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DOA Estimation with Nonuniform Moving

Sampling Scheme Based on a Moving Platform
Hantian Wu, Qing Shen, Wei Cui, Wei Liu, Senior Member, IEEE

Abstract—The generalized linear moving sampling scheme
(MSS) exploiting the second-order statistics and also the high-
order cumulants is studied, where the set of MSS is defined as the
shifted distance offsets involved in estimation based on a moving
platform. Then, sparse physical arrays (SPAs) with nonuniform
linear moving sampling schemes (NL-MSS), referred to as SPA-
NL-MSS, are proposed to optimize the consecutive difference co-
arrays. For the same number of sensors and data samples, better
performance in terms of both the number of degrees of freedom
(DOFs) and estimation accuracy can be achieved by SPA-NL-
MSS than existing array structures exploiting array motions at
the second order level.

Index Terms—moving platform, sparse array, difference co-
array, DOA estimation, nonuniform moving sampling scheme.

I. INTRODUCTION

Direction of arrival (DOA) estimation based on sparse

arrays exploiting the co-array concept has attracted significant

interest in the past years [1], [2]. Various specifically designed

sparse array structures have been proposed for underdeter-

mined DOA estimation, where nested arrays (NAs) [3], co-

prime arrays [4], [5], CACIS and CADiS [6], super nested

arrays [7], [8], and thinned co-prime arrays [9] are repre-

sentative examples based on the second-order difference co-

array concept. For the high-order difference co-arrays, multiple

level nested arrays [10], simplified and enhanced multiple

level nested arrays [11], and other fourth-order cumulant

based extensions [12]–[15] have been proposed with improved

estimation performance. Furthermore, the difference co-array

concept in the spatio-spectral domain was studied in [16]–

[19] with significantly increased number of degrees of freedom

(DOFs) provided.

All the aforementioned co-arrays are generated from physi-

cal arrays on a relatively static platform. Recently, the syn-

thetic aperture was introduced to produce a hole-free dif-

ference co-array aided by array motions [20]–[22]. In [23],

a dilated nested array (DNA) is designed by increasing the

inter-element spacing of an original NA, and the number of

DOFs of DNA is three times higher than that of NA with

merely one shifted array after motion synthesized at unit

spacing d0 ≤ λ
2

(λ is the signal wavelength) along the end-fire
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direction of the linear array. This idea is further extended to

arbitrary sparse array structures [24], [25], with larger virtual

ULA segment in the difference co-array achieved. In [26],

a novel approach to construct virtual array exploiting array

motion is proposed, tripling the number of DOFs without

changing inter-element spacings. Then, in [27], multi-level

dilated nested array (ML-DNA) is proposed, where multiple

array motions are considered instead of only one fixed motion,

leading to increased number of DOFs. However, uniformly

shifted arrays after motions are synthesized, and only the

second-order difference co-arrays are considered.

In this paper, a series of non-uniform moving sampling

schemes with corresponding sparse array construction meth-

ods are proposed from the 2q-th order difference co-array

perspective, which also cover the commonly used second-

order difference co-array scenario. By grouping each sensor

with its shifted versions sampled after moving several specific

distances, we find that the 2q-th (q ≥ 1) order difference co-

array of the synthetic array consists of difference co-arrays

of both the physical array and the moving sampled positions,

which is then defined as the moving sampling scheme (MSS).

The relationship between the physical array and the MSS is

studied, and the design of the physical array (spatial sampling

scheme) with associated MSS is then proposed to optimize

the co-arrays under the criterion of large consecutive co-

arrays, forming sparse physical arrays with a nonuniform

linear moving sampling scheme. Utilizing both spatial and

sparse moving sampling schemes, a better performance in

terms of estimation accuracy and the number of DOFs can be

achieved for the same number of sensors and data samples.

II. SIGNAL MODEL BASED ON A MOVING PLATFORM

Consider an N -sensor linear array moving along the array

axis at a constant speed v. Denote S(t) as the position set of

moving sensors at time t, expressed as

S(t) =
{

~1d+ vt, ~2d+ vt, ~3d+ vt, . . . , ~Nd+ vt
}

, (1)

where d is the unit spacing, and ~nd, n = 1, 2, . . . , N , is the

initial position of the n-th sensor.

