�)

+ MN |t − s|1+3ε/2[]ψ − ψn[]
C 1/2+ε

p ,[s,t] + N exp(−M2−ε0)|t − s|,
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where the last inequality follows from the Kolmogorov continuity theorem and (4.30).
Using this in (4.31), dividing by |t−s|1/2+ε and taking supremumover S ≤ s ≤ t ≤ T ,
we get for some N1 ≥ 1 independent of M , n

[]ψ − ψn[]
C 1/2+ε

p ,[S,T ]
≤ MN1‖ψS − ψn

S‖L p(�) + MN1|T − S|1/2+ε/2[]ψ − ψn[]
C 1/2+ε

p ,[S,T ]
+ N1n

−γ+ε + N1 exp(−M2−ε0). (4.33)

Fix now m to be the smallest integer so that N1Mm−1/2−ε/2 ≤ 1/2 (we stress that m
does not depend on n). One gets from (4.33)

[]ψ − ψn[]
C 1/2+ε

p ,[S,S+1/m] ≤ 2MN1‖ψS − ψn
S‖L p(�)

+2N1n
−γ+ε + 2N1 exp(−M2−ε0), (4.34)

and thus

‖ψS+1/m − ψn
S+1/m‖L p(�) ≤ 2MN1‖ψS − ψn

S‖L p(�)

+2N1n
−γ+ε + 2N1 exp(−M2−ε0).

Starting from S = 0 and applying the above bound k times, k = 1, . . . ,m, one can
conclude

‖ψk/m − ψn
k/m‖L p(�) ≤ (2MN1)

k
(
‖ψ0 − ψn

0 ‖L p(�)

+ 2N1n
−γ+ε + +2N1 exp(−M2−ε0)

)

≤ (2MN1)
m
(
|x0 − xn0 |

+ 2N1n
−γ+ε + 2N1 exp(−M2−ε0)

)
.

Substituting back into (4.34), we get

[]ψ − ψn[]
C 1/2+ε

p ([0,1]) ≤ m sup
k=1,...,m

[]ψ − ψn[]
C 1/2+ε

p ([k/m,(k+1)/m])

≤ (2N1M)m+5
(
|x0 − xn0 | + N1n

−γ+ε + N1 exp(−M2−ε0)
)
.

(4.35)

It follows from the definition of m that m ≤ 2N 2
1M

2−ε. At this point we choose
ε0 = ε/2 and note that for some universal constant N2 one has

(2N1M)m+5 = e(m+5) log(2N1M) ≤ e(2N2
1 M

2−ε+5) log(2N1M) ≤ N2e
1
2 M

2−ε/2
.
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Thus, we can continue (4.35) as follows.

[]ψ − ψn[]
C 1/2+ε

p ([0,1]) ≤ eN3M2−ε logM

(
|x0 − xn0 | + N1n

−γ+ε
)

+ N1N2 exp(−1

2
M2−ε/2). (4.36)

Fix now δ > 0 and choose N4 = N4(δ) such that for all M > 0 one has

exp(
1

2
M2−ε/2) ≥ N4e

δ−1N3M2−ε logM .

It remains to notice that by choosing M > 1 such that

eN3M2−ε logM = nδ,

one has

e− 1
2 M

2−ε/2 ≤ Nn−1.

Substituting back to (4.36) and since X − Xn = ψ − ψn , we arrive to the required
bound (2.6). ��

5 Malliavin calculus for the Euler–Maruyama scheme

In the multiplicative standard Brownian case, we first consider Euler–Maruyama
schemes without drift: for any y ∈ R

d define the process X̄n(y) by

d X̄n
t (y) = σ(X̄n

κn(t)
(y)) dBt , X̄n

0 = y. (5.1)

This process will play a similar role as BH in the previous section. Similarly to the
proof of Lemma 4.1, we need sharp bounds on the conditional distribution of X̄n

t
givenFs , which can be obtained from bounds of the density of X̄n

t . A trivial induction
argument yields that for t > 0, X̄n

t indeed admits a density, but to our knowledge such
inductive argument can not be used to obtain useful quantitative information.

Remark 5.1 While the densities ofEuler–Maruyamaapproximations havebeen studied
in the literature, see e.g. [5,6,18], none of the available estimates suited well for our
purposes. In [18], under less regularity assumption on σ , L p bounds of the density
(but not its derivatives) are derived. In [5,6], smoothness of the density is obtained
even in a hypoelliptic setting, but without sharp control on the short time behaviour
of the norms.

Theorem 5.2 Let σ satisfy (2.8), X̄ n be the solution of (5.1), and let G ∈ C1. Then for
all t = 1/n, 2/n, . . . , 1 and k = 1, . . . , d one has the bound

|E∂kG(X̄n
t )| ≤ N‖G‖C0 t−1/2 + N‖G‖C1e−cn (5.2)
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Approximation of SDEs: a stochastic sewing approach 1007

with some constant N = N (d, λ, ‖σ‖C2) and c = c(d, ‖σ‖C2) > 0.

We will prove Theorem 5.2 via Malliavin calculus. In our discrete situation, of
course this could be translated to finite dimensional standard calculus, but we find it
more instructive to follow the basic terminology of [35], which we base on the lecture
notes [21].

5.1 Definitions

Define H = {h = (hi )i=1,...,n : hi ∈ R
d}, with the norm

‖h‖2H = 1

n

n∑
i=1

|hi |2 = 1

n

n∑
i=1

d∑
k=1

|hki |2.

One can obtain a scalar product from ‖ · ‖H , which we denote by 〈·, ·〉H . Let us also
denote I = {1, . . . , n} × {1, . . . , d}. One can of course view H as a copy of RI , with
a rescaled version of the usual 
2 norm. We denote by e(i,k) the element of H whose
elements are zero apart from the i-th one, which is the k-th unit vector of Rd . Set
�W(i,k) := Wk

i/n − Wk
(i−1)/n . Then for any R-valued random variable X of the form

X = F(�W(i,k) : (i, k) ∈ I),

where F is a differentiable function, with at most polynomially growing derivative,
the Malliavin derivative of X is defined as the H -valued random variable

DX :=
∑

(i,k)∈I
(Dk

i X)e(i,k) :=
∑

(i,k)∈I
∂(i,k)F(�W( j,
) : ( j, 
) ∈ I)e(i,k).

For multidimensional random variables we define D coordinatewise. In the sequel
we also use the matrix norm on R

d×d defined in the usual way ‖M‖ :=
supx∈Rd ,|x |=1 |Mx |. Recall that if M is positive semidefinite, then one has ‖M‖ =
supx∈Rd ,|x |=1 x

∗Mx . It follows that ‖ · ‖ is monotone increasing with respect to the
usual order � on the positive semidefinite matrices.

The following few properties are true in far larger generality, for the proofs we
refer to [21]. One easily sees that the derivativeD satisfies the chain rule: namely, for
any differentiable G : Rd → R, one has DG(X) = ∇G(X) · DX . The operator D
is closable, and its closure will also be denoted by D , whose domain we denote by
W ⊂ L2(�). The adjoint of D is denoted by δ. One then has that the domain of δ is
included inW(H) and the following identity holds:

E|δu|2 = E‖u‖2H + E
1

n2
∑

(i,k),( j,m)∈I
(Dk

i u
m
j )(Dm

j u
k
i ). (5.3)
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5.2 Stochastic difference equations

First let us remark that the Eq. (5.1) does not define an invertible stochastic flow:
indeed, for any t > 0, y → X̄n

t (y) may not even be one-to-one. Therefore in order to
invoke arguments from the Malliavin calculus for diffusion processes, we consider a
modified process equation that does define an invertible flow. Unfortunately, this new
process will not have a density, but its singular part (as well as its difference from the
original process) is exponentially small.

Take a smooth function � : R → R such that |�(r)| ≤ |r | for all r ∈ R, �(r) = r for
|r | ≤ (4‖σ‖C1d2)−1, �(r) = 0 for |r | ≥ (2‖σ‖C1d2)−1, and that satisfies |∂k�| ≤ N
for k = 0, . . . , 3 with some N = N (d, ‖σ‖C1). Define the recursion, for x ∈ R

d and
j = 1, . . . , n, k = 1, . . . , d

X k
j (x) = X k

j−1(x) +
d∑


=1

σ k
(X j−1(x)
)
�(�W( j,
)), X0(x) = x . (5.4)

By our definition of �, for any j , (5.4) defines a diffeomorphism from R
d to

R
d by x → X j (x). It is easy to see that its Jacobian J j (x) = (

Jm,k
j (x)

) =(
∂xmX k

j (x)
)
k,m=1,...,d; j=1,...,n satisfies the recursion

Jm,k
j (x) = Jm,k

j−1(x) +
d∑

q=1

Jm,q
j−1(x)

[ d∑

=1

∂qσ k
(X j−1(x)
)
�(�W( j,
))

]
, J0(x) = id.

