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Abstract: Background: Valuation studies of preference-based health measures like SF6D have been

conducted in many countries. However, the cost of conducting such studies in countries with small

populations or low- and middle-income countries (LMICs) can be prohibitive. There is potential

to use results from readily available countries’ valuations to produce better valuation estimates.

Methods: Data from Lebanon and UK SF-6D value sets were analyzed, where values for 49 and

249 health states were extracted from samples of Lebanon and UK populations, respectively, using

standard gamble techniques. A nonparametric Bayesian model was used to estimate a Lebanon

value set using the UK data as informative priors. The resulting estimates were then compared to a

Lebanon value set obtained using Lebanon data by itself via various prediction criterions. Results:

The findings permit the UK evidence to contribute potential prior information to the Lebanon analysis

by producing more precise valuation estimates than analyzing Lebanon data only under all criterions

used. Conclusions: The positive findings suggest that existing valuation studies can be merged with

a small valuation set in another country to produce value sets, thereby making own country value

sets more attainable for LMICs.

Keywords: nonparametric Bayesian methods; preference-based health measures; SF-6D system;

standard gamble

1. Introduction

Currently, there are a number of preference-based measures of health-related quality
of life (HRQoL) available. Some of these measures include the EuroQol five-dimensional
(EQ-5D) questionnaire [1], Healthy Utilities Index 2 (HUI2) and HUI3 [2,3], Assessment of
quality of life (AQoL) [4], Quality of Well-Being scale (QWB) [5], and the six-dimensional
health state short form (SF-6D) [6], in addition to a growing set of condition-specific
measures [7,8]. All of these measures provide empirically derived health state utility
values that can be used to calculate quality-adjusted life years (QALYs), a commonly used
effectiveness measure in a specific form of cost-effectiveness analysis (CEA): cost-utility
analysis (CUA). CUA involves comparison of the costs of a treatment with its effectiveness
expressed in units, such as QALYs, gained for use in CEA [9].

The SF-6D has become one of the most widely adopted HRQoL measures, primarily
in the United Kingdom (UK) [6]. It has also achieved extensive usage internationally
in different countries across the globe, reaching China [10], Japan [11], Hong Kong [12],
Brazil [13], Portugal [14], and Australia [15]. Further, it is largely available for use in
datasets since it is derived from the original short form 36 health survey (SF-36) [16]. In
the Middle East, conducting valuation studies is a relatively new research area, with only
a single pilot valuation study investigating the feasibility and acceptability of adopting
the standard gamble (SG) technique to derive value sets for the Arabic version of SF-6D in
Lebanon [17].
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For countries with small populations or low- and middle-income countries (LMICs),
such as Lebanon, the cost of conducting valuation studies to derive country-specific value
sets can be prohibitive, especially in the context of data collection post the COVID-19
pandemic. For instance, collecting valuation data by face-to-face interviews could be
expensive and most often time consuming, and the number of such interviews would be
relatively small (e.g., only 126 interviews for the Lebanon pilot study). It could be argued
that valuation studies may be conducted online, thereby making the data collection cheaper
and quicker. However, this may not be achievable for every country. For some LMICs,
conducting an online survey may not be feasible and obtaining a representative sample of
the general population based on sociodemographic characteristics may not be achievable.
This means that other countries’ value sets, like UK or US values, could be used instead
to derive QALYs. However, these value sets may not be representative of the country’s
own population, which, in turn, could potentially impact on the validity of the resource
allocation decisions made.

Advancement in statistical modeling, such as Bayesian inference methods [18], facili-
tates the use of the results of one country to improve those in another country by using the
results in one country as informative priors. As a result, the second country’s generated
utility estimates will be more precise than analyzing its data individually. Therefore, the
use of additional evidence from country 1 may allow a reduction in the sample size in
country 2, thereby achieving similar accuracy as that obtained with a full-sized valuation
study in that country [19]. This sort of analysis tends to be hugely important in countries
without the same capacity to perform large-scale evaluation exercises, particularly for those
with smaller populations or LMICs. In Kharroubi [20], a nonparametric Bayesian model
was developed to allow results from one country to be used as prior information for a
study in another. This model was applied for the analysis of a US EQ-5D valuation study
using the already existing UK data [21]. Recently, this model was also applied for SF-6D
HK and Japan alongside the existing UK data, respectively [22,23].