Denote sk(t), k = 1, 2, . . . ,K, as the k-th source signal

received from angle θk, and those source signals are far-field,

narrowband, and mutually uncorrelated. Then, the observed

signal vector x(t) is

x(t) =
∑K

k=1
sk(t)e

−j
2πvt sin θk

λ a(θk) + n̄(t) , (2)

where n̄(t) is the N ×1 white Gaussian noise vector, a(θk) is

the steering vector for the original array S(0) corresponding
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to the k-th source, given as

a(θk) =
[

e−j
2π~1d sin(θk)

λ , . . . , e−j
2π~Nd sin(θk)

λ

]T

. (3)

Denote

A =
[

a(θ1),a(θ2), . . . ,a(θK)
]

∈ C
N×K ,

s(t) =
[

s1(t)e
−j

2πvt sin θ1
λ , . . . , sK(t)e−j

2πvt sin θK
λ

]T
.

(4)

Then, (2) turns into x(t) = As(t) + n̄(t). At time (t+ τ), the

received signal vector after motion is

x(t+ τ) =
∑K

k=1
sk(t+ τ)e−j

2πv(t+τ) sin θk
λ a(θk) + n̄(t+ τ)

= Âs(t+ τ) + n̄(t+ τ) , (5)

where Â =
[

e−j
2πvτ sin θ1

λ a(θ1), . . . , e
−j

2πvτ sin θK
λ a(θK)

]

,

and for narrowband signals, assuming τ is small enough so

that sk(t+ τ) ≈ sk(t)e
j2πfτ with f being carrier frequency.

Then, (5) is rewritten as x(t+τ) = ej2πfτ Âs(t)+n̄(t+τ),
which can be further translated to

x̂(t+ τ) = e−j2πfτx(t+ τ) = Âs(t) + n̂(t+ τ) , (6)

where n̂(t+ τ) = e−j2πfτ n̄(t+ τ) after phase compensation.

For this platform, the following assumptions are introduced:

A1 The constant moving speed is exactly known in advance.

A2 The sources are still far-field compared to the extended

aperture, and thus the DOAs of the sources remain the

same after motion.

A3 The motion time τ should not exceed the signal coherence

time [26].

By defining τ = d
v

[23], from (2) and (6) we simply have

y(t) =

[

x(t)
x̂(t+ τ)

]

=

[

A

Â

]

s(t) +

[

n̄(t)
n̂(t+ τ)

]

, (7)

where the equivalent steering matrix is Ã = [AT , ÂT ]T .

Then, existing DOA estimation methods [3], [6], [24], [28]

can be applied directly to (7), leading to improved performance

due to the extended synthetic virtual array after motion. For the

wideband case, group sparsity based methods [18], [29], [30]

can be employed, while reduced complexity can be achieved

by introducing focusing for pre-processing, followed by either

the subspace methods or the CS-based methods [31]–[33].

III. NONUNIFORM MOVING SAMPLING SCHEME

In this section, we first present a generalized moving sam-

pling scheme, and its generated co-arrays are analyzed from

both the second-order statistics and higher-order cumulants

perspective. Then, the nonuniform moving sampling scheme

is proposed with increased DOFs achieved, which is utilized

for underdetermined DOA estimation.

A. Generalized Moving Sampling Scheme

Consider the moved array sampled at time t + Qmd
v

as a

new one indexed by m, where {Qm}Mm=1 are unequal positive

integers. The sparse array at time t is referred to as the

original array. The received signal observed from the m-th

moved array at time (t+ Qmd
v

) is equivalent to that observed

from the original array shifted by Qmd along the direction of

motion. For stationary sources, we can obtain a synthetic array

composed of the original array and its M shifted arrays.

By stacking all the M shifted arrays, the observed signal

vector of the synthetic array can be expressed as

y(t) =











x(t)

x̂(t+ Q1d
v

)
...

x̂(t+ QMd
v

)











=











As(t) + n̄(t)

A1s(t) + n̂(t+ Q1d
v

)
...

AMs(t) + n̂(t+ QMd
v

)











= Ãs(t) + ñ(t) ,

(8)

where Ã =
[

AT ,AT
1 · · · ,AT

M

]T
and ñ(t) =

[

n̄(t), n̂(t +
Q1d
v

), · · · , n̂(t + QMd
v

)
]T

. The steering matrix of the m-th

array is Am =
[

am(θ1),am(θ2), . . . ,am(θK)
]

, with

am(θk) =
[

e−j
2π(~1+Qm)d sin(θk)

λ , . . . , e−j
2π(~N+Qm)d sin(θk)

λ

]T

.

According to [24], the sensor positions of the synthetic array

can be expressed as

Ssa = S0 ∪ S1 ∪ · · · ∪ SM , (9)

where S0 =
{

~1d, ~2d, ~3d, . . . , ~Nd
}

represents the sensor

position set of the original array, while the m-th shifted array

having sensors located at Sm = S0 +Qmd, where Q0 = 0.