It is also clear that Dm
i X k

j = 0 for j < i , while for j > i we have the recursion

Dm
i X k

j (x) = Dm
i X k

j−1(x) +
d∑

q=1

Dm
i X q

j−1(x)
[ d∑


=1

∂qσ
k
(X j−1(x)

)
�(�W( j,
))

]
,

Dm
i X k

i = σ km(Xi−1(x)
)
�′(�W(i,m)).

From now on we will usually suppress the dependence on x in the notation. Save for
the initial conditions, the two recursions coincide for the matrix-valued processes J·
and DiX·. Since the recursion is furthermore linear, j �→ J−1

j DiX j is constant in
time for j ≥ i ≥ 1. In particular,

J−1
j DiX j = J−1

i

(
σ km(Xi−1)�

′(�W(i,m))
)
k,m=1,...,d ,

or, with the notation Ji, j = J j J
−1
i ,

DiX j = Ji, j
(
σ km(Xi−1)�

′(�W(i,m))
)
k,m=1,...,d .

123



Approximation of SDEs: a stochastic sewing approach 1009

Let us now define the event �̂ ⊂ � by

�̂ = {|�W(i,k)| ≤ (4‖σ‖C1d2)−1,∀(i, k) ∈ I}

as well as the (matrix-valued) random variables Di, j by

Di, j = Ji, jσ(Xi−1). (5.5)

Clearly, on �̂ one has Di, j = DiX j . Note that for fixed j,m one may view D·,m
·, j

as an element of H , while for fixed i, j one may view Di, j as a d × d matrix. One
furthermore has the following exponential bound on �̂.

Proposition 5.3 There exist N and c > 0 depending only on d and ‖σ‖C1 , one has
P(�̂) ≥ 1 − Ne−cn.

Proof For each (i, k) ∈ I, since �W(i,k) is zero mean Gaussian with variance n−1,
one has

P
(
�(�W(i,k)) �= �W(i,k)

) ≤ P
(|�W(i,k)| ≥ (4‖σ‖C1d2)−1) ≤ N ′e−c′n

with some N ′ and c′ > 0 depending only on d and ‖σ‖C1 , by the standard properties of
the Gaussian distribution. Therefore, by the elementary inequality (1− x)α ≥ 1−αx ,
valid for all x ∈ [0, 1] and α ≥ 1, one has

P(�̂) ≥ (
1 − (N ′e−c′n ∧ 1)

)nd ≥ 1 − N ′nde−c′n ≥ 1 − Ne−(c′/2)n .

��
We now fix ( j, k) ∈ I, G ∈ C1, and we aim to bound |E∂kG(X j )| in terms of

t := j/n and ‖G‖0, and some additional exponentially small error term. To this end,
we define the Malliavin matrix M ∈ R

d×d

Mm,q = 〈D·,m
·, j ,D·,q

·, j 〉H = 1

n

∑
(i,v)∈I

Dv,m
i, j Dv,q

i, j ,

with m, q = 1, . . . , d. As we will momentarily see (see (5.21)), M is invertible.
Define

Y =
d∑

m=1

(D·,m
·, j )(M−1)m,k ∈ H .

One then has by the chain rule that on �̂, ∂kG(X j ) = 〈DG(X j ),Y 〉H . Therefore,

E∂kG(X j ) = E〈DG(X j ),Y 〉H + E∂kG(X j )1�̂c − E〈DG(X j ),Y 〉H1�̂c

= E(G(X j ), δY ) + E∂kG(X j )1�̂c − E〈DG(X j ),Y 〉H1�̂c

=: E(G(X j ), δY ) + I1 + I2. (5.6)

123



1010 O. Butkovsky et al.

Recalling (5.3), one has

E|δY |2 ≤ E‖Y‖2H + E
1

n2
∑

(i,q),(r ,m)∈I
(D

q
i Y

m
r )(Dm

r Y q
i ). (5.7)

Theorem 5.2 will then follow easily once we have the appropriate moment bounds of
the objects above. Recall the notation t = j/n.

Lemma 5.4 Assume the above notations and let σ satisfy (2.8). Then for any p > 0,
one has the bounds

E sup
i=1,..., j

‖Ji, j (x)‖p + E sup
1≤i≤ j

‖J−1
i, j (x)‖p ≤ N , (5.8)

E sup
i=1,..., j

‖Di, j (x)‖p ≤ N , (5.9)

E‖M−1(x)‖p ≤ Nt−p, (5.10)

sup
i=1,..., j

E sup
r=1,..., j

‖Di Yr (x)‖p ≤ Nt−p. (5.11)

for all x ∈ R
d , with some N = N (p, d, λ, ‖σ‖C2).

Proof As before, we omit the dependence on x ∈ R
d in order to ease the notation. We

first bound the moments of sup j ‖J j‖. Recall that we have the recursion

J j = J j−1(I + � j/n), (5.12)

where the matrix �t = (�t )
d
q,k=1 is given by

�
q,k
t =

d∑

=1

∂qσ
k
(Xnκn(t))�(W 


t − W 

κn(t)), (5.13)

By Itô’s formula it follows that

�(W 

t − W 


κn(t)) =
∫ t

κn(t)
�′(W 


s − W 

κn(t)) dW



s + 1

2

∫ t

κn(t)
�′′(W 


s − W 

κn(t)) ds.

Consequently, for j = 0, . . . , n we have that J j = Z j/n , where the matrix-valued
process Zt satisfies

dZt =
d∑

q=1

Zκn(t)At dt +
d∑


=1

Zκn(t)B

t dW



t , Z0 = I , (5.14)

123



Approximation of SDEs: a stochastic sewing approach 1011

with matrices As = (Aq,k
s )q,k=1,...,d and B


s = (B
,q,k
s )q,k=1,...,d given by

Aq,k
s = 1

2

d∑

=1

∂qσ
k
(Xnκn(s))�

′′(W 

s − W 


κn(s))

B
,q,k
s = ∂qσ

k
(Xnκn )�
′(W 


s − W 

κn(s)).

Notice that there exists a constant N = N (‖σ‖C1 , ‖�‖C2) such that almost surely, for
all (t, x) ∈ [0, 1] × R

d

‖At‖ +
d∑


=1

‖B

t ‖ ≤ N . (5.15)

This bound combined with the fact that Zt satisfies (5.14) imply the bounds

E sup
t≤1

‖Zt‖p ≤ N

for all p > 0. Hence,

E sup
j=1,..,n

‖J j‖p ≤ E sup
t≤1

‖Zt‖p ≤ N . (5.16)

We now bound the moments of sup j ‖J−1
j ‖. By (5.12) we get

J−1
j = (I + � j/n)

−1 J−1
j−1 (5.17)

Recall that for t ∈ [( j − 1)/n, j/n]

�t =
∫ t

( j−1)/n
As ds +

d∑

=1

∫ t

( j−1)/n
B

s dW



s ,

and that by the definition of � and (5.13), for all t ∈ [0, T ], the matrix I + �t is
invertible. Hence, by Itô’s formula, we have for t ∈ [( j − 1)/n, j/n]

(I + �t )
−1 = I +

∫ t

( j−1)/n
Ãs ds +

d∑

=1

∫ t

( j−1)/n
B̃

s dW



s , (5.18)

with

Ãs =
d∑


=1

(I + �s)
−1B


s (I + �s)
−1B


s (I + �s)
−1 − (I + �s)

−1As(I + �s)
−1,

B̃

s = −(I + �s)

−1B

s (I + �s)

−1.
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Moreover, by definition or �, almost surely, for all (t, x) ∈ [0, T ] × R
d one has

‖Ãt‖ +
d∑


=1

‖B̃

t ‖ ≤ N . (5.19)

By (5.17) and (5.18), for j = 1, ..., n we have that J−1
j = Z̃ j/n , where the matrix

valued process Z̃t is defined by

d Z̃t = Ãt Z̃κn(t) dt +
d∑


=1

B̃

t Z̃κn(t) dW



s , Z̃0 = I .

