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Stochasticity and environmental cost inclusion for electric vehicles fast-charging
facility deployment

Abstract

This study aims to seck the optimal deployment of fast-charging stations concerning the traffic flow equilibrium
and various realistic considerations to promote Electric Vehicles (EVs) widespread adoption. A bi-level optimiza-
tion framework has been developed in which the upper level aims to minimize the total system cost (i.e., capital
cost, travel cost, and environmental cost). Meanwhile, the lower level captures travellers’ routing behaviours with
stochastic demands and driving range limitation. A meta-heuristic approach has been proposed, combining the
Cross-Entropy Method and the Method of Successive Average to solve the problem. Finally, numerical studies are
conducted to demonstrate the proposed framework’s performance and provide insights into the impact of uncertain
driving range and charging congestion on the planning decision and the system performance. Generally, both on-
route congestion and charging congestion tend to be more serious when there are more EVs in the network; however,
the system performance can be improved by increasing EVs’ driving range limitation and providing appropriate

charging infrastructure.

Keywords: FElectric Vehicles, Fast-charging Stations, Bi-level Optimization, Stochastic Driving Range, Charging

Congestion, Queuing Theory

1. Introduction

Although the transportation sector has been known as the vital element for socio-economic development, it is one
of the main contributors to environmental issues and raises big concern about energy security. This sector accounts
for a third of total global greenhouse gas emissions, and it is known to be responsible for significant pollutants that
cause serious health problem (Ozbay et al., 2001). Besides adverse effects on the environment, on-route vehicles raise
a great concern on energy security. In the US, transportation is responsible for 29% of the total energy consumption,
with 92% related to fossil fuel (Ngo et al., 2020). Therefore, people are starting to shift in favour of Electric Vehicles
(EVs) to mitigate petroleum dependence and air pollution, marking a new transportation sector era. Billions of
dollars in subsidies for charging infrastructure have been provided by governments and automakers worldwide to
prepare for the upcoming electrification revolution of transportation (TEA, 2019). The widespread adoption of EVs
gives a strong motivation to research problems that study the optimal deployment charging infrastructure, which

is the topic of this study.

According to EV travellers’ needs, two basic charging facilities are currently deployed: low-power (level 1 and
level 2 modes) and fast charging (level 3 mode). This paper focuses on the fast charging infrastructure due to its
significant role in alleviating travellers’ range anxiety (Wu and Sioshansi, 2017; Guo et al., 2018). Although EVs’
driving range has been improved recently, this potential range can be significantly reduced depending on ambient

temperatures, driver behaviour, and battery degradation over its expected lifetime (Varga et al., 2019).

Besides, as technology increases, it will be rolled out across heavier vehicles, potentially travelling more consid-
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erable distances, making the issue of range pertinent. Indeed, already there are developments in Battery Electric
Trucks (BETSs) and their potential use in long-haul logistics across Europe. For such vehicles, while "uncontrolled
charging’ (when the battery is exhausted) may not be so feasible to plan for, ’opportunity charging’ (when load-
ing/unloading or during a driver’s rest time) will likely be a key element (Earl et al., 2018), which poses a significant
challenge for infrastructure design, not the least of which because of the demands on the electricity grid of the kinds
of battery that would be needed.

Another motivation for the need for fast charging location problem with multiple recharges is the comprehensive
forecast that personal vehicle ownership will rapidly decrease in the future, and already EVs are a central part
of many car-sharing businesses. In this case, an EV can be in almost continuous use; then there will be a need
for ’smart charging’ approaches to utilise times when the vehicle is idle, and parking which will depend on the

availability of such charging infrastructure (Huber et al., 2020).

The charging infrastructure deployment process can be stated as a chicken-and-egg dilemma. Although invest-
ment decisions of where to deploy facilities are costly and affect a long-time horizon, the charging stations need
to be provided before observing the actual demand. It emphasises the stochastic nature of the charging facilities
planning problem. Therefore, we put our effort to capture three primary sources of uncertainty in the present paper:

travellers’ demands, EVs’ driving ranges and route choice behaviours.

Finally, the electrification of transportation and infrastructure deployment also result in changes in traffic flow.
Although more EVs can bring a cleaner and more energy-efficient transportation system, it sometimes may cause
more congestion over the network (i.e., en-route and charging congestion) (Tran et al., 2021). Therefore, it is crucial
to develop a systematic framework for deploying charging infrastructure to minimise the capital cost and reduce
the congestion and environmental cost with consideration of stochastic driving range, charging congestion, and the

mutual interaction between charging locations and traffic flow pattern.

1.1. Background works

The EVs-charging facility location problem can be generally categorised into node-based, flow-based and equilibrium-
based approaches depending on the charging demand pattern and route choice behaviours (Shen et al., 2019). The
original node-based model was proposed based on the concept of covering demand nodes (Church and Meadows,
1979). With the assumption of having demand at individual nodes, this approach maximises demand coverage
(maximal covering location models) or minimises the number of required facilities (set covering location models).

In the presence of EVs, node-based models are suitable for locating on-site low-power facilities where EVs’ users

can park their cars for several hours for fully recharge (Nozick, 2001; He et al., 2016).

On the other hand, the flow-based approach considers demands in the form of traffic flow, which makes these
models more preferable for on-route fast-charging facilities due to their ability to capture users’ behaviour. However,
the first flow-based models are unable to capture the limited driving range of EVs. It leads to the assumption that
travellers always choose the flow-independent shortest path, and all of the path flow can be captured as long as
there is a charging station on this path Hodgson (1990). Based on the first flow-capturing location model, the
flow-based approach has attracted more extensive investigation and has been extended to allow multiple recharging
or necessary deviations from the shortest path (Kuby and Lim, 2005; Upchurch et al., 2009; Wang and Lin, 2009;
Kim and Kuby, 2012; Li and Huang, 2014).

In addition to node-based and flow-based models, the equilibrium-based approach is adopted to avoid network

performance deterioration because of the mutual interaction of re-routing behaviours and the charging locations



decision.

The problem can be formulated as a bi-level program in which the deterministic or stochastic user

equilibrium (DUE or SUE) is included at the lower level. The traffic assignment problem with EVs’ presence needs

to consider the charging nature and the limited driving ranges. He et al. (2014) formulated three mathematical

models considering flow dependency of energy consumption and recharging time to describe network equilibrium

flow.

Most of the studies adopt the DUE or logit-based SUE to model the drivers’ behaviour in the literature. Although

the probit-based SUE can better capture the realistic route choice decision, it is less attractive to the scholars because

of lacking a closed-form formula for calculating route choice probabilities and computational complexity. According

to the flow-based and equilibrium-based approach, a summary of some recent studies is presented in Table 1.