Dividing the sensors in the synthetic array into N groups,

each group consists of a physical sensor and its M shifted

versions, and (9) is updated to

Ssa = Sa1 ∪ Sa2 ∪ · · · ∪ SaN , (10)

where for n ∈ {1, 2, · · · , N},

San = {~nd+Q0d, ~nd+Q1d, · · · , ~nd+QMd} . (11)

It is noted that each group San1
can be obtained by shifting

another group San2
, i.e., San1

= San2
+ (~n1

d − ~n2
d)

with n1, n2 ∈ {1, 2, · · · , N}. As will be illustrated later, this

grouping method is convenient for designing a suitable sparse

array configuration based on a moving platform with increased

DOFs.

B. Difference Co-Array Analysis from the High-Order Cumu-

lants Perspective

We then derive the 2q-th order difference co-array of the

synthetic array based on the divided groups. The 2q-th order

difference co-array lags of each group is

Φ2q =
{

∑q

k=1
Qmk

−
∑2q

k=q+1
Qmk

| 0 ≤ mk ≤ M
}

.

Then, the 2q-th order difference co-array lags of the syn-

thetic array is obtained by

Φ2qcp
= ∪N

n1=1 · · · ∪
N
n2q=1Φ2qn1n2...n2q

, (12)

where Φ2qn1n2...n2q
is the set of difference co-array lags among

sensors in {Sank
}2qk=1

. For 0 ≤ mk ≤ M ,

Φ2qn1n2...n2q
=

∑q

k=1
(Qmk

+ ~nk
)−

∑2q

k=q+1
(Qmk

+ ~nk
)

= Φ2q +
∑q

k=1
~nk

−
∑2q

k=q+1
~nk

. (13)
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Note that the 2q-th order difference co-array lag set of

the original array is Ψ2q =
{
∑q

k=1
~nk

−
∑2q

k=q+1
~nk

|

n1, n2, · · · , n2q = 1, 2 · · · , N
}

, and thus Φ2qcp
is updated to

Φ2qcp
= Ψ2q +Φ2q. (14)

Eq. (14) indicate that the difference co-array of the synthetic

array consists of the difference co-array of both the physical

array and the moving sampled positions, and the motion of the

array platform leads to increased number of co-arrays. Note

that q = 1 is a special case which is commonly used in sparse

array design and underdetermined DOA estimation, and (14)

also works for q = 1.

C. Nonuniform Moving Sampling Scheme

The generalized difference co-array set Φ2qcp
in (14) (which

also covers the case exploiting the second-order co-arrays

for q = 1) depends on the array geometry and the moving

sampling positions. The relationship between Φ2q and Ψ2q is

important for increasing DOFs, based on which a series of

novel sparse array configurations can be designed to reduce

co-array redundancies and maximize the virtual ULA segment

which is associated with the uniform DOFs (uDOFs).

Remark 1: A large number of consecutive co-array lags

is preferred since this virtual ULA segment can be fully

exploited by both the co-array MUSIC [34], [35] and the CS-

based methods [11], [29]. Therefore, the achievable number of

consecutive virtual ULA sensors (also equal to the number of

uDOFs) is considered for quantitative evaluation, comparison,

and optimal design [6], [11].

Definition 1: The set indicating the moving sampling

scheme (MSS) is defined as the set of all shifted offsets

involved in estimation, given by

Sss = {Qmd | m = 0, 1, . . . ,M} , (15)

where Q0 = 0, and {San}
N
n=1 in (11) can be expressed as

San = Sss + ~nd. The 2q-th order difference co-array lag set

of Sss is Φ2q , which is equal to that of {San}
N
n=1.

Then, the structure construction problem with increased

uDOFs is translated to the design of both the moving sampling

scheme Sss and the physical array configuration S0.

For an arbitrary array geometry, we assume that the max-

imum number of consecutive co-array lags in Φ2q and Ψ2q

are NΦ,2q and NΨ,2q , respectively. Denote d0 ≤ λ
2

as a

reference spacing. The unit spacing of the physical array is

d = Ppad0, while the unit moving sampling spacing (the

minimum sampling spacing) is dss = Pssd0.

Proposition 1: For Ppa = NΦ,2q and Pss = 1, the maximum

number of uDOFs of the synthetic array can be achieved,

which is Nsa = NΦ,2q · NΨ,2q . The conclusion also fits the

case where Ppa = 1 and Pss = NΨ,2q .

Proof: We focus on the case of Ppa = NΦ,2q and Pss = 1
hereafter, and the proof for Ppa = 1 and Pss = NΨ,2q is similar.