By this and the bounds (5.19) we have the bounds

E sup
t≤1

‖Z̃t‖p ≤ N

for all p > 0. Consequently,

E sup
j=1,...,n

‖J−1
j ‖p ≤ E sup

t≤1
‖Z̃t‖p ≤ N . (5.20)

Finally, from (5.16) and (5.20) we obtain (5.8).
The bound (5.9) then immediately follows from (5.8), the definition (5.5), and the

boundedness of σ .
Next, we show (5.10). On the set of positive definite matrices we have that on one

hand, matrix inversion is a convex mapping, and on the other hand, the function ‖ · ‖p

is a convex increasing mapping for p ≥ 1. It is also an elementary fact that if B � λI ,
then ‖(ABA∗)−1‖ ≤ λ−1‖(AA∗)−1‖. One then writes

‖M−1‖p =
(n
j

)p∥∥∥
(1
j

j∑
i=1

[
Ji, jσ(Xi−1)

][
Ji, jσ(Xi−1)

]∗)−1∥∥∥p

≤ t−p 1

j

j∑
i=1

‖([Ji, jσ(Xi−1)
][
Ji, jσ(Xi−1)

]∗)−1‖p

≤ λ−pt−p 1

j

j∑
i=1

‖J−1
i, j ‖2p

≤ λ−pt−p sup
i=1,..., j

‖J−1
i, j ‖2p. (5.21)

Therefore (5.10) follows from (5.8)
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Approximation of SDEs: a stochastic sewing approach 1013

We now move to the proof of (5.11). First of all, notice that the above argument
yields

sup
i=1,...,n

E sup
j=1,...,n

‖DiX j‖p ≤ N . (5.22)

for all p > 0. Indeed, the proof of this is identical to the proof of (5.16) since
(DiX j ) j≥i has the same dynamics as (J j ) j≥0 and initial condition Dk

i Xm
i =

σ km(Xi−1)�
′(�W(i,m)) which is bounded. Recall that

Yr =
d∑

m=1

(D·,m
r , j )(M

−1)m,k .

By Leibniz’s rule, for each i, r ∈ {0, .., n},Di Y r is aRd ⊗R
d -valued random variable

given by

Di Yr =
d∑

m=1

(DiD·,m
r , j )(M

−1)m,k +
d∑

m=1

D·,m
r , j ⊗ Di (M

−1)m,k (5.23)

We start with a bound for supr ‖DiDr , j‖. By definition of Di, j we have that

DiDr , j = (Di J j )J
−1
r σ(Xr−1) + J j (Di J

−1
r )σ (Xr−1) + J j J

−1
r (Diσ(Xr−1)),

(5.24)

where for A ∈ (Rd)⊗2, B ∈ (Rd)⊗3, the product AB or BA is an element of (Rd)⊗3

that arises by considering B as a d × d matrix whose entries are elements of Rd . We
estimate the termDi J j . As before, we have thatDi J j = Di Z j/n , where Z is given by
(5.14). We have thatDi Zt = 0 for t < i/n while for t ≥ i/n the processDi Zt =: Z i

t
satisfies

Z i
t =

(
Z i

κn(t)
At + Zκn(t)Di At

)
dt +

d∑

=1

(
Z i

κn(t)
B

t + Zκn(t)DiB


t

)
dW 


t

Z i
i/n = Zi/n

d∑

=1

B

i/n (5.25)

By the chain rule and (5.22) it follows that for p > 0 there exists N =
N (‖σ‖C2 , ‖�‖C3 , d, p) such that

sup
i=1,...,n

E

(
sup
t≤1

‖DiAt‖p +
d∑


=1

sup
t≤1

‖DiB

t ‖p

)
≤ N (5.26)
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1014 O. Butkovsky et al.

This combined with (5.16) shows that for the ‘free terms’ of (5.25) we have

sup
i=1,...,n

E

(
sup
t≤1

‖Zκn(t)DiAt‖p +
d∑


=1

sup
t≤1

‖Zκn(t)DiB

t ‖p

)
≤ N .

This, along with (5.15) and (5.16), implies that

sup
i=1,...,n

E sup
j=1,...,n

‖Di J j‖p ≤ sup
i=1,...,n

E sup
i/n≤t≤1

‖Z i
t ‖p ≤ N . (5.27)

This in turn, combined with (5.20) and the boundedness of σ , implies that

sup
i=1,...,n

E sup
r=1,...,n

‖(Di J j )J
−1
r σ(Xr−1)‖p ≤ N .

Next, by the chain rule we have

‖J j (Di J
−1
r )σ (Xr−1)‖ ≤ ‖J j‖‖J−1

r ‖2‖Di Jr‖‖σ(Xr−1)‖.

By (5.16), (5.20), (5.27), and the boundedness of σ , we see that

sup
i=1,...,n

E sup
r=1,...,n

‖J j (Di J
−1
r )σ (Xr−1)‖p ≤ N .

Finally, from (5.16), (5.20), the boundedness of ∇σ , and (5.22) we get

sup
i=1,...,n

E sup
r=1,...,n

‖J j J−1
r (Diσ(Xr−1)‖p ≤ N .

Recalling (5.24), we obtain

sup
i=1,...,n

E sup
r=1,...,n

‖DiDr , j‖p ≤ N , (5.28)

which combined with (5.10) gives

sup
i=1,...,n

E sup
r=1,...,n

‖
d∑

m=1

(DiD·,m
r , j )(M

−1)m,k‖p ≤ Nt−p. (5.29)

We proceed by obtaining a similar bound for the second term at the right hand side of
(5.23). First, let us derive a bound for DiM . For each entry Mm,q of the matrix M
we have

DiM
m,q = 1

n

n∑

=1

d∑
v=1

(
Dv,q


, jDiDv,m

, j + Dv,m


, j DiDv,q

, j

)
.
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Then, notice that on �̂, for 
 > j we have D
, j = D
X j = 0. Hence, by taking into
account (5.9) and (5.28) we get

sup
i=1,...,n

(
E‖DiM

m,q‖p)1/p ≤ N
( j
n

+ n(P(�̂c))1/p
) ≤ N

( j
n

+ ne−cn/p) ≤ N
j

n
= Nt .

Summation over m, q gives

sup
i=1,...,n

(
E‖DiM ‖p)1/p ≤ Nt . (5.30)

Therefore, we get

‖
d∑

m=1

D·,m
r , j ⊗ Di (M

−1)m,k‖ ≤ N‖Dr , j‖‖M−1‖2‖DiM ‖,

which by virtue of (5.9), (5.10), and (5.30) gives

E‖
d∑

m=1

D·,m
r , j ⊗ Di (M

−1)m,k‖p ≤ Nt−p.

This combined with (5.29), by virtue of (5.23), proves (5.11). This finishes the proof.
��

5.3 Proof of Theorem 5.2

Proof Recalling that Yi = 0 for i > j , we can write, using (5.9) and (5.10),

E‖Y‖2H ≤ E
1

n

j∑
i=1

( sup
i=1,..., j

‖Di, j‖‖M−1‖)2 ≤ N ( j/n)t−2 ≤ Nt−1.

One also has

|E 1

n2
∑

(i,q),(r ,m)∈I
(D

q
i Y

m
r )(Dm

r Y q
i )| ≤ t2E sup

i,r=1,... j
‖Di Yr‖2 ≤ N .

Therefore, by (5.7), we have the following bound on the main (first) term on the
right-hand side of (5.6)

|E(G(X j ), δY )| ≤ ‖G‖C0(E|δY |2)1/2 ≤ Nt−1/2‖G‖C0 .

As for the other two terms, Proposition 5.3 immediately yields

|I1| ≤ N‖G‖C1e−cn,
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1016 O. Butkovsky et al.

while for I2 we can write

|I2| ≤ Ne−cn
[
E

( 1
n

j∑
i=1

(Di G(X j ), Yi )
)2]1/2

≤ Ne−cnt
1

j

j∑
i=1

(
E sup

i=1,..., j
|Di G(X j )|6

)1/6(
E sup

i=1,..., j
‖Di, j‖6

)1/6(
E‖M−1‖6)1/6

≤ N‖G‖C1e−cn .

Therefore, by (5.6), we obtain

|E∂kG(X j )‖ ≤ N‖G‖C0 t−1/2 + N‖G‖C1e−cn,

and since on �̂, one has X j = X̄n
j/n = X̄n

t , the bound (5.2) follows. ��

6 Multiplicative Brownian noise

6.1 Quadrature estimates

Lemma 6.1 Let y ∈ R
d , ε1 ∈ (0, 1/2), α ∈ (0, 1), p > 0. Suppose that σ satisfies

(2.8) and that X̄n := X̄n(y) is the solution of (5.1). Then for all f ∈ Cα , 0 ≤ s ≤ t ≤
1, n ∈ N, one has the bound

∥∥
∫ t

s
( f (X̄n

r ) − f (X̄n
κn(r)

)) dr
∥∥
L p(�)

≤ N‖ f ‖Cαn−1/2+2ε1 |t − s|1/2+ε1 , (6.1)

with some N = N (α, p, d, ε1, λ, ‖σ‖C2).