Table 1: Some recent studies on EVs charging facility location problem

Approach Study Objective Considerations Model Solution Evaluation
Flow-based  Hosseini Maximize the total — Shortest path with MILP Heuristic Numerical
et al. (2017)  covered flow deviation tests
— Capacitated facili-
ties
Wu and Maximize ex- — Shortest path with Two-stage Sample- Case study
Sioshansi pected  captured deviation stochastic average
(2017) flows — Uncertain EVs flow  integer lin- approx-
ear program imation
method
Xie et al. Minimize — Shortest path with  Multistage Genetic al- Case study
(2018) — investment cost deviation chance- gorithm
(fixed and vari- — Chance constraint constrained
able cost), and on level of service stochastic
— cost associated — Charging  station model
with unsatisfied capacity
BEVs trips
Xu et al. Minimize the ac- — Shortest path with MINP Outer- Numerical
(2020) cumulated range deviation approx- tests; Case
anxiety of con- imation study
cerned travelers method
Xu and Maximizing  the — Shortest path with MIP Tailored Numerical
Meng covered path flows deviation branch- tests; Case
(2020) — Nonlinear  elastic and-price study
demand method
Equilibrium- Jing et al. Maximize cov- — Mixed vehicle Bi-level Equilibrium- Numerical
based (2017) erage of EVs classes based tests
flows — Route choice heuristic
behaviours  (logit-
based SUE)
— Multiple stops for
recharging
continued ...



... continued

Approach Study Objective Considerations Model Solution Evaluation
Zheng et al. Minimize — Route choice be- Bi-level; CPLEX Numerical
(2017) — travel time, and haviours (DUE) Single-level tests

— energy con- reformula-
sumption tion
Guo et al. Minimize — Shortest path with  Bi-level Adaptive Case study
(2018) — total construc- deviation large-
tion cost, and — Satisfy a planned neighborhood
— EVs path devia- proportion of EV search
tion cost users
Zhang et al.  Minimize — Multitype recharge Bi-level Genetic al- Numerical
(2018) — system  travel facility gorithm tests
cost, and — Mixed vehicle
— greenhouse classes
emissions — Route choice be-
haviours (DUE)
— Multiple stops for
recharging
He et al. Maximize cap- — Route choice be- Bi-level; CPLEX Numerical
(2018) tured flows haviours (DUE) single-level tests
reformula-
tion
Huang and Maximize the — Route choice be- Bi-level Genetic al-  Case study
Kockelman profit of station haviours (DUE with gorithm
(2020) placement elastic demand)
— Station congestion
Ngo et al. Minimize — Wireless charging Bi-level Constrained Numerical
(2020) — total system infrastructure local tests; Case
travel time, or — Route choice be- metric study
— total system haviours (DUE) stochastic
net energy — Constraints on com- response
consumption pletion reassurance surface
and equity in re- algorithm
source distribution
continued . ..



... continued

Approach Study Objective Considerations Model Solution Evaluation
Tran et al. Minimize — Mixed vehicle  Bi-level Cross- Numerical
(2021) — total investment classes entroy tests
cost, and — Route choice be- method-
— system  travel haviours (DUE) based
cost — Multiple stops for algorithm
recharging
— Changes of FEVs
penetration

In our study, we define the driving range limitation of an EV as the maximum distance that the vehicle can
travel with a full battery. To incorporate EVs driving range limitation when modelling the relationship between
charging locations and the feasibility of travelling paths, one can use the energy conservation logic to identify the
state of charging (SOC) of the vehicle at each specific location (node) given a fixed driving range limitation or the
capacity of EVs’ battery. SOC can be modelled as a function of travel distance or travel time. In the case SOC is
modelled as a function of travel distance, the max SOC can be defined as the max distance an EV can travel with
a full battery. Then, a path is defined to be feasible if and only if the SOC is non-negative at all nodes along the
path.

With the detailed consideration of SOC changes, one also can investigate the concept of range anxiety which
can be accumulated and built up over a journey by accumulating all the anxieties travellers felt during their trip,
as the battery charge changed and as they went through various charging stations (Xu et al., 2020). In the study
of Xu et al. (2020), which is dealing with the accumulated range anxiety by the time a driver has arrived at their
destination, the range anxiety must be tracked as it varies during a journey (Figure 2) since the authors aim to
minimize an objective function which includes the accumulated range anxiety. However, in our paper, we only

consider physical characteristics of driving range instead of tracking how range anxicty varies within a trip.

Although there are a substantial number of EVs-charging facility location models in the literature in which EVs’
driving range limitation is assumed to be fixed and known in advance (Jiang et al., 2014; Jing et al., 2017; Xie et al.,
2018; He et al., 2018; Guo et al., 2018), there are several reasons why the range may vary in some unpredictable way,
suggesting that it may be better represented as a stochastic variable. Influential features include battery condition,
initial charge, traffic condition, driving behaviour, or weather (Lee et al., 2014; Dong and Lin, 2014; de Vries and
Duijzer, 2017). As one of the first attempts to incorporate stochastic driving range, Lee et al. (2014) assume a
randomly distributed remaining fuel range at the origin node of a trip, where the driving range is sufficient to cover
all O-D pairs such that travellers need to recharge at most once during their trip. Another approach is to include
the driving range explicitly as a parameter and maximize the expected number of drivers who can complete the
trip without running out of battery using a chance constraint on the driving range (de Vries and Duijzer, 2017; Lee
and Han, 2017; Boujelben and Gicquel, 2019).

Besides the driving range limitation, the charging demand is also highly stochastic. Considering the uncer-
tainty in EVs’ flows, many studies adopt the two-stage optimization approach to deal with the imperfect demand
information. Hosseini and MirHassani (2015) introduced a two-stage model to locate permanent stations and then
locate portable stations at the second stage. Similarly, Wu and Sioshansi (2017) proposed a two-stage stochastic
flow-capturing location model to maximize the expected capture flows in which the first stage determines a fixed

number of charging stations and the second stage determines which EVs can be captured by the built charging



stations. Yang et al. (2017) presented a swapping/charging station network problem using fuzzy optimization ap-
proach considering fuzzy customer perception related to range anxiety and loss anxiety. Furthermore, considering
the charging station capacity and the increasing EVs’ penetration, it is more practical to account for the charg-
ing congestion and number of chargers located at each station. By adopting queuing theory, Xiao et al. (2020)
used the point-based approach to determine the optimal locations and capacities of charging stations considering
charging queue behaviour with finite queue length. On the other hand, Yildiz et al. (2019) adopted the flow-based
approach and scenario-based approach to address the problem considering stochastic recharging demands, capacity

limitations for the charging stations and travellers’ route deviation tolerances.

Xie et al. (2018) introduced a multistage chance-constrained stochastic model to support planning and opera-
tional decisions. In planning decisions, the model determines where and how many chargers need to be deployed to
satisfy the growing EV travel demand with deterministic driving range. On the other hand, operational decisions
on path selection and charging scheme are made along with each feasible O-D pair. Besides, a chance-constrained is
formulated to identify the required number of chargers to meet a charging capacity level. Nevertheless, incorporat-
ing the uncertain driving range, travel demand and charging congestion into the charging facility location problem

with equilibrium-based approach are still potential research gaps in the literature.