The number of consecutive co-arrays of the MSS set Sss

is assumed to be NΦ,2q . As a result, for every virtual uni-

form linear co-array βjd (j = 1, 2, . . . , NΨ,2q) in Ψ2qd, the

associated consecutive co-array set introduced by the addition

operation in (14) is

φβj
=

{

γj | βj −
NΦ,2q−1

2
≤ γj ≤ βj +

NΦ,2q−1

2

}

. (16)

Note that NΦ,2q is odd since the co-arrays are symmetric

about zero. When Ppa = NΦ,2q with βj+1 − βj = NΦ,2q , it

is obvious that the sets φβj
(j = 1, 2, . . . , NΨ,2q) are non-

overlapped and adjacent to each other, leading to the largest

number of uDOFs provided by the synthetic array, i.e., Nsa =
NΦ,2q · NΨ,2q . The addition operation in (14) fills the holes

between adjacent co-arrays in Ψ2qd.

Definitely, more spatial sampling points in the scheme, i.e.,

a larger M , leads to significantly increased consumption of

resources and complexity, including data storage and computa-

tions. When the uniform linear moving sampling scheme (UL-

MSS) is applied with Qm = m, m = 0, 1, . . . ,M , we have

NΨ,2q = 2qM +1 and thus Nsa = NΦ,2q · (2qM +1). On the

contrary, for a fixed M without introducing extra complexity,

more DOFs can be provided using the nonuniform (sparse)

linear moving sampling scheme (NL-MSS).

Similarly, for a fixed N , the number of DOFs can be further

increased by employing a nonuniform physical array with a

unit spacing d = NΨ,2qd0 according to Proposition 1.

Remark 2: The proposed array structure is referred to as a

sparse physical array with nonuniform linear moving sampling

scheme (SPA-NL-MSS). Generally, arbitrary sparse arrays can

be employed as the physical array and the moving sampling

scheme. Therefore, O
(

(M +1)2qN2q
)

DOFs can be provided

by a specifically designed SPA-NL-MSS.

The multi-level nested array (MLNA) [10] is taken as

an MSS example. Denote M0 = 1, and set M + 1 =
∑2q

i=1
(Mi − 1) + 1 sensors, which are located in the n-th

group San = ∪2q
i=1San,i, where the i-th sub-array {San,i}

2q−1

i=1

of San holds Mi − 1 sensors in

San,i =

{(

~n +m
∏i−1

j=0
Mj − 1

)

dss,m = 1, . . . ,Mi − 1

}

,

while the 2q-th sub-array has M2q sensors located at

San,2q =

{(

~n +m
∏2q−1

j=0
Mj − 1

)

dss,m = 1, . . . ,M2q

}

.

The maximum number of consecutive co-arrays of the 2q-

level nested moving sampling scheme (2qLN-MSS) is NΦ,2q ,

given by

NΦ,2q =

{

2M1M2 − 1, q = 1,

2
(

∏2q

j=1
Mj +

∏2q−1

j=1
Mj

)

− 1, q ≥ 2.
(17)

Considering dss = d0 and a 2q-level nested array with its

unit spacing being d = NΦ,2qd0, a 2q-level nested array with

2qLN-MSS (2qLNA-2qLN-MSS) is formed. The number of

physical sensors in the 2qLNA is N =
∑2q

i=1
(Ni − 1) + 1,

where {Ni−1}2q−1

i=1 is the sensor number of the i-th subarray,

while N2q is that of the 2q-th subarray.

The number of uDOFs provided by 2qLNA-2qLN-MSS is

Nsa =















(2N1N2 − 1) (2M1M2 − 1) , q = 1,
(

2
(

∏2q

j=1
Nj +

∏2q−1

j=1
Nj

)

− 1
)

×
(

2
(

∏2q

j=1
Mj +

∏2q−1

j=1
Mj

)

− 1
)

, q ≥ 2.

(18)
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TABLE I
COMPARISON OF THE NUMBER OF UDOFS AMONG DIFFERENT

STRUCTURES WITH VARIOUS NUMBER OF SENSORS

Structures, Sss, M
Sensor Number N 4(3,2) 6(4,3) 8(5,4)

(2,2,2,1) (3,2,2,2) (3,3,3,2)

NA1 (q = 1) 11 23 39

DNA2, {0,1}d, M = 1 33 69 117

ML-DNA3, {0,1,2}d, M = 2 55 115 195

2LNA-2LN-MSS4, {0,1,3}d, M = 2 77 161 273

2LNA-2LN-MSS, {0,1,2,5,8}d, M = 4 187 391 663

4LNA5 (q = 2) 29 71 161

4LNA-4LN-MSS6, {0,1,3,7,15}d, M = 4 1363 3337 7567
1NA: Nested Array [3]. 2DNA: Dilated Nested Array [23].
3ML-DNA: Multi-Level Dilated Nested Array [27].
42LNA-2LN-MSS: Two Level NA with Two Level Nested MSS.
54LNA: Four Level Nested Array [10].
64LNA-4LN-MSS: Four Level NA with Four Level Nested MSS.