Proof It clearly suffices to prove the bound for p ≥ 2, and, as in [10], for f ∈ C∞.
We put for 0 ≤ s ≤ t ≤ T

As,t := E
s
∫ t

s
( f (X̄n

r ) − f (X̄n
κn(r)

)) dr .

Then, clearly, for any 0 ≤ s ≤ u ≤ t ≤ T

δAs,u,t : = As,t − As,u − Au,t

= E
s
∫ t

u
( f (X̄n

r ) − f (X̄n
κn(r)

)) dr − E
u
∫ t

u
( f (X̄n

r ) − f (X̄n
κn(r)

)) dr .

Let us check that all the conditions (3.8)-(3.9) of the stochastic sewing lemma are
satisfied. Note that

E
sδAs,u,t = 0,
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and so condition (3.9) trivially holds,withC2 = 0.As for (3.8), let s ∈ [k/n, (k+1)/n)

for some k ∈ N0. Suppose first that t ∈ [(k + 4)/n, 1]. We write

|As,t | = |I1 + I2| :=
∣∣∣
( ∫ (k+4)/n

s
+

∫ t

(k+4)/n

)
E
s( f (X̄n

r ) − f (X̄n
kn(r)

)
)
dr

∣∣∣.

For I2 we write,

I2 = E
s
∫ t

(k+4)/n
E

(k+1)/n(
E

κn(r) f (X̄n
r ) − f (X̄n

kn(r)
)
)
dr .

Next, denote by p� the density of a Gaussian vector in Rd with covariance matrix �

and let P� f = p� ∗ f (recall that for θ ≥ 0, we denote pθ := pθ I , where I is the
d × d identity matrix). With this notation, we have

E
kn(r) f

(
X̄n
kn(r)

+ σ(X̄n
kn(r)

)(Wr − Wkn(r))
)

= Pσσᵀ(X̄n
kn (r))(r−kn(r)) f (X̄

n
kn(r)

),

so with

g(x) := gnr (x) := f (x) − Pσσᵀ(x)(r−κn(r)) f (x)

we have

I2 = E
s
∫ t

(k+4)/n
E

(k+1)/ngnr (X̄n
κn(r)

) dr . (6.2)

Moreover, notice that by (2.8) we have for a constant N = (‖σ‖C1 , α)

‖g‖Cα/2 ≤ N‖ f ‖Cα . (6.3)

Let us use the shorthand δ = r − κn(r) ≤ n−1. We can then write

Pεg(x) = ∫
Rd

∫
Rd pε(z)pσσᵀ(x−z)δ(y)

(
f (x − z) − f (x − y − z)

)
dy dz

= ∫
Rd

∫
Rd pε(z)pσσᵀ(x−z)δ(y)

∫ 1
0 yi∂zi f (x − z − θ y) dθdy dz

= ∫
Rd

∫
Rd ∂zi

(
pε(z)pσσᵀ(x−z)δ(y)

) ∫ 1
0 yi f (x − z − θ y) dθdy dz. (6.4)

with summation over i implied. It is well known that

|∂zi pε(z)| ≤ N |z|ε−1 pε(z). (6.5)

Furthermore, with the notation �(z) := σσᵀ(x − z), we have

|∂zi p�(z)δ(y)| =
∣∣∣∂zi (y

ᵀ�−1(z)y)

2δ
+ ∂zi det�(z)

2 det�(z)

∣∣∣p�(z)δ(y)

≤ N (δ−1|y|2 + 1)p�(z)δ(y), (6.6)
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where for the last inequality we have used (2.8). Therefore, by (6.4), (6.5), and (6.6)
we see that

‖Pεg‖C0 ≤ N‖ f ‖C0
∫
Rd

∫
Rd

(
ε−1|z| + δ−1|y|2 + 1

)(
|y|pε(z)pσσᵀ(x−z)δ(y)

)
dy dz

≤ N | f ‖C0(ε−1/2δ1/2 + δ1/2) ≤ N‖ f ‖C0ε−1/2n−1/2.

One also has the trivial estimate ‖Pεg‖C0 ≤ 2‖ f ‖C0 , and combining these two bounds
yields

‖g‖Cβ ≤ N‖ f ‖C0nβ/2. (6.7)

for allβ ∈ [−1, 0).Note that the restrictionof X̄n
t (·) to the gridpoints t = 0, 1/n, . . . , 1

is a Markov process with state space Rd . Therefore we can write

|E(k+1)/ng
(
X̄n

κn(r)
(y)

)| = |Eg(X̄n
κn(r)−(k+1)/n(x)

)|
∣∣∣
x=X̄n

(k+1)/n(y)

≤ supx∈Rd |Eg(X̄n
κn(r)−(k+1)/n(x)

)|. (6.8)

Since g ∈ Cα/2 we have that (I + �)u = g where u ∈ C2+(α/2) and

‖u‖C2+(α/2) ≤ N‖g‖Cα/2 , ‖u‖C1+2ε1 ≤ N‖g‖C−1+2ε1 . (6.9)

Hence, by combining (6.8), (5.2), (6.9), (6.7), and (6.3), we get

|E(k+1)/ng
(
X̄n

κn(r)
(y)

)| ≤ sup
x∈Rd

|E(u + �u)
(
X̄n

κn(r)−(k+1)/n(x)
)|

≤ N‖u‖C1 |κn(r) − (k + 1)/n|−1/2 + N‖u‖C2e−cn

≤ N‖u‖C1+2ε1 |κn(r) − (k + 1)/n|−1/2 + N‖u‖C2e−cn

≤ N‖g‖C−1+2ε1 |κn(r) − (k + 1)/n|−1/2 + N‖g‖Cα/2e−cn

≤ N‖ f ‖Cαn−1/2+ε1 |κn(r) − (k + 1)/n|−1/2

Putting this back into (6.2) one obtains

‖I2‖L p(�) ≤ N‖ f ‖C0n−1/2+ε1

∫ t

(k+4)/n
|κn(r) − (k + 1)/n|−1/2 dr

≤ N‖ f ‖Cα |t − s|1/2n−1/2+ε1

≤ N‖ f ‖Cα |t − s|1/2+ε1n−1/2+2ε1 ,

where we have used that n−1 ≤ |t − s|. The bound for I1 is straightforward:

‖I1‖L p(�) ≤
∫ (k+4)/n

s
‖ f (X̄r ) − f (X̄kn(r))‖L p(�) dr

≤ N‖ f ‖C0n−1 ≤ N‖ f ‖C0n−1/2+ε1 |t − s|1/2+ε1 .
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Approximation of SDEs: a stochastic sewing approach 1019

Therefore,

‖As,t‖L p(�) ≤ N‖ f ‖Cαn−1/2+2ε1 |t − s|1/2+ε1 .

It remains to show the same bound for t ∈ (s, (k + 4)/n]. Similarly to the above we
write

‖As,t‖L p(�) ≤
∫ t

s
‖ f (X̄r ) − f (X̄kn(r))‖L p(�) dr

≤ N‖ f ‖C0 |t − s| ≤ N‖ f ‖C0n−1/2+ε1 |t − s|1/2+ε1 .

using that |t − s| ≤ 4n−1 and ε1 < 1/2. Thus, (3.8) holds with C1 =
N‖ f ‖Cαn−1/2+2ε1 . From here we conclude the bound (6.1) exactly as is Lemma
4.1. ��
Lemma 6.2 Let α ∈ [0, 1], take ε1 ∈ (0, 1/2). Let b ∈ C0, σ satisfy (2.8), and Xn be
the solution of (1.7). Then for all f ∈ Cα , 0 ≤ s ≤ t ≤ 1, n ∈ N, and p > 0, one has
the bound

∥∥ ∫ t

s
( f (Xn

r ) − f (Xn
κn(r)

)) dr
∥∥
L p(�)

≤ N‖ f ‖Cαn−1/2+2ε1 |t − s|1/2+ε1 (6.10)

with some N = N (‖b‖C0 , p, d, α, ε1, λ, ‖σ‖C2).