1.2. Objectives and contributions

Having the aforementioned motivation and research gaps in mind, the overall objective of the present paper is
to optimally deploy fast-charging stations in the manner of minimizing the expected system cost. Furthermore, the
drivers’ route choice behaviour under stochastic demand and driving range limitation is recognized and incorporated

into the model. This study contributes to the literature in the following aspects:

1. A systematic framework is proposed to solve the charging facility location problem, which simultaneously
takes into account the investment cost, congestion (i.e., en-route congestion and charging congestion) and the

environmental cost. To the best of our knowledge, this paper is the first one that jointly considers:

— stochastic travelling and charging demands

stochastic driving range limitation of EVs

— charging congestion at charging stations

travellers route choice behaviors (probit-based SUE)

2. A meta-heuristic is proposed to mimic the highly stochastic nature of the decision-making process. Numerical
tests have shown that the proposed approach can efficiently find a good solution by which the planners can

capture more realistic considerations.

The remainder of the paper is organized as follows. The bi-level optimization framework for seeking the optimal
solution of charging stations and the number of chargers is described clearly in Section 2. In Section 3, a meta-
heuristic is developed to solve the problem. Numerical experiments are conducted in Section 4. Finally, Section 5

concludes the paper and suggests potential future research directions.

1.3. Notations and assumptions

The used notations are described as in Table 2. Sets or random variables are expressed in capital letters and

vectors or matrices are expressed in bold font.



Table 2: Table of notation

Symbol Definition

Sets and parameters

K Set of nodes, k € K

A Set of links, a € A

w Set of all O-D pairs, w € W

N Set of vehicle classes, n € N

pPv Set of all path p between O-D pairs w € W, p € P¥

t0 Free-flow travel time of link a
Cq Capacity of link a
lo Length of link a
Ly Length of path p between O-D pair w
Iy Length of sub-path s on path p between O-D pair w
m Maximum number of chargers of each charging station
Ck The fixed cost of opening a charging station at node k
hi The unit cost of installing one charger at node k
Mk The charging (service) time at each charging node k
V1 The monetary value of travel time
Vg Unit cost of CO per ton
kp Node-path incidence, which equals 1 if node k is on path p between pair w and 0 otherwise
dap Link-path incidence, which equals 1 if link a is on path p between pair w and 0 otherwise
D" Random driving range limitation of vehicle class n
Qv Random travel demand of vehicle class n between O-D pair w
qr Mean of travel demand of vehicle class n between O-D pair w
Decision variables
Tk Whether a charging station is located at location & or not
X Vector of all charging locations
U Number of chargers placed at location k
u Vector of all number of chargers
Ypin Whether path p between pair w is feasible for vehicle class n or not
y Vector of all feasible paths
Q. Random variable of aggregate traffic flow on link a
Qa Mean of aggregate traffic flow on link a
qy Mean of traffic flow of vehicle class n on link a
T, Random variable of travel time on link a
ta Mean of travel time on link a
e Random variable of traffic flow of vehicle class n on path p between O-D pair w
Pl Mean traffic flow of vehicle class n on path p between O-D pair w
f Vector of all mean path flows
Y Random variable of travel times on path p between O-D pair w
ty Mean travel time on path p between O-D pair w
tv Column vector of all perceived path travel times between O-D pair w, t = (t;”)T
Ak Mean arrival rates of EVs at charging station &
Wi The expected waiting time at charging station k

continued ...



... continued

Symbol Definition

ed The average amount of traffic emissions cause by GVs on link a
Gyt Probability that driving range D™ is smaller than the length of sub-path s of path p
gl Probability that vehicle class n choose path p between O-D pair w

To simplify the problem, the following reasonable assumptions are made in the present study.

I. In this study, we focus on physical characteristics of driving range limitation instead of tracking how range
anxiety varies within a trip. Within the scope of the study, we assume the maximum driving range between
full charge and no-charge of an EV is a stochastic parameter. For a given realization of the random conditions
w, the driving range of vehicle class n, D"(w) is the same for each sub-path and randomly distributed with
cumulative density function G™ : ®% — [0,1]. Consequently, the driver might not be willing to take a trip if

the probability of running out of fuel during this trip is above a maximum acceptable risk threshold « € [0, 1].

II. To capture the stochastic travel demand in route choice decision, we assume that the travel demands of
vehicle class n between O-D pairs w follow independent stationary Poisson distribution with constant mean
(and variance) ¢*>" > 0. Besides, travellers have perceptual differences in their evaluation of a given travel
time and make the decision independently between alternative paths p € P* with probabilities P" for each
n €N and w e W.

III. In reality, the waiting time at charging stations contributes an insignificant amount to the path travel time;
therefore, it is reasonable to assume that travellers only consider the path feasibility and the link travel times
in their route choice decision process. This argument can be proved by comparing total waiting time and

travel time through numerical tests (Figures 7a - 7b) and Appendix C.

IV. In order to examine the charging congestion at charging stations, we consider the arrival rate at each charging
station as a function of EVs path flow, A = A(f). Besides, cach charger is assumed to have an independently
and identically distributed exponential charging time, pu. Due to the condition for stationary distribution, the

arrival rate is assumed to be smaller than the service rate.

2. Bi-level planning framework

In this section, we put our effort to propose a planning framework to optimally identify the locations and
number of chargers at each fast-charging station to minimize the expected system cost. The expected system cost
consists of the capital cost of the charging infrastructure, the expected monetary value of total travel time and the

environmental cost.

The capital cost incurred by installing charging stations and placing the chargers at each station. The station
installation costs may include site acquisition, utility provision, permitting, project management, etc., which can be
estimated based on the average cost in a particular study area while the charger unit cost can be found varied due
to the providers (Ghamami, 2019). In this study, we constrain the maximum number of chargers deployed at each
charging station to represent the budget and capacity limitation. One can easily modify this constraint subject to

the practical purpose of the study.



The second term of the objective function is the expected monetary value of total travel time. The total travel
time includes the expected en-route travel time and expected charging time at charging stations which are resulted
from the route choice behaviour of travellers. In this study, a multi-class probit-based SUE model with Poisson
demand (probit-based SUE-P) is used to model the traffic flow equilibrium. In comparison with GVs, EVs’ users
choose the route to minimize their perceived travel times and have to consider the feasibility of the selected route.
Besides, to capture the problem’s stochastic nature, we imply a chance constraint on the driving range and adopt
the queuing theory to project the charging congestion. It is worth to note that in this study, EVs’ drivers are

allowed to have multiple en-route recharging with the stochastic charging demand.

The final term of the objective function is the environmental cost. On-road vehicles have been known as a
significant contribution to air pollution, including carbon monoxide (CO), volatile organic compounds (VOC),
nitrogen oxides (NO,) and particulate matter (PM). In fact, on-road vehicles are responsible for most of CO
emissions in the air (Yin et al., 2014). In this paper, therefore, we consider CO as an indicator of the level of air
pollution generated by GVs while EVs can be seen as zero-emission vehicles. The total amount of traffic emissions
can be calculated by the product of the average amount of traffic emissions and the GVs traffic low on the network

and converted into the monetary value by CO unit cost.
To sum up, the problem can be generally formulated as a bi-level framework as in Figure 1.