The aim of the present study was to explore if such an approach could be used in
countries with small populations and various demographic compositions, work, cultures,
and languages, and if so, how generalizable these approaches may be by using experiences
from a European country to facilitate the analysis of a value set in another Asian country or
LMIC. This was investigated using a case study for SF-6D Lebanon and UK datasets, where
a sample of health states valued in the Lebanon study were analyzed alongside the existing
UK dataset, and the resulting estimates were then compared to those generated modelling
the Lebanon dataset on its own. Despite the fact that this paper is not proposing new
methodological advances, given the model presented here is a replica of that used in the
Kharroubi et al. [20–23] articles, it further emphasizes the key points made in these studies,
such as the better performance of the nonparametric Bayesian approach in producing
precise estimates.

First, the UK and Lebanon SF-6D valuation surveys in addition to the datasets are
summarized. The Bayesian methodology is outlined second whereas the findings are
set out third. To this end, the findings are discussed in addition to some limitations and
suggestions of possible future outlooks.

2. Materials and Methods

2.1. The SF-6D

The SF-6D is a generic health state measure defined by six multi-level dimensions
of health: physical functioning, role constraints, social functioning, pain, mental health,
and vitality [6]. Each dimension is assigned between 4 and 6 levels. An SF-6D health state
is described by a six-digit number generated by selecting a level from each dimension,
starting with physical functioning and ending with vitality. Thus, state 111,111 denotes the
full health state and state 645,655 denotes the worst health state, referred to as “the pits”.
Different combinations generate 18,000 possible health states
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2.2. The Valuation Survey and Data Set

2.2.1. UK

A total of 836 respondents from the general public in the UK valued 249 SF-6D health
states. The selection of respondents along with the selection of health states are provided
elsewhere [6]. Using the McMaster “ping pong” form of the SG technique, each respondent
was asked to rank and then value six of these states. Respondents were asked to value five
of the six SF-6D health states against the full health and the “pits” using the SG approach.
In the sixth SG question, respondents were asked to value the “pits”. Each respondent was
given the option of choosing between (A) the certain prospect of being in the “pits” state
and the uncertain prospect of full health or immediate death, or (B) the certain prospect of
death and the uncertain prospect of full health or the “pits” state, based on their assessment
of the “pits”. The probability of the best possible outcome occurrence was changed until
the respondent was undecided between the two certain and uncertain outcomes. Every
negative value was restricted to a value of −1, indicating that it was worse than death [24].
The rest of the health states were converted to a [0, 1] scale, with 0 and 1 indicating death
and the full health state, respectively, using the following equation:

SGADJ = SG + (1 − SG) ∗ P,

where P represents the “pits” state valuation. Note that the utility scores derived from the
SG technique take values between 0 and 1 except for those who had a “worse than death”
evaluation. Note also that the values of SGADJ constitute the dependent variable (y) in the
model outlined below.

Out of the original 836 respondents, 225 respondents were removed from the analysis
for different reasons. For instance, 130 respondents proved to be ineligible because they
failed to value the “pits” state, thereby generating an SGADJ value that was not possible.
Out of the remaining 611 individuals, 148 values from 117 respondents were missing. This
resulted in 3518 observed SG values for the 249 SF-6D UK health states. A more detailed
explanation on this study is provided in Brazier et al. [6].

2.2.2. Lebanon

The Lebanon valuation study included a sample of 49 SF-6D health states. These health
states were selected and valued according to the UK selection and valuation procedures [16].
The interview approach was also based on that used in the UK study, though every
respondent was asked to rank and then value eight different SF-6D health states.