Proof Let us set

ρ = exp

(
−

∫ 1

0
(σ−1b)(Xn

κn(r)
) dBr − 1

2

∫ 1

0

∣∣(σ−1b)(Xn
κn(r)

)
∣∣2 dr

)

and define the measure P̃ by dP̃ = ρdP. By Girsanov’s theorem, Xn solves (5.1)
with a P̃-Wiener process B̃ in place of B. Since Lemma 6.1 only depends on the
distribution of X̄n , we can apply it to Xn , to bound the desired moments with respect
to the measure P̃. Going back to the measure P can then be done precisely as in [10]:
the only property needed is that ρ has finite moments of any order, which follows
easily from the boundedness of b and (2.8). ��

6.2 A regularization lemma

The replacement for the heat kernel bounds from Proposition 3.7 is the following
estimate on the transition kernel P̄ of (1.6). Similarly to before, we denote P̄t f (x) =
E f (Xt (x)), where Xt (x) is the solution of (1.6) with initial condition X0(x) = x .
The following bound then follows from [16, Theorem 9/4/2].

Proposition 6.3 Assume b ∈ Cα , α > 0 and f ∈ Cα′
, α′ ∈ [0, 1]. Then for all

0 < t ≤ 1, x, y ∈ R
d one has the bounds

|P̄t f (x) − P̄t f (y)| ≤ N‖ f ‖Cα′ |x − y|t−(1−α′)/2 (6.11)
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with some N = N (d, α, λ, ‖b‖Cα , ‖σ‖C1).

Lemma 6.4 Let α ∈ (0, 1] and τ ∈ (0, 1] satisfy

τ + α/2 − 1/2 > 0. (6.12)

Let b ∈ Cα , σ satisfy (2.8), and X be the solution of (1.6). Let ϕ be an adapted process.
Then for all sufficiently small ε3, ε4 > 0, for all f ∈ Cα , 0 ≤ s ≤ t ≤ 1, and p > 0,
one has the bound

∥∥
∫ t

s
f (Xr ) − f (Xr + ϕr ) dr

∥∥
L p(�)

≤ N |t − s|1+ε3[]ϕ[]C τ
p ,[s,t]

+N |t − s|1/2+ε4 []ϕ[]C 0
p ,[s,t]. (6.13)

with some N = N (p, d, α, τ, λ, ‖σ‖C1).

Proof Set, for s ≤ s′ ≤ t ′ ≤ t ,

As′,t ′ = E
s′

∫ t ′

s′
f (Xr ) − f (Xr + ϕs′) dr .

Let us check the conditions of the stochastic sewing lemma. We have

δAs′,u,t ′ = E
s′

∫ t ′

u
( f (Xr ) − f (Xr + ϕs′)) dr − E

u
∫ t ′

u
( f (Xr ) − f (Xr + ϕu)) dr ,

so E
s′δAs′,u,t ′ = E

s′ δ̂As′,u,t ′ , with

δ̂As′,u,t ′ = E
u
∫ t ′

u

(
f (Xr ) − f (Xr + ϕs′)

) − (
f (Xr ) + f (Xr + ϕu)

)
dr

=
∫ t ′

u
P̄r−u f (Xu + ϕs′) − P̄r−u f (Xu + ϕu) dr .

Invoking (6.11), we can write

|δ̂As′,u,t ′ | ≤ N
∫ t ′
u |ϕs′ − ϕu ||r − u|−(1−α)/2 dr .

Hence, using also Jensen’s inequality,

‖Es′δAs′,u,t ′ ‖L p(�) ≤ ‖δ̂As′,u,t ′ ‖L p(�) ≤ N []ϕ[]C τ
p ,[s,t]|t ′ − s′|1+τ−(1−α)/2

The condition (6.12) implies that for some ε3 > 0, one has

‖Es′δAs′,u,t ′ ‖L p(�) ≤ N |t ′ − s′|1+ε3[]ϕ[]C τ
p ,[s,t].
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Therefore (3.9) is satisfied with C2 = N []ϕ[]C τ
p ,[s,t]. Next, to bound ‖As′,t ′ ‖L p(�), we

write

|Es f (Xr ) − E
s f (Xr + ϕs′)| = |P̄r−s′ f (Xs′) − P̄r−s′ f (Xs′ + ϕs′)|

≤ N |ϕs′ ||r − s′|−(1−α)/2.

So after integration with respect to r and by Jensen’s inequality, we get the bound, for
any sufficiently small ε4 > 0,

‖As′,t ′ ‖L p(�) ≤ N |t ′ − s′|1/2+ε4 []ϕ[]C 0
p ,[s,t].

Therefore (3.8) is satisfied with C1 = N []ϕ[]C 0
p ,[s,t], and we can conclude the bound

(6.1) as usual. ��

6.3 Proof of Theorem 2.7

First let us recall the following simple fact: if g is a predictable process, then by the
Burkholder-Gundy-Davis and Hölder inequalities one has

E
∣∣ ∫ t

s
gr dBr

∣∣p ≤ NE

∫ t

s
|gr |p dr |t − s|(p−2)/2

with N = N (p). This in particular implies

[]g[]
C 1/2−ε

p ,[s,t] ≤ N‖g‖L p(�×[s,t]). (6.14)

whenever p ≥ 1/ε.

Proof Without the loss of generality we will assume that p is sufficiently large and τ

is sufficiently close to 1/2. Let us rewrite the equation for Xn as

dXn
t = b(Xn

κn(t)
) dt + [

σ(Xt ) + (σ (Xn
t ) − σ(Xt )) + Rn

r

]
dBt ,

where Rn
t = σ(Xn

κn(t)
) − σ(Xn

t ) is an adapted process such that one has

‖Rn
t ‖L p(�) ≤ Nn−1/2

for all t ∈ [0, 1]. Let us denote

−ϕn
t = x0 − xn0 +

∫ t

0
b(Xr ) dr −

∫ t

0
b(Xn

κn(r)
) dr ,

Qn
t =

∫ t

0
σ(Xn

r ) − σ(Xr ) dBr ,

Rn
t =

∫ t

0
Rn
r dBr .
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Take some 0 ≤ S ≤ T ≤ 1. Choose ε1 ∈ (0, ε/2) so that (1/2 − 2ε1) ≥ 1/2 − ε.
Then, taking into account (6.10), for any S ≤ s < t ≤ T , we have

‖ϕn
t − ϕn

s ‖L p(�) = ∥∥
∫ t

s
(b(Xr ) − b(Xn

κn(r)
)) dr

∥∥
L p(�)

≤ ∥∥ ∫ t

s
(b(Xr ) − b(Xn

r )) dr
∥∥
L p(�)

+ N |t − s|1/2+ε1n−1/2+ε.

(6.15)

We wish to apply Lemma 6.4, with ϕ = ϕn +Qn +Rn . It is clear that for sufficiently
small ε2 > 0, τ = 1/2 − ε2 satisfies (6.12). Therefore,

∥∥
∫ t

s
(b(Xr ) − b(Xn

r )) dr
∥∥
L p(�)

= ∥∥
∫ t

s
(b(Xr ) − b(Xr + ϕr )) dr

∥∥
L p(�)

≤ N |t − s|1/2+ε4∧(1/2+ε3)
([]ϕn[]C τ

p ,[s,t] + []Qn[]C τ
p ,[s,t] + []Rn[]C τ

p ,[s,t]
)

By (6.14), for sufficiently large p, we have

[]Qn[]C τ
p ,[s,t] ≤ N‖X − Xn‖L p(�×[0,T ]),

[]Rn[]C τ
p ,[s,t] ≤ Nn−1/2.