Upper level

Minimize expected system cost
Subject to:
1) Maximum number of chargers at each station
2)  Chance constraint on driving range

/N0 N

Planning Expected Number of chargers at Expected
decision travel time each station (service rates) waiting time

Lower level / / \

Traffic network equilibrium with
stochastic demand EVs flows Charging congestion

. —
Multi-class probit-based SUE model (arrival rates) Queuing theory
with Poisson demand

Figure 1: The bi-level optimization framework

The feasibility of paths for EVs can be identified using the concept of sub-path (Xie and Jiang, 2016; Tran et al.,
2021). For a given set of charging stations, the sub-paths of a path include the route from the origin to the first
charging station, from a charging station to the following charging station and from the last charging station to the
destination (Figure 2). With the fixed and pre-determined driving range limitation, a path is feasible only if all
sub-paths are less than the EVs’ driving range. To capture the driving range limitation, one can put the constraints
ensuring that a path is feasible for a vehicle if only this vehicle can traverse all the sub-paths without running out

of battery as in constraints (1) and (2).



O Origin/destination node
@ Node with charging station
Q Node without charging station

Figure 2: Illustration of sub-paths (Tran et al., 2021)

(D" —max (IY,)] yy" >0 Yw € W,n € N,p e P¥ (1)
w,n Dn — nax (léup) w
Yo > —— ’ Vwe W,ne N,pe P (2)

To incorporate the stochastic driving range limitation, we consider the driving range (maximum distance an
EV can travel between full charge and no-charge) as a stochastic parameter. Figure 3 has conceptually presented
our idea of tracking a journey for different vehicles (with the different initial charge, charging capability, weather

condition, etc.) to show the variance on driving range limitation we are trying to capture.

Maximum
driving range

an EV can

travel between
full charge and
no-charge as a
stochastic
parameter

Origin Charging station Charging station Destination Travelling

N distance
v

The probability of running out of energy is defined by the
probability that driving range is smaller than the length of
the longest sub-path.

Figure 3: The stochastic driving range and probability of running out of energy over path
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Under assumption (I), the probability of running out of energy equals the smallest probability that the driving
range exceeds the length of a sub-path among all sub-paths of this path (de Vries and Duijzer, 2017). In other
words, it is the probability that driving range is smaller than the length of longest sub-path which is illustrated in

Figure 3. Let G{;' denote the probability that driving range D™ is smaller than the length of sub-path s of path p.

Gy =P (D" <13,) = GM(,) (3)

EV drivers are assumed to be willing to take a trip if the probability of running out of fuel during this trip is
under a maximum acceptable risk threshold, .. In the case of stochastic driving range, constraints (1) and (2) then

be replaced by the chance constraint (4).
Gy <a+ (1-ym) Yw e W,n € N,pe P" (4)

Due to the linearity, constraint (4) can be relaxed into an equivalent deterministic expression using the probability

density function to calculate the probability G’".

2.1. The upper-level planning

At the upper level, the planner aims to minimize the expected system cost, which includes the charging infras-
tructure investment cost, the expected travel cost and the environmental cost. The objective function is presented
as a performance index (PI) function, which can be calculated by the vector of locating solutions X and the

corresponding vector of equilibrium link flows f, denoted as PI(X, f).

min - PI(X, f) = Y (ceap + heur) +o1 | Y > D E(TEEFES™) + > Wik | +v2 Y E(Q9)ed  (5)

X, f
X, keEK weW pePv neN keK a€A

The vector X includes the vector of charging locations x, the vector of number of chargers u, and a corresponding
vector of feasible paths y. Changing the charging locations and number of chargers at each station may cause the

changing of feasible paths, which leads to re-routing of traffic, hence f = f(X).

The feasible space of locating solutions, €2, then can be explicitly defined as follows.

up < may Vke K (6)
G <a+ (1—yom) Vw e W,n e N,pe P (7)
7 ={0,1) vk e K ®)
g = {0,1} Vw e W,n€ N,pe P¥ 9)
— Vke K (10)

Constraint (6) entails the maximum number of charging stations to be located (according to a given budget).
Constraint (7) ensures that a path is feasible for a vehicle if only the probability that a trip along path p can be

made without running out of fuel at most a.

The expected time at charging station k (W}) is a function of the number of chargers (ug), the arrival rate of EVs

(M) and the service rate of charging station (py), Wi = Wi (ug, Ak, ptr:). The arrival rates at charging stations can

11



be inferred from the corresponding SUE flows. The resulting expected waiting time at charging stations, W (u, A, p)
then can be obtained in a recursive manner as following (Berman and Drezner, 2007; Jung et al., 2014).

a; = ].;CLZ‘ =1+ %(7 — 1)(1i_1 (11)

W (u, A, 1) = A + ! (12)

(up — )2 [au + m]

Among the significant pollutants emitted from gasoline vehicles, we use carbon monoxide (CO) to indicate the
level of air pollution. By adopting the study of Penic and Upchurch (1992), the average amount of CO emission on
a link can be estimated as a function of link travel time as in (13).

. l
e = pit.exp (pgg—a) (13)

a

where p; and ps are constants with values of 11.063927 and 0.008493, respectively (Yin et al., 2014).

2.2. The lower-level traffic assignment problem

At lower level, the equilibrium traffic flow is determined by solving a mixed-flow SUE traffic assignment with
Poisson O-D demand and multinomial conditional route choice. In our study, the equilibrium flows f is corresponded
to each locating solution X, f = f(X). In the light of assumption (II), the travel demand between O-D pair w are
assumed to be Poisson, Q¥ ~ Poisson(q™). Consequently, the resulting path flows of each vehicle class n between
O-D pair w follow independent Poisson distribution, Fj*" ~ Poisson( Iy ) (Clark and Watling, 2005; Nakayama

and Watling, 2014) with the mean path flow which are the solution to the following equivalent fixed-point problem.

= g (6 () VweWineNpe P (14)

P;’™ denotes the probability that vehicle class n choose path p between O-D pair w.

PYn =P (1Y <t Yl e P 1 # ply™ = 1) (15)

Besides, the link flow random variables @), are marginally Poisson which are related to the path flow variable
via (16) with the mean identified in (17).

Qu= > > > v Fen Yac A (16)

weW pePY neEN

Ga= Y >, Y 0w fen Va € A (17)

weW pePv neN

In addition, link travel times T}, are also random variables with the mean that can be determined by a polynomial
form as t,(q,) = Z;:o bjaq’. In the present study, we adopt the Bureau of Public Roads (BPR) function as in
(18) and use Taylor series approximating to calculate coefficients b;,. Considering the quadratic form of link travel
times (e = 2), the modified travel time functions under Poisson demand are presented in (19) (Clark and Watling,

2005). The perceived path travel time are identical for all vehicle classes with the mean defined as in (20).