Out of the 170 respondents contacted for an interview, 44 were excluded from the
analysis based on the same exclusion criteria as the UK study [6]. Each of the remaining
126 respondents completed 8 SG values, resulting in a total of 1008 valuations. Among
these, 16 health state values were missing. This resulted in 992 observed SG values over
49 SF-6D states. A further detailed description for each of these 49 health states is presented
in Kharroubi et al. [17].

2.3. Modelling

In Kharroubi [20], a nonparametric Bayesian model was developed to allow results
from one country to be used as prior information for a study in a new country. Using
the full US and UK datasets, this model was applied to the analysis of the US EQ-5D
valuation study alongside the existing UK data [21]. Recently, this model was also applied
for SF-6D HK and Japan alongside the existing UK data, respectively [22,23]. Here, we
aimed to explore whether the use of Lebanon valuations alongside the existing evidence
from the UK produces better valuation estimates than analyzing the Lebanon data alone.
The resulting estimates are then compared to those obtained using Lebanon data by itself
(which we shall refer to henceforth as the crude model) via various prediction criterions,
incorporating estimated against observed mean utilities, mean predicted error as well as
root mean square error (RMSE).
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Kharroubi [20] employs the model below:

yij = 1 −
{

αj(1 − u
(

xij

)}

+ εij (1)

where for i = 1, 2, . . . , Ij and j = 1, 2, . . . , J, xij denotes the ith health state valued by
respondent j in the Lebanon valuation and yij represents the respondent j’s SGADJ value
for that health state. The model also includes two random terms: an individual effect term
αj of respondent j and the error term εij. Let tj be a vector of covariates for respondent j,
such as age and gender or socio-economic factors of respondents, to which the following
distributions have been assigned by Kharroubi [20]:

αj ∼ LN
(

tT
j γ, τ2

)

and εij ∼ N
(

0, v2
)

, (2)

where γ is the vector of coefficients for the covariates and τ2 and v2 are further variance
parameters to be estimated. That is, the distribution of the respondent effect αj is then
independent log-normal, resulting in a skewness that is also typically observed in valuation
data, and εij are independent normally distributed errors.

Now assume u(x) and uUK(x) are the utility functions of health state x evaluated,
respectively, in the Lebanon and the UK analyses. Kharroubi [20] formally assumed a
multivariate normal distribution for the prior distribution of u(x) with mean:

E(u(x)) = E(uUK(x)) + γ + βTx (3)

and variance–covariance matrix:

cov
(

uUK(x), uUK

(

x′
))

+ σ2c
(

x, x′
)

(4)

where E(uUK(x)) represents the mean utility value for state x and cov(uUK(x), uUK(x
′))

denotes the variance–covariance matrix between and uUK(x
′) for two distinct health states x

and x′ in the UK study. Note that both E(uUK(x)) and cov(uUK(x), uUK(x
′)) in Equations (3)

and (4) are derived from analyzing the readily available UK data. We shall discuss the
interpretation of these in more detail when considering the crude model later in this section.
Note also that the use of E(uUK(x)) and cov(uUK(x), uUK(x

′)) offers the potential for using
the results in the UK data as informative prior to the Lebanon utility function u(x). See
Kharroubi [20] for a detailed description of this.

Consider Equations (3) and (4), note that health state x = (x1, x2, . . . , x6) represents a
vector consisting of discrete levels on every health dimension of the SF-6D and γ, β, and
σ2 are unknown coefficients. Note also that the regression parameters γ and β represent,
respectively, the intercept term and the slopes as each of the six dimensions (physical
functioning, role constraints, social functioning, pain, mental health, and vitality) increases,
whereas the term c(x, x′), defined below represents the correlation between the utilities u(x)
and u(x′) for two distinct health states x and x′ in the Lebanon study. The interpretation of
(3) is that the mean function represents a belief that the utility is more likely to be linear
and additive in the different dimensions. Furthermore, the true function is set to fluctuate
freely around this mean, conforming to its multivariate normal distribution, and so it may
take any form at all. Additionally, if x and x′ are somehow similar, then the utilities u(x)
and u(x′) will have high correlation c(x, x′), defined as follows:

c
(

x, x
′
)