Putting these in the above expression, and using τ < 1/2 repeatedly, one gets

∥∥
∫ t

s
(b(Xr ) − b(Xn

r )) dr
∥∥
L p(�)

≤ N |t − s|τ |T − S|ε5([]ϕn[]C τ
p ,[S,T ] + ‖X − Xn‖L p(�×[0,T ]) + n−1/2)

with some ε5 > 0. Combining with (6.15), dividing by |t − s|τ and taking supremum
over s < t ∈ [S, T ], we get

[]ϕn[]C τ
p ,[S,T ] ≤ N‖ϕn

S‖L p(�) + |T − S|ε5 []ϕn[]C τ
p ,[S,T ]

+N‖X − Xn‖L p(�×[0,T ]) + Nn−1/2+ε. (6.16)

Fix anm ∈ N (not depending on n) such that Nm−ε5 ≤ 1/2.Whenever |S−T | ≤ m−1,
the second term on the right-hand side of (6.16) can be therefore discarded, and so
one in particular gets

[]ϕn[]C τ
p ,[S,T ] ≤ N‖ϕn

S‖L p(�) + N‖X − Xn‖L p(�×[0,T ]) + Nn−1/2+ε, (6.17)

and thus also

‖ϕn
T ‖L p(�) ≤ N‖ϕn

S‖L p(�) + N‖X − Xn‖L p(�×[0,T ]) + Nn−1/2+ε.
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Approximation of SDEs: a stochastic sewing approach 1023

Iterating this inequality at most m times, one therefore gets

‖ϕn
T ‖L p(�) ≤ N‖ϕn

0‖L p(�) + N‖X − Xn‖L p(�×[0,T ]) + Nn−1/2+ε. (6.18)

We can then write, invoking again the usual estimates for the stochastic integralsQn ,
Rn

sup
t∈[0,T ]

∥∥Xt − Xn
t

∥∥p
L p(�)

≤ N sup
t∈[0,T ]

∥∥ϕn
t

∥∥p
L p(�)

+N sup
t∈[0,T ]

∥∥Qn
t

∥∥p
L p(�)

+ N sup
t∈[0,T ]

∥∥Rn
t

∥∥p
L p(�)

≤ N‖ϕn
0‖p

L p(�) + N
∫ T

0
‖Xt − Xn

t ‖p
L p(�) dt + Nn−p(1/2−ε).

Gronwall’s lemma then yields

sup
t∈[0,T ]

∥∥Xt − Xn
t

∥∥
L p(�)

≤ N‖ϕn
0‖L p(�) + Nn−1/2+ε. (6.19)

Putting (6.17)–(6.18)–(6.19) together, we obtain

[]ϕn[]C τ
p ,[0,1] ≤ N‖ϕn

0‖L p(�) + Nn−1/2+ε. (6.20)

Therefore, recalling (6.14) again,

[]X − Xn[]C τ
p ,[0,1] ≤ []ϕn[]C τ

p ,[0,1] + []Qn[]C τ
p ,[0,1] + []Rn[]C τ

p ,[0,1]
≤ N‖ϕn

0‖L p(�) + Nn−1/2+ε + sup
t∈[0,1]

∥∥Xt − Xn
t

∥∥
L p(�)

≤ N‖ϕn
0‖L p(�) + Nn−1/2+ε,

as desired. ��
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Appendices

A: Proofs of the auxiliary bounds from Section 3.3

Proof of Proposition 3.6 (i). Fix 0 ≤ s ≤ t ≤ 1. It follows from the definition of BH

that BH
t − BH

s is a Gaussian vector consisting of d independent components, each of
them having zero mean and variance

C(t, t) − 2C(s, t) + C(s, s) = cH (t − s)2H ,

where the functionC wasdefined in (2.2). This implies the statement of the proposition.
(ii). We have

E
u BH ,i

t − E
s BH ,i

t =
∫ u

s
(t − r)H−1/2dWi

r .

Therefore, Es BH ,i
t − E

u BH ,i
t is a Gaussian random variable independent of Fs . It is

of mean 0 and variance c2(s, t) − c2(u, t). This implies the statement of the lemma.
(iii). It suffices to notice that the random vector BH

t − E
s BH

t is Gaussian, inde-
pendent ofFs , consists of d independent components, and each of its components has
zero mean and variance

E
( ∫ t

s
|t − r |H−1/2 dWr

)2 = c2(s, t).

(iv). One can simply write by the Newton-Leibniz formula

c2(s, t) − c2(s, u) ≤ N
∫ t

u
|r − s|2H−1 dr ≤ N |t − u||t − s|2H−1,

since by our assumption on s, u, t , for all r ∈ [u, t] one has r − s ≤ t − s ≤ 2(r − s).
(v). It follows from (2.1) that

E
s BH

t − E
s BH

u =
∫ s

−∞
(|t − r |H−1/2 − |u − r |H−1/2) dWr .

Therefore, by the Burkholder–Davis–Gundy inequality one has

‖Es BH
t − E

s BH
r ‖2L p(�) ≤ N

∫ s

−∞
(|t − r |H−1/2 − |u − r |H−1/2)2 dr

≤ N
∫ s

−∞

(∫ t

u
|v − r |H−3/2 dv

)2
dr

≤ N
∫ s

−∞
|t − u|2|u − r |2H−3 dr

≤ N (t − u)2(u − s)2H−2 ≤ N (t − u)2(t − s)2H−2,

123



Approximation of SDEs: a stochastic sewing approach 1025

where the last inequality follows from the fact that by the assumption u−s ≥ (t−s)/2.
��
Proof of Proposition 3.7 (i). Case β ≤ α: There is nothing to prove since

‖Pt f ‖Cβ (Rd ) ≤ ‖Pt f ‖Cα(Rd ) ≤ N‖ f ‖Cα(Rd ).

Case β = 0, α < 0: The bound follows immediately from the definition of the
norm.

Case α = 0, β ∈ (0, 1]: By differentiating the Gaussian density we have

‖∇Pt f ‖C0 ≤ Nt−1/2‖ f ‖C0 .

Consequently,

|Pt f (x) − Pt f (y)| ≤ |Pt f (x) − Pt f (y)|β‖ f ‖(1−β)

C0

≤ Nt−β/2|x − y|β‖ f ‖C0 ,

which implies that

[Pt f ]Cβ ≤ Nt−β/2‖ f ‖C0 .

This, combined with the trivial estimate ‖Pt f ‖C0 ≤ ‖ f ‖L∞ give the desired esti-
mate.

Case 0 < α < β < 1: We refer the reader to [17, Lemma A.7] where the estimate
is proved in the Besov scale. The desired estimate then follows from the equivalence
Bγ∞,∞ ∼ Cγ for γ ∈ (0, 1).

Case α ∈ (0, 1), β = 1: We have

‖∇Pt f ‖L∞ = sup
x∈Rd

∣∣∣
∫
Rd

∇ pt (x − y) f (y) dy
∣∣∣

= sup
x∈Rd

∣∣∣
∫
Rd

∇ pt (x − y)
(
f (y) − f (x)

)
dy

∣∣∣

≤ N [ f ]Cα

∫
Rd

|∇ pt (y)||y|α dy
≤ N [ f ]Cα t (α−1)/2,

which again combined with ‖Pt f ‖C0 ≤ ‖ f ‖C0 proves the claim.
Case α < 0, β ∈ [0, 1]:

‖Pt f ‖Cβ = ‖P t
2+ t

2
f ‖Cβ ≤ Nt−β/2‖Pt/2 f ‖C0 ≤ Nt (α−β)/2 sup

ε∈(0,1]
ε−α/2‖Pε f ‖C0

= Nt (α−β)/2‖ f ‖Cα .
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1026 O. Butkovsky et al.

(ii). Fix δ ∈ (0, 1] such that δ ≥ α
2 − β

2 . Then we have

‖Pt f − Ps f ‖Cβ(Rd ) ≤
∫ t

s

∥∥∥ ∂

∂r
Pr f

∥∥∥Cβ(Rd )
dr

=
∫ t

s

∥∥∥Pr� f
∥∥∥Cβ(Rd )

dr

≤ N
∫ t

s
r

α−β−2
2

∥∥∥� f
∥∥∥Cα−2(Rd )

dr

≤ N‖ f ‖Cα(Rd )

∫ t

s
r

α
2 − β

2 −δr−1+δ dr

≤ N‖ f ‖Cα(Rd )s
α
2 − β

2 −δ(t − s)δ,

where the last inequality follows from the facts that r ≥ s and r ≥ r − s, and that both
of the exponents in the penultimate inequality are nonpositive thanks to the conditions
on δ. This yields the statement of (ii).

(iii). First let us deal with the case H ≤ 1/2. Then the bound follows easily by
applying part (ii) of the proposition with δ = 1/2. Indeed, for any 0 ≤ s ≤ u ≤ t we
have

‖Pc2(s,t) f − Pc2(u,t) f ‖Cβ ≤ N‖ f ‖Cαcα−β−1(u, t)(c2(s, t) − c2(u, t))
1
2

≤ N‖ f ‖Cα (t − u)H(α−β−1)(u − s)
1
2 (t − u)H− 1

2

= N‖ f ‖Cα (u − s)
1
2 (t − u)H(α−β)− 1

2 ,

where we also used the fact that

c2(s, t) − c2(u, t) ≤ N (u − s)(t − u)2H−1. (A.1)

This establishes the desired bound.
Now let us consider the case H > 1/2 (in this case 2H − 1 > 0 and thus bound

(A.1) does not hold). Put for 0 ≤ s ≤ u ≤ t

k(s, u, t) := c2(u, t) + (u − s)∂t c
2(u, t)

= (2H)−1(t − u)2H + (u − s)(t − u)2H−1. (A.2)

Note that by convexity of the function z �→ z2H one has for any 0 ≤ z1 ≤ z2

z2H1 + 2H(z2 − z1)z
2H−1
1 ≤ z2H2 ≤ z2H1 + 2H(z2 − z1)z

2H−1
1 + (z2 − z1)

2H .