4
to=1"|1+0.15 (q—“> ] Vac A (18)
Ca
ta = ta + b2aqa Va € A (19)
=" "1y, Vpe P (20)
a€cA
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The feasible space of path flow solutions, ©, can be defined by the flow conservation and following constraints.
The side-constraints on feasible path flow due to limited feasible paths are shown as constraint (21) in which M is

a large positive number. Finally, constraint (22) ensures the positive value of path flows.

[ < My" Yw e W,n € N,pec P¥ (21)
=0 Yw € W,n € N,p € P¥ (22)

2.3. Implicit bi-level programming formulation

The general formula of the bi-level problem can be defined as in (23) with the lower level defined as an equivalent
minimization (Sheffi, 1985).

i PIX, )= > (aan+hour) Fon | D 3 D G D Wik | 42 ) gled

keK weW pEP™ nEN keK a€A

st X(x,u,y) €

f € argmin {Z(f) == 3 3" ¢ E [mingepe {2 (D] + Y qutalen) = > /0 " ta(g)dg £ @}

weW neN a€A acA
(23)

The proposed bi-level framework is strong NP-hard due to the binary-type decision variables, stochasticity, and
intractable structure. Therefore, it is non-viable to find an exact global solution to the problem. Instead, the
meta-heuristic approach, such as Genetic Algorithm, Hill Climbing, Simulated Annealing, etc., usually might be
applied to obtain a good solution in a reasonable amount of time. The comparison of such different algorithms
is beyond the scope of this study. In the present paper, we have adopted a relatively new approach based on the
Cross-Entropy Method due to its robustness and insensitivity to the initial solutions. The details of the solution

algorithm are presented in the next section.

3. Solution algorithm

The Cross-Entropy Method (CEM) was initially proposed by Rubinstein and Kroese (2004) as an adaptive
variance minimization algorithm for estimating rare events probabilities on stochastic networks. Eventually, this
method was adopted to effectively solve both static and noisy combinatorial optimization problems, including
network design problems in the transportation field (Ngoduy and Maher, 2012; Maher et al., 2013; Zhong et al.,
2016; Abudayyeh et al., 2018, 2021). In general, the CEM consists of two steps:

1. Generating the sample of candidate solutions using a given parameterized distribution;

2. Updating the sampling distribution parameters to steer the problem towards the optimal solution over sub-

sequent iterations.

The details of the CEM-based algorithm applied to solve the deterministic fast-charging facility deployment
problem as the bi-level program has been proposed in the study of Tran et al. (2021). In the present paper, we
extend this approach to consider the environmental cost, stochastic driving range, stochastic charging demand and
charging congestion. Furthermore, the changes in EVs market share can also be captured with the continued use of

installed charging facilities in later stages. The details of the CEM-based algorithm is presented in Appendix A.
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In summary, the CEM-based algorithm implemented for solving the proposed charging facility location problem

is shown in Algorithm 1.

Algorithm 1 The CEM-based algorithm
input: network parameters, m, c, h, u, v1, Vs

output: X, f
1y Ay
2941
3: while stopping condition is not reached do
4: x + S(N,~%,m) > randomly sampling location of charging stations and number of chargers
5: y + F(x,D") > identifying corresponding feasible paths using chance constraint
6: f(X) <« Probit-based SUE-P(X) > the equilibrium flow obtained using Algorithm 2
7 A+ A(f) > calculating arrival rates at charging stations
8 W W (u, A\, i) > estimating waiting time using (11) and (12)
9: ed <+ ed(t,) > calculating amount of CO emission on each link via (13)

10: PI «+ PI(X, f(X))

11: N, < Select the best 100p % of PI values

12: 7,(53,‘, + Update ~ using formula (A.3)

13 YD a4 (1 - a)y® > parameter vector smoothing
14: 14 1i+1

Algorithm 2 The MSA algorithm for multi-class probit-based SUE-P
input: X

output: f
1: g + SNL (tg, y") > calculating initial link flow of each vehicle class by performing stochastic network loading

based on the feasible path sets

2 o Y, 40 > identifying aggregate link flow
3041

4: while stopping condition is not reached do

5: f((f) g (q((f)) > calculating the modified travel time under Poisson demand
6: q Z(i) <+ SNL (f((li), y") > identifying auxiliary link flow of each vehicle class
7: qg(i) — qg(i_l) + % (q’g(i) - qg(i_l)) > finding the new aggregate link flow

s g e, an”

In this paper, we use the convergence between best PI (upper bound) and worst PI (lower bound) during the
last two consecutive iterations as the stopping condition for Algorithm 1 while setting the maximum number of
iterations has been reached for Algorithm 2. Otherwise, one can stop the CEM procedure when the distance between

two consecutive parameter vectors is sufficiently small.

4. Numerical tests

Two numerical tests have been conducted in this section to illustrate the efficacy of the proposed framework.
The model is firstly tested in a medium-sized network (Figure 4) with different scenarios of EVs’ driving ranges and

charging demand. In the second test, we employ the framework on a large-scale network (Figure 9) and compare
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the results with those provided by the traditional two-stage optimization approach (Hosseini and MirHassani, 2015;
Wu and Sioshansi, 2017) to shed some lights on the solution quality. In this study, the networks are used by both

EVs and conventional gasoline vehicles (GVs).

Without loss of generality, we assume the link length is the same as free-flow travel time in the number which
is labelled on each link, and the capacity of each link is 1,800 veh/h/lane. In numerical tests, the aggregate travel
demands between O-D pairs are assumed to be independent stationary Poisson with the mean and variance of
3,000 veh/h. The aggregate travel demands are chosen for the convenience of analyzing the impact of en-route and
charging congestion. Lacking the appropriate data, we assume all paths between the O-D pair are feasible for GVs
due to their relatively long driving ranges (Jiang et al., 2014) and the EVs driving ranges follow Gamma distribution
due to its flexibility (de Vries and Duijzer, 2017). The maximum acceptable risk threshold in both cases is assumed
to be 0.05. Besides, the value of time for all vehicle class is $20 per hour (Xu et al., 2017), the cost of opening a
new charging station and installing a charger are $250,000 and $5,000 respectively regardless of its location (EVSE,
2019).

In the CEM-based algorithm, we first choose the typical sample size in the literature N = 1,000 and the elite
sample proportion p = 1%. At each iteration, the parameter vector is updated using the smoothing rate o = 0.7.
The stopping condition is zero difference between the upper and lower bounds during the last two consecutive
iterations. All instances are solved using Python programming language on a computer equipped with Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz and usable RAM of 15.9 GB, running on Windows 10.

4.1. Test-bed network 1: The CEM-based framework

In this subsection, we solve the problem of deploying charging facilities in a medium-sized network consisting
of 24 nodes and 38 one-lane directed links. The network is used by mixed EVs and GVs with the aggregate travel
demands between O-D pairs as in Figure 4. Link lengths and free-flow travel times are also given in the figure.
To gain insights on the impact of EVs driving ranges and EVs market share on the planning decision, we consider
different scenarios of EVs’ driving range under increasing EVs’ penetration. All EVs in the network are assumed
to have relatively short ranges (D¢ ~ Gamma(30,1.5), E[D?] = 45), medium ranges (D¢ ~ Gamma(50,1.5),
E[D¢] = 75) or long ranges (D¢ ~ Gamma(70,1.5), E[D¢] = 105), respectively. Because charging infrastructure
would probably not be erased and newly built for a gradual increase in demand, the charging station will be

continuously used in later stages once it is deployed.