(a) ML-DNA, K = 27 (b) 2LNA-2LN-MSS, K = 35

Fig. 1. DOA estimation results of different array structures.

IV. SIMULATION RESULTS

We first compare the number of uDOFs for arrays with

different moving sampling schemes. Multi-level dilated nested

array (ML-DNA) [27] and dilated nested array (DNA) [23]

are nested arrays with uniform linear MSS for M ≥ 2 and

M = 1, respectively. The maximum number of consecutive

difference co-arrays of NA, DNA, ML-DNA, 2LNA-2LN-

MSS exploiting the second-order statistics (q = 1) and 4LNA,

4LNA-4LN-MSS based on the fourth-order statistics (q = 2)

are listed in Table I, where optimal array structures offering the

highest uDOFs among potential configurations are employed

[10], referred to as (N1, N2) for q = 1 and (N1, N2, N3, N4)
for q = 2 as indicated in Table I. Clearly, the proposed 2qLNA-

2qLN-MSS provides a higher number of uDOFs than the other

structures with the same sensor number N . Furthermore, with

the same number of moving sampling steps M , i.e., the same

data samples in total, the number of uDOFs increases with q

significantly for a fixed N by employing the NL-MSS.

Then we evaluate the DOA estimation performance, where

the K uncorrelated far-field sources are uniformly distributed

between −60◦ and 60◦, and the SS-MUSIC method is em-

ployed. The maximum number of sources that can be resolved

is Nsa−1

2
. As shown in Table I, up to 27 and 38 sources can

be resolved for N = 4 using ML-DNA and 2LNA-2LN-MSS

respectively. Fig.1 gives the DOA estimation results obtained

by ML-DNA when K = 27 and NA-NL-MSS when K = 35,

where the input SNR is fixed to 0dB with 10000 snapshots.

Note that SS-MUSIC based on ML-DNA fails to resolve 28
sources since the MUSIC spectrum cannot be obtained for

K ≥ Nsa−1

2
. More sources can be resolved by the proposed

2LNA-2LN-MSS.

Finally, the root mean square error (RMSE) results are

examined. The nested array with N = 6 and (N1, N2) = (4, 3)

(a) RMSE results versus SNR (q = 1)(b) RMSE results versus the number of
snapshots (q = 1)

(c) RMSE results versus SNR (q = 2)(d) RMSE results versus the number of
snapshots (q = 2)

Fig. 2. RMSE results of different array structures.

is employed, while the unit spacings d for NA, DNA, ML-

DNA, and 2LNA-2LN-MSS with Sss = {0, 1, 3} are d0,

3d0, 5d0, and 7d0, respectively, where d0 = λ
2

. The RMSE

results versus the input SNR and the number of snapshots are

shown in Fig. 2(a) (500 snapshots) and Fig. 2(b) (0dB SNR),

respectively. Clearly, the performance of the proposed 2LNA-

2LN-MSS is better than other existing structures due to the

increased uDOFs.

We then focus on the performance exploiting the fourth

order cumulants with q = 2, and the proposed structure 4LNA-

4LN-MSS with Sss = {0, 1, 3, 7, 15}d is compared with its

parent structure 4LNA with N = 6 and (N1, N2, N3, N4) =
(3, 2, 2, 2), and their unit spacings are 47d0 and d0, respec-

tively. As shown in Figs. 2(c) and 2(d), It is obvious that

by employing the sparse moving sampling scheme, better

performance can be achieved by 4LNA-4LN-MSS.

V. CONCLUSION

The underdetermined DOA estimation problem based on a

moving platform was studied, and the relationship between

the MSS set and the physical array to provide significantly

increased DOFs was derived under the criterion of large

consecutive co-arrays via exploiting the 2q-th order cumulants.

Utilizing both spatial and moving sparse sampling schemes,

sparse physical arrays with nonuniform linear moving sam-

pling scheme (SPAs-NL-MSS) were proposed. It has been

shown by simulations that for the same sensor number and

data samples, the proposed 2LNA-2LN-MSS with nested

scheme (q = 1) outperforms other existing array structures

in terms of estimation accuracy and the number of DOFs, and

further improvements can be achieved by increasing q with

the specifically designed 2q level nested scheme employed.
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