Hence for 0 ≤ s ≤ u ≤ t we have

c2(u, t) ≤ k(s, u, t) ≤ c2(s, t) ≤ k(s, u, t) + c2(s, u) (A.3)
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Approximation of SDEs: a stochastic sewing approach 1027

Now we are ready to obtain the desired bound. We have

‖Pc2(s,t) f − Pc2(u,t) f ‖Cβ ≤ ‖Pc2(s,t) f − Pk(s,u,t) f ‖Cβ + ‖Pk(s,u,t) f − Pc2(u,t) f ‖Cβ

≤ I1 + I2. (A.4)

We bound I1 and I2 using part (ii) of the proposition but with different δ. First, we
apply part (ii) with δ = 1

4H ∨ (α/2 − β/2). Recalling (A.3), we deduce

I1 ≤ N‖ f ‖Cαk(s, u, t)
α
2 − β

2 −δc2δ(s, u) ≤ N‖ f ‖Cα (u − s)
1
2 (t − u)(H(α−β)− 1

2 )∧0.
(A.5)

Applying now part (ii) with δ = 1/2, we obtain

I2 ≤ N‖ f ‖Cαcα−β−1(u, t)(u−s)
1
2 (t−u)H− 1

2 ≤ N‖ f ‖Cα (u−s)
1
2 (t−u)H(α−β)− 1

2 .

This, combined with (A.4) and (A.5) implies the desired bound for the case H > 1/2.
(iv). We begin with the case H ≤ 1/2. Then, applying part (i) of the theorem with

β = 1, we deduce for 0 ≤ s ≤ u ≤ t ≤ 1

|Pc2(u,t) f (x) − Pc2(u,t) f (x + ξ)| ≤ N‖ f ‖Cα (t − u)H(α−1)|ξ |.

Hence for any p ≥ 2 we have

‖Pc2(u,t) f (x) − Pc2(u,t) f (x + ξ)‖L p(�) ≤ N‖ f ‖Cα (t − u)H(α−1)‖ξ‖L p(�)

≤ N‖ f ‖Cα (u − s)
1
2 (t − u)Hα− 1

2 ,

where the last inequality follows from the bound (A.1) and the definition of the random
variable ξ . This completes the proof for the case H ≤ 1/2.

Now let us deal with the case H ∈ (1/2, 1). Fix 0 ≤ s ≤ u ≤ t ≤ 1. Let η and
ρ be independent Gaussian random vectors consisting of d independent identically
distributed components each. Suppose that for any i = 1, . . . , d we have Eηi =
Eρi = 0 and

Var(ηi ) = (u − s)(t − u)2H−1; Var(ρi ) = v(s, u, t) − (u − s)(t − u)2H−1.

It is clear that

‖Pc2(u,t) f (x) − Pc2(u,t) f (x + ξ)‖L p(�)

= ‖Pc2(u,t) f (x) − Pc2(u,t) f (x + η + ρ)‖L p(�)

≤ ‖Pc2(u,t) f (x) − Pc2(u,t) f (x + η)‖L p(�)

+ ‖Pc2(u,t) f (x + η) − Pc2(u,t) f (x + η + ρ)‖L p(�)

=: I1 + I2. (A.6)
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1028 O. Butkovsky et al.

Applying part (i) of the theorem with β = 1, we get

I1 ≤ N‖ f ‖Cαcα−1(u, t)‖η‖L p(�) ≤ N‖ f ‖Cα (u − s)
1
2 (t − u)αH− 1

2 . (A.7)

Similarly, using part (i) of the theorem with β = 1
2H ∨ α and recalling (A.3), we

deduce

I2 ≤ N‖ f ‖Cαc(α− 1
2H )∧0(u, t) ‖ |ρ| 1

2H ∨α ‖L p(�) ≤ N‖ f ‖Cα (u−s)
1
2 (t−u)(αH− 1

2 )∧0.

Combined with (A.6) and (A.7), this yields the required bound. ��
Proof of Proposition 3.8 Obviously it suffices to show it for k = 1.

1. Case α − δ = 0: The statement follows directly by definition of the Cα norm.
2. Case α − δ ∈ (0, 1]: First, let us consider α ∈ (0, 1]. For all β ∈ [0, 1] we have

| f (y + x) − f (y) − f (z + x) − f (z)| ≤ (2|x |α[ f ]Cα )β(2|y − z|α[ f ]Cα )(1−β)

which upon dividing by |y−z|α−δ , choosing β = δ/α, and taking suprema over y �= z
gives

[ f (· + x) − f (·)]Cα−δ ≤ 4|x |δ[ f ]Cα .

Similarly, we have

‖ f (· + x) − f (·)‖C0 ≤ |x |δ[ f ]δ/αCα (2‖ f ‖C0)1−δ/α ≤ 2|x |δ‖ f ‖Cα ,

which combined with the inequality above gives

‖ f (· + x) − f (·)‖Cα−δ ≤ 6|x |δ‖ f ‖Cα .

Now let us consider the case α ∈ (1, 2]. By the fundamental theorem of calculus we
have for any β ∈ [0, 1]

| f (y + x) − f (y) − f (z + x) − f (z)|
|y − z|α−δ

= 1

|y − z|α−δ

∣∣∣
∫ 1

0
xi

(
∂xi f (y + θx) − ∂xi f (z + θx)

)
dθ

∣∣∣β

×
∣∣∣
∫ 1

0
(yi − zi )

(
∂xi f (z + x + θ(y − z)) − ∂xi f (z + θ(y − z))

)
dθ

∣∣∣(1−β)

≤ N
(|x |[∇ f ]Cα−1 |y − z|α−1)β(|y − z|[∇ f ]Cα−1 |x |α−1)1−β

|y − z|α−δ

≤ N |x |β+(α−1)(1−β)‖ f ‖Cα |y − z|(α−1)β+1−β−α+δ,

which upon choosing β = (δ + 1 − α)/2α and taking suprema over y �= z gives

[ f (x + ·) − f (·)]Cα−δ ≤ N |x |δ‖ f ‖Cα .
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Approximation of SDEs: a stochastic sewing approach 1029

In addition, we have

‖ f (· + x) − f (·)‖C0 ≤ |x |δ[ f ]Cδ ≤ N |x |δ‖ f ‖Cα ,

which combined with the above proves the claim.
3. Case α − δ ∈ (k, k + 1] for k ∈ N: The statement follows by proceeding as

above, considering also derivatives of f up to sufficiently high order.
4. Case α − δ < 0: We first consider the case α ∈ [0, 1), for which we have by

virtue of Proposition 3.7 (i)

‖ f (x + ·) − f (·)‖Cα−δ = sup
ε∈(0,1]

ε
δ−α
2 ‖Pε f (x + ·) − Pε f (·)‖C0

≤ sup
ε∈(0,1]

ε
δ−α
2 |x |δ‖Pε f ‖Cδ

≤ N sup
ε∈(0,1]

ε
δ−α
2 |x |δε α−δ

2 ‖ f ‖Cα = N |x |δ‖ f ‖Cα .

We move to the case α < 0. We have

‖ f (x + ·) − f (·)‖Cα−δ = sup
ε∈(0,1]

ε
δ−α
2 ‖Pε f (x + ·) − Pε f (·)‖C0

≤ sup
ε∈(0,1]

ε
δ−α
2 |x |δ‖Pε f ‖Cδ

= sup
ε∈(0,1]

ε
δ−α
2 |x |δ‖P ε

2+ ε
2
f ‖Cδ

≤ N sup
ε∈(0,1]

ε
δ−α
2 |x |δε −δ

2 ‖P ε
2
f ‖C0 ≤ N |x |δ‖ f ‖Cα .

The proposition is proved. ��

B: Proofs of the results from Section 3.4 related to the Girsanov theo-
rem

Proof of Proposition 3.10 If H = 1/2, then there is nothing to prove; the statement
of the proposition follows from the standrad Girsanov theorem for Brownian motion.
Otherwise, if H �= 1/2, let us verify that all the conditions of the Girsanov theorem in
the form of [32, Theorem 2] are satisfied. Note that even though this theorem is stated
in [32] in the one–dimensional setting, its extension to the multidimensional setup is
immediate.