The summary of the optimal number of charging stations (NumS), the number of chargers (NumC) and associ-
ated costs, i.e. capital cost (CapCost) and expected system cost (SysCost) has been presented as in Table 3. The
average run-time for each EVs’ penetration level is 2.35 hours. The details on planning decision, associated times
such as travel time and waiting time in each scenario and run-time for each EVs’ proportion level can be seen in C.6,
Appendix C. In general, the expected system cost tends to decrease when EVs’ driving range increases while rising
sharply when there are more EVs in the network. Besides, the investment cost accounts for a major proportion of
expected system cost (59% - 97%), especially in the case of short driving range, which emphasizes the long-term
impact of charging facilities planning. It can be seen that the capital cost, which results from the planning decision,
is highly dependent on the traffic pattern on the network. Therefore, the inappropriate deployment of charging

infrastructure can increase both congestion and investment cost, which is demonstrated in test-bed network 2.
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Figure 4: Test-bed network 1
Table 3: Investment and expected system cost for test-bed network 1
D¢ ~ Gamma(30,1.5) D¢ ~ Gamma(50, 1.5) D¢ ~ Gamma(70, 1.5)
E[D°] = 45 E[D¢] =75 E[D¢] = 105
% NumS NumC CapCost SysCost NumS NumC CapCost SysCost NumS NumC CapCost SysCost
EVs (3) (3) (8) (8) (8) (%)
10% 3 546 3,480,000 4,249,482 1 204 1,270,000 2,020,103 1 160 1,050,000 1,780,155
20% 3 1025 5,875,000 6,769,409 1 402 2,260,000 3,106,612 1 317 1,835,000 2,623,996
30% 3 1516 8,330,000 9,431,205 1 606 3,280,000 4,260,136 1 460 2,550,000 3,431,247
40% 3 2032 10,910,000 12,303,574 1 802 4,260,000 5,415,884 2 763 4,315,000 5,047,117
50% 5 2775 15,125,000 16,378,688 2 1153 6,265,000 7,278,328 2 874 4,870,000 5,590,707
60% 5 3135 16,925,000 18,408,536 3 1461 8,055,000 8,807,614 2 989 5,445,000 6,141,020
0% 6 3973 21,365,000 22,768,664 3 1595 8,725,000 9,429,029 2 1092 5,960,000 6,633,935
80% 7 4839 25,945,000 27,158,932 3 1736 9,430,000 10,076,058 2 1238 6,690,000 7,335,487
90% 8 5708 30,540,000 31,559,262 3 1885 10,175,000 10,827,161 2 1389 7,445,000 8,068,660
100% 8 6004 32,020,000 33,058,542 3 2037 10,935,000 11,504,731 2 1549 8,245,000 8,867,938

From an environmental perspective, using more EVs can reduce the total environmental cost caused by the
pollutant emitted from GVs (Figure 5a). However, it can be seen from the heat map that in the case of short
and medium driving range, the total environmental cost tends to increase slightly until EVs’ penetration reaches
40%, then decreases significantly when there are more EVs. This phenomenon happens because of the on-route
congestion in the network (Figure 7a). Because EVs’ drivers with shorter driving range will have fewer options
when choosing the route to reach their destination, it will cause more congestion and make GVs choose the longer
paths. Therefore, the total environmental cost tends to be higher in the case of short driving range and reduces

when the EVs’ driving range increases.

Besides, Figure 6 illustrates the environmental cost under different scenarios of the EVs’ driving range and the
level of EVs’ proportion. Following the same pattern of the total environmental cost, the shorter the EVs’ driving
range, the higher environmental cost per GV. The underlying reason is that when the EVs’ driving range is short,
EVs’ users have to crowd through a limited number of paths. Therefore, it leads to more congestion on the network.
When EVs’ driving range is relatively long, the environmental cost per GV remains the same over the different

levels of EVs’ penetration on the network.
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Figure 5: (a) Heat-map of the expected environmental cost (3). (b) Heat-map of the expected travel cost ($).
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Figure 7: (a) Total travel times. (b) Total waiting times.

As shown in Figures 7a and 7b, the charging congestion at the charging station contributes just a small amount

compared to on-route congestion and can be reduced by increasing the driving range of EVs. The same conclusion
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can also be made by using Appendix C.

Meanwhile, the travel cost depends not only on the driving range and EVs proportion but also the number of
charging facilities in the network (Figure 5b). On-route congestion tends to be more serious when EVs’ penetration
increases, but it can be reduced by improving the EVs’ driving range and providing more charging facilities.
Therefore, it is worth mentioning that both driving ranges, the EVs penctration and the number of charging

facilities have a significant impact on the system performance.

A comparative analysis among different distributions has been conducted to investigate the impact of EVs’
driving range distributions on the network performance with charging infrastructure. As the driving range must
only take non-negative values, besides Gamma distribution, Weibull and Log-normal distributions can also be
adopted (Miwa et al., 2017). The parameters of Weibull and Log-normal distributions have been chosen in the
manner that the expected driving range of EVs is approximately 75 km. Therefore, we consider three scenarios
of EVs driving range distributions: D¢ ~ Gamma(a = 50,b = 1.5), D¢ ~ Weibull(a = 8,8 = 80), and D¢ ~
Lognormal(p = 4.3,0 = 0.18).

The summary of total travel times (TTT), total waiting time (TWT), and environmental cost (EnvCost) under
different scenarios have been shown in Table 4. Besides, the total waiting time under different distributions can be

seen in Figure 8.
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Figure 8: Total waiting time under different EVs’ driving range distributions

Table 4: Network performance under different EVs’ driving range distributions

D¢ ~ Gamma(a = 50,b = 1.5) D¢ ~ Weibull(a = 8, 8 = 80) D¢ ~ Lognormal(pn = 4.3,0 = 0.18)
E[D] =175 E[D¢] =175 E[D¢] =175
% TTT TWT EnvCost TTT TWT EnvCost TTT TWT EnvCost
EVs (min) (min) (%) (min) (min) (%) (min) (min) (%)

10% 1,547,051 14,084 229,725 1,503,818 10,576 225,073 1,541,089 14,084 228,967
20% 1,817,526 34,582 220,243 1,692,847 20,849 218,349 1822746 34,582 229,452
30% 2,205,067 40,372 231,656 1,918,221 30,641 210,132 2,203,319 40,372 231,233
10% 2,698,946 69,960 232,916 2,171,349 39,379 199,943 2,686,645 69,960 231,942
50% 2,412,920 77,083 183,326 1,786,326 49,269 148,035 2,432,735 61,976 184,631
60% 1,783,925 113,015 120,300 1,786,496 56,675 121,086 1,800,942 158,091 121,768

continued ...
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... continued

D¢ ~ Gamma(30,1.5) D¢ ~ Gamma(50, 1.5) D® ~ Gamma(70,1.5)
E[D¢] = 45 E[D¢] = 75 E[D¢] = 105
% TTT TWT EnvCost TTT TWT EnvCost TTT TWT EnvCost
EVs (min) (min) (3) (min) (min) (3) (min) (min) (3)

70% 1,740,276 102,516 89,765 1,728,029 69,736 89,410 1,731,413 101,546 89,056
80% 1,666,142 99,365 57,556 1,655,771 78,600 57,461 1,672,554 98,366 58,068
90% 1,612,312 261,230 27,647 1,598,487 87,825 27,647 1,615,998 122,836 27,859
100% 1,584,124 125,068 - 1,560,371 97,332 - 1,577,136 126275 -

Although the system performance is significantly affected by the expected driving range of EVs, it is insensitive
to the shape of driving range distributions. Under the same expected driving range and charging infrastructure, the
network’s total travel time and environmental cost remain almost the same with different driving range distributions.
However, the shape of driving range distributions greatly impacts the waiting time at charging stations. In reality,
the distribution of EVs can be fitted from the survey data.

4.2. Test-bed network 2: A comparative study

In this subsection, we employ the proposed framework on a larger size network with 42 nodes and 80 links, as
shown in Figure 9. In this case, the aggregate travel demands between each O-D pair are assumed to be Poisson
with a mean (and variance) of 3,000 (veh/hr). Various EVs’ penetrations are considered in which all EVs are
assumed to follow Gamma distribution with the shape of 50 (km) and a scale of 1.5. Then we compare the results

with those provided by the traditional two-stage optimization approach.

Figure 9: Test-bed network 2

In the two-stage approach, the travel demands are assumed to be not recognized in the first stage. Therefore,
in this stage, the planner will try to optimize the locations of charging stations by ensuring every O-D pair will
be covered. In other words, the first stage is to minimize the number of charging stations while ensuring at least
one feasible path between each O-D pair. In the second stage, when the travel demands are fully recognized,

the capacity of the charging station will be optimized in order to minimize the charging congestion. Because the
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two-stage approach is unable to capture the interaction between the planning decision and traffic pattern in the

network, we also relax the constraint on continuous use of installed charging facilities in the CEM-based approach.

In the benchmark approach, the problem is solved by assuming that we firstly have limited information in hand
and the flow pattern remains unchanged. Therefore, although it can provide a good solution when EVs’ penetration
is low, this approach witnesses the deterioration in network performance in the long-run, as shown in Figure 10.
It can be seen from the numerical results that the CEM-based approach can yield better solutions in terms of
congestion, capital cost and expected system cost due to its capability to describe the changing of travellers route
choice behaviours. The final results are summarized in Table 5.
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Figure 10: Comparison on expected travel costs and system costs between two approaches

Table 5: Final results for test-bed network 2

CEM-based approach

% Planning decision Expected environ- Expected  travel Capital cost ($) Expected system
EVs mental cost ($) cost ($) cost (3)
20% u2 = 371 260,088.78 672,983.64 2,105,000.00 3,038,072.42
40% uz1 = 726 238,995.62 892,287.94 3,880,000.00 5,011,283.56
=317
60% M 146,430.79 767,188.33 5,225,000.00 6,138,619.12
U29 = 628
u14 = 504
80% 70,645.60 749,606.69 6,905,000.00 7,725,252.29
U290 = T
U4 = 718
100% - 769,033.78 8,830,000.00 9,599,033.78
U9 = 948

Two-stage approach

% Planning decision Expected environ- Expected  travel Capital cost ($) Expected system

EVs mental cost ($) cost ($) cost (3)

20% uz1 = 372 259,667.66 671,070.17 2,110,000.00 3,040,737.83
continued ...
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... continued

% Planning decision ~ Expected environ- Expected  travel Capital cost ($) Expected  system
EVs mental cost ($) cost ($) cost ($)

40% ug1 = 729 241,949.92 900,028.99 3,895,000.00 5,036,978.92

60% w2 — 1090 196,349.94 1,181,016.13 5,700,000.00 7.077,366.07

80%  uz = 1306 110,741.13 1,513,834.41 6,780,000.00 8,404,575.54

100% uz1 = 1630 - 2,963,138.59 10,035,000.00 12,998,138.59

5. Concluding remarks

In this paper, we proposed a systematic framework to deploy the fast-charging facilities under stochastic driving
range, uncertain demand and charging congestion as one of the first attempts to solve the charging location problem
considering the highly stochastic nature of the problem. The problem has been solved to minimize the capital cost,
network congestion (i.e., en-route and charging congestion) and environmental cost while capturing travellers’
stochastic route choice behaviour using a bi-level optimization structure. Numerical tests have shown that the
proposed CEM-based approach is able to provide a good solution for such a complex combinatorial optimization
problem. Due to the ability to capture the mutual interaction between planning decision and traffic pattern, the
present approach can avoid the deterioration in the network performance and yield a better solution compared to

the two-stage approach.

However, the computational cost remains a burden, especially for large-scale networks. The bi-level optimization
framework is a non-linear and non-convex optimization problem in which there is no single approach to obtain
a general global optimal solution. To better understand the resulting quality of the problem and reduce the
computational cost, the bi-level program might be reformulated as a mathematical program with equilibrium
constraints (MPEC). Due to the complexity of the multi-class probit-based SUE traffic assignment problem with
stochastic demand, we leave this problem for future study, which is part of the authors’ on-going research. Moreover,
in order to capture the range anxiety, the proposed model could be extended to track the SOC through a journey
as a function of travel time or travel distance. Then a profile of SOC and the range anxiety can be adopted to
compute the expected accumulated range anxiety through charging stations to the end of the trip, assuming a

random distance that travellers can complete between charging stations.

Appendix A. Cross-entropy Method

Given that the location of charging stations and number of chargers are independent random variables with the
(|K| x m) success probabilities matrix -y, where |K| is the number of nodes in the network and m is the maximum
number of chargers that can be located at one station. The vector of feasible paths (y) corresponding to the

charging locations can be identified by the deterministic equivalence of chance constraints on driving range.

71,0 V1,1 Y1,m
Y2,0 V2,2 Y2,m

y=1 . . (A1)
YK|,0 VK|2 YK|,m
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Accordingly, our problem is to minimize the cost function PI(X, £(X)) over all X(x, u, y) in set Q:
z* = min PI(X,f(X)) (A.2)

Xen
The above optimization problem can be associated with an estimation problem {(z) = P(PI(X,,f(Xn)) < 2),
where X,, is chosen on € from a probability density function f(X,~) with sample size N and z is close to (but
greater than) z*. Generally, [(z) is a rare-event probability. As presented in De Boer et al. (2005), CEM approach
can be used to find an importance sampling distribution so that all its mass concentrates in a neighborhood of X™.

Therefore, the optimal or near optimal states can be obtained by sampling from such a distribution.