First, let us check condition (i) of [32, Theorem 2]. If H < 1/2, then
∫ 1
0 u2s ds ≤

M2 < ∞ and thus this condition is satisfied by the statement given at [32, last
paragraph of Section 3.1]. If H > 1/2, then

[
DH−1/2
0+ u

]
(t) = Nut t

−H+1/2 + N (H − 1/2)
∫ t

0

ut − us
(t − s)H+1/2 ds,
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1030 O. Butkovsky et al.

where Dβ
0+ denotes the left-sided Riemann–Liouville derivative of of order β at 0,

β ∈ (0, 1), see [32, formula (4)]. Therefore, taking into account that H < 1 and
assumption 3.27,

∫ 1

0

∣∣∣[DH−1/2
0+ u

]
(t)

∣∣∣2 dt ≤ NM2 + N
∫ 1

0

(∫ t

0

|ut − us |
(t − s)H+1/2 ds

)2
dt < ∞ a.s..

Thus, DH−1/2
0+ u ∈ L2([0, 1]) a.s. and hence condition (i) of [32, Theorem 2] is satis-

fied.
Now let us verify condition (ii) of [32, Theorem 2]. Consider the following kernel:

KH (t, s) := (t − s)H−1/2F(H −1/2, 1/2− H , H +1/2, 1− t/s), 0 ≤ s ≤ t ≤ 1,

where F is the Gauss hypergeometric function, see [12, equation (2)]. It follows from
[12, Corollary 3.1], that there exists a constant kH > 0 and d–dimensional Brownian
motion W̃ such that

BH (t) = kH

∫ t

0
KH (t, s) dW̃s, 0 ≤ t ≤ 1.

Consider a random variable

ρ := exp
(
−

∫ 1

0
vsdW̃s − 1

2

∫ 1

0
|vs |2ds

)
,

where the vector v is defined in the following way. If H < 1/2, then

vt := sin(π(H + 1/2))

πkH
t H−1/2

∫ t

0
(t − s)−H−1/2s1/2−Hus ds, (B.1)

and if H > 1/2, then

vt := sin(π(H − 1/2))

πkH (H − 1/2)

(
t1/2−Hut + (H − 1/2)

∫ t

0

ut − t H−1/2s1/2−Hus
(t − s)H+1/2 ds

)
.

(B.2)

Taking into account [32, formulas (11) and (13)], we see that condition (ii) of [32,
Theorem 2] is equivalent to the following one: Eρ = 1. We claim that actually

E exp(λ
∫ 1

0
|vt |2dt) ≤ R(λ) < ∞ (B.3)

where

R(λ) := exp(λN (H)M2) if H < 1/2;
R(λ) := exp(λN (H)M2)E exp(λN (H)ξ) if H ∈ (1/2, 1).
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Approximation of SDEs: a stochastic sewing approach 1031

By the Novikov theorem this, of course, implies that Eρ = 1.
Now let us verify (B.3). If H < 1/2, then it follows from (B.1) and (3.24) that

|vt | ≤ N (H)Mt−H+1/2,

which immediately yields (B.3).
If H > 1/2, then we make use of (B.2) and (3.25) to deduce

|vt | ≤N (H)Mt1/2−H + N (H)

∫ t

0

|ut |(t H−1/2s1/2−H − 1)

(t − s)H+1/2 ds

+ N (H)

∫ t

0

|ut − us |t H−1/2s1/2−H

(t − s)H+1/2 ds

≤N (H)Mt1/2−H + N (H)

∫ t

0

|ut − us |t H−1/2s1/2−H

(t − s)H+1/2 ds.

Taking into account assumption (3.27), we obtain (B.3). Thus, by above, condition
(ii) of [32, Theorem 2] is satisfied.

Therefore all the conditions of [32, Theorem 2] are satisfied. Hence the process B̃H

is indeed a fractional Brownian motion with Hurst parameter H under P̃ defined by
dP̃/dP = ρ.

Finally, to show (3.28), we fix λ > 0. Then, applying the Cauchy–Schwarz inequal-
ity, we get

Eρλ =E exp
(
−λ

∫ 1

0
vsdW̃s − λ

2

∫ 1

0
|vs |2ds

)

=E exp
(
−λ

∫ 1

0
vsdW̃s − λ2

∫ 1

0
|vs |2ds + (λ2 − λ/2)

∫ 1

0
|vs |2ds

)

≤
[
E exp

(
−2λ

∫ 1

0
vsdW̃s − 2λ2

∫ 1

0
|vs |2ds

)]1/2[
E exp

(
(2λ2 − λ)

∫ 1

0
|vs |2ds

)]1/2

=
[
E exp

(
(2λ2 − λ)

∫ 1

0
|vs |2ds

)]1/2

≤R(2λ2)1/2 < ∞,

where the last inequality follows from (B.3). This completes the proof of the propo-
sition. ��

Proof of Lemma 3.11 We begin with establishing bound (3.29). Fix n ∈ N and let us
split the inner integral in (3.29) into two parts: the integral over [0, κn(t) − (2n)−1]
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and [κn(t) − (2n)−1, t]. For the first part we have

I1(t) :=
∫ κn(t)−(2n)−1

0

(t/s)H−1/2| fκn(t) − fκn(s)|
(t − s)H+1/2 ds

≤ [ f ]Cρ t H−1/2
∫ κn(t)−(2n)−1

0
s1/2−H |κn(t) − κn(s)|ρ(t − s)−H−1/2 ds

≤ N [ f ]Cρ t H−1/2
∫ κn(t)−(2n)−1

0
s1/2−H |t − s|ρ−H−1/2 ds

≤ N [ f ]Cρ t H−1/2
∫ t

0
s1/2−H |t − s|ρ−H−1/2 ds

≤ N [ f ]Cρ tρ−H+1/2, (B.4)

where we used bound (3.24), the assumption ρ − H − 1/2 > −1, and the fact that
for s ∈ [0, κn(t) − (2n)−1] one has

κn(t) − κn(s) ≤ t − s + 1/n ≤ 3(t − s).

Now let us move on and estimate the second part of the inner integral in (3.29). If
t ≥ 1/n, then we have

I2(t) :=
∫ t

κn(t)−(2n)−1

(t/s)H−1/2| fκn(t) − fκn(s)|
(t − s)H+1/2 ds

= t H−1/2| fκn(t) − fκn(t)−1/n|
∫ κn(t)

κn(t)−(2n)−1
s1/2−H (t − s)−H−1/2 ds

≤ N [ f ]Cρn−ρ t H−1/2

(κn(t) − (2n)−1)H−1/2

∫ κn(t)

κn(t)−(2n)−1
(t − s)−H−1/2 ds

≤ N [ f ]Cρn−ρ(t − κn(t))
−H+1/2, (B.5)

where in the last inequality we used that for t ≥ 1/n one has

t ≤ κn(t) + 1

n
≤ 4κn(t) − 2

n
= 4

(
κn(t) − 1

2n

)
.

Now, using (B.5) and (B.5), we can bound the left–hand side of (3.29). We deduce

∫ 1

0

(∫ t

0

(t/s)H−1/2| fκn(t) − fκn(s)|
(t − s)H+1/2 ds

)2
dt

≤ N
∫ 1

0
I1(t)

2 dt + N
∫ 1

0
I2(t)

2 dt

≤ N [ f ]2Cρ + N [ f ]2Cρn−2ρ
n−1∑
i=1

∫ i+1
n

i
n

|t − κn(t)|1−2H dt
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≤ N [ f ]2Cρ + N [ f ]2Cρn−2ρ
n−1∑
i=1

n−(2−2H)

≤ N [ f ]2Cρ + N [ f ]2Cρn2H−1−2ρ ≤ N [ f ]2Cρ ,

where the very last inequality follows from the assumption ρ > H − 1/2. This
establishes (3.29).

Not let us prove (3.30). Using the assumption ρ > H − 1/2 and identity (3.24),
we deduce

∫ 1

0

(∫ t

0

(t/s)H−1/2| ft − fs |
(t − s)H+1/2

ds
)2

dt ≤ [ f ]2Cρ

∫ 1

0

(∫ t

0
s−H+1/2(t − s)ρ−H−1/2 ds

)2
dt

≤ N [ f ]2Cρ .

This proves (3.30). ��
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