To describe parameterized random mechanism for generating the charging solutions, we consider a solution X =

(X1,...,X|k) has |K| independent components such that X; = j with probability v; j, i = 1,...,|K|:j = 1,...,m.

Then, the parameter of sampling distribution at the t** iteration can be updated using following formula (Botev
et al., 2013).
N
D LPrxesoa0) < (=)
%(,tj) = k=1 - . i=1,..,|Kl;j=1,...,m (A.3)
> (PIRict(Xi)<a}
k=1

With the charging solution X, the vector of equilibrium path flow f(X) can be obtained by solving the multi-
class probit-based SUE model with Poisson demand. As mentioned above, the multi-class probit-based SUE model
based on the Poisson-corrected travel time function is adopted to identify route choice probabilities. The link
perception errors are assumed to be the same for all vehicle classes and independently distributed for link a as
normal distribution, Nor (0, (¢t,(0))?), with ¢ = 0.3 used in numerical tests (Clark and Watling, 2005). The SUE

is estimated using the route-based Method of Successive Average (MSA) as summarized in Algorithm 2.

Appendix B. Arrival rates determination

Furthermore, to project the waiting time at charging stations, we first need to identify the arrival rates of EVs
to the stations. Let [ is the maximum length that P(D™ < [) is smaller than risk level a. Considering a path
consisting of node sequence with three charging stations (at node 2, node 3 and node 4) and link lengths (km) as

in Figure B.11.

£, =100 A, = 100 veh/hr A3 = 75veh/hr A4 =50 veh/hr
=

veh/hr (" "\ 25km @ 30 km @ 10 km @ 10km "\ 25km @
N N

Q QOrigin or destination node
@ Charging node

Figure B.11: An illustration of arrival rates calculation

Assuming that EVs flow on this path is f, = 100 veh/hr with [ = 50 km, it is clear that EVs’ travellers only

reach the destination (node 6) when they recharge at node 3 or node 4. Therefore, it is reasonable to assume that
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the same proportions of travellers decided to recharge either at node 3 or node 4. Next, to reach the charging
station at node 4, travellers can recharge either at node 2 or node 3. Using the same reason mechanism, we can
calculate all arrival rates at charging stations on a path using corresponding EVs path flows. Finally, the aggregate

arrival rates would be the sum of arrival rates on paths.

Appendix C. Test-bed network 1: Planning decision, travel time and waiting time

Table C.6: Planning decision, travel time and waiting time for test-bed network 1

D® ~ Gamma(30,1.5) D? ~ Gamma(50,1.5) D¢ ~ Gamma(70,1.5)
E[D°] = 45 E[D¢] =75 E[D¢] = 105
% Planning Travel Waiting Run- Planning Travel Waiting Run- Planning Travel Waiting Run-
EVs decision time time time decision time time time decision time time time
() () (h) () () (h) () () (h)
u7r = 201
10% w3 =207 26,177 698 1.42 uiz = 204 25,784 235 2.84 u1p = 160 24,911 406 1.35
U1 = 138
uy = 414
20% w3 =402 31,721 1,196 2.26 w1z = 402 30,292 576 3.39 u1r = 317 28,119 569 0.95
uz1 = 209
u7 = 603
30% w3 = 606 40,865 1,769 2.12 w1z = 606 36,751 673 3.15 u;; = 460 32,930 704 0.78
us = 307
w7 = 803
) . u11 = 464 )
40% w3 =819 54,230 2,270 1.80 u1s = 802 44,982 1,166 2.78 209 27,802 651 0.54
u =
U21 = 410 16
ur = 815
u13 = 820
U1z = 806 Uy = 476
50% wis =230 49,352 2,853 2.22 40,215 1,285 2.77 28,234 858 0.57
Ui = 347 uie — 398
u1e = 381
U21 = 529
ur = 914
U3 = 827 Ug = 264 480
60% wis =291 60,487 3,756 1.99  ws =810 29,732 1,884 948 T 00 28,267 942 0.52
U =
Ul — 473 Ul — 387 16
U1 — 630
w7 = 1072
ug = 910
Ug = 318
u1z = 378 u11 = 488
70% 58,874 3,761 2.20 w3 =811 29,005 1,709  2.36 28,212 1,293 0.62
u1s = 502 uie = 604
u1g = 466
u1e = 408
U21 = 703
continued . ..
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... continued

D¢ ~ Gamma(30,1.5) D¢ ~ Gamma(50,1.5) D¢ ~ Gamma(70,1.5)
E[D¢] =45 E[D¢] =75 E[D¢] = 105
% Planning Travel Waiting Run- Planning Travel Waiting Run- Planning Travel Waiting Run-
EVs deci- time time time decision time time time decision time time time
sion (hr) (hr) (hr) (hr) (hr) (hr) (hr) (hr) (hr)
w7y = 1249
ug = 409
u1z = 994 ug = 362 597
80% w15 =398 52,108 4,037 1.83 w3 =818 27,769 1,656 2.89 = 11 27,983 1,559 0.65
uie = 643 w16 = 556 e =
u1g = 443
U21 = 703
u7r = 1258
ug = 449
= 504
o s = 401
u13 = 1000 w11 = 583
90% 44,385 4,546 1.68 w3 =843 26872 4354 279 28,030 1,803  0.67
wis = 447 u1e = 806
Ui = 641
ure = 827
ulig = 488
U1 = 735
ur = 1281
ug = 541
Uyl = 521
ug = 469
U3 = 1047 Uy = 644
100% 46,642 5,285 0.93 w13 =846 26,402 2,084 1.32 29,472 1,675 0.56
U1 = 460 Ui — 905
ure = 722
Ul — 835
ulg = 528
U1 = 791

Appendix D. Test-bed network 3: Bi-directional network

Consider a medium-sized network with 24 nodes and 42 links as in Figure D.12a. The travel demand and
network parameters have been adopted from Numerical tests. In this test, the EVs are assumed to account 50%
of total travel demand and have medium driving ranges (D¢ ~ Gamma(a = 50,b = 1.5)). The charging planning

decisions under this scenario is shown in Figure D.12b.
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Figure D.12: Test-bed network 3

Table D.7 depicts the optimal number of stations (NumsS), number of chargers (NumC), and network perfor-

mances, i.e., the capital cost, travel time, waiting time, travel cost, environmental cost, and system cost.

Table D.7: Final results for test-bed network 3 (50% EVs)

NumS NumC Capital Travel Waiting Travel cost Environmental System
Cost () time (min)  time (min)  (9) cost (9) cost ($)
2 1,020 5,630,000 3,019,914 62,200 1,027,371 211,433 6,868,804

The convergence of PI solutions and standard deviation of best PI values over iterations has been illustrated in

Figure D.13a and Figure D.13b. The computational time is 5.03 hours.

le7 leb
2.0 1.2
. AN ——- Worst of elite solutions "
AN —— Mean of elite solutions <
1.8 1 \, 2104
. \ —-= Best solutions 5™
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2]
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Figure D.13: Convergence of PI values over iterations
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