= exp
{

−∑ bd

(

xd − x′d
)2
}

(5)

where for d = 1, 2, . . . , 6, xd and x′d represent the levels of dimension d in x and x′,
respectively, and bd represents a roughness parameter, which controls how closely the
actual utility function is to a linear form in dimension d. Details pertaining to this specific
point can be found in Kharroubi [20].
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The Bayesian model is finalized by assigning prior distributions to the (hyper)parameters
γ, τ2, v2, β, and σ2. In the case when no specific prior information is available, it is appro-
priate to assign conventional noninformative prior distributions for all these parameters.
Formally, we assume:

p
(

γ, τ2 , v2, , σ2) ∝ τ−2v−2σ−1 (6)

Note that a uniform prior for σ was used, hence p
(

σ2
)

∝ σ−1 [25]. Note also that no
distributions were given to the bd s. Generally, inference about these roughness hyperpa-
rameters in Gaussian models is problematic, and so it is preferred to set fixed values for
them [18]. A discussion of one way to do this is considered in Section 3.

To this end, it follows from Kharroubi et al. [20] that the mean health state utility in
model (1) is:

u(x) = 1 − α{1 − u(x)}

where α denotes the expected value of α over the entire population. Note that, if α = 1,
then u(x) = u(x), which is not generally the case. Kharroubi et al. [18] provide more
explanation on the computation of α.

A final note regarding the specification of the crude model and the distributions placed
on the model parameters: in brief, the crude model is defined analogously to model (1) i.e.,

yij = 1 −
{

αUKj
(1 − uUK

(

xij

)

}

+ εij

where xij is the ith health state valued by respondent j in the UK valuation and yij is the UK
respondent j’s SGADJ value for that health state, αUKj

is an individual effect term of UK
respondent j, and εij is a zero mean random error term. Note that the distributions of αUKj

and εij are defined analogously to those in Equation (2). Furthermore, Kharroubi et al. [18]
assumed a multivariate normal distribution for the prior distribution of uUK(x) with
a mean:

E(uUK(x)) = γUK + βUK
Tx

and variance–covariance matrix:

cov
(

uUK(x), uUK

(

x′
))

= σUK
2cUK

(

x, x′
)

where γUK, βUK, and σUK
2 are unknown parameters and cUK(x, x′) is the correlation

between uUK(x) and uUK(x
′) for two distinct health states x and x′ in the UK study, defined

analogously to Equation (5). The crude model is completed by assigning conventional
noninformative prior distributions to all these (hyper)parameters. See Kharroubi et al. [18]
for a detailed description of this crude model.

General theory along with thorough technical explanation of the Bayesian approach
are described elsewhere [20]. Programs to take on the Bayesian approach were implemented
in Matlab (The MathWorks, Inc. Natick, MA, USA) and the source code is available online
in the Supplementary Materials. The Matlab codes are not generic, so the user will have to
tweak them to fit his/her needs.

3. Results

For this analysis, we used bd = 2.5/(ld − 1)2 for setting the roughness parameters bd

in Equation (5), where ld represents the number of levels in dimension d. The rationale

for this is that exp
{

−(ld − 1)2bd

}

represents the correlation between the utility values

for two health states differing only in that one is at level 1 and the other at level ld in
dimension d [18]. This choice of bd makes this equal to exp(−2.5) = 0.08. Note that this
value is arbitrary; however, it reflects a belief that the deviations of the true utility function
from the linear additive form will not be dramatic.

The nonparametric Bayesian model (which we shall refer to as model (1)) was applied
to estimate a Lebanon valuation, where the UK data were employed in the model as
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informative priors. The resulting estimates were then compared to those derived from
modeling the Lebanon valuation alone (crude model).

The predictive ability of the two models are compared in Figure 1a,b, where the
predicted (pink line) and observed (blue line) mean valuations for the 49 health states
valued in the sample in addition to the full health were displayed, respectively, for both
the crude model and model (1). In each figure, the errors are represented by the yellow line
and were calculated by taking the difference between the two valuations. It is to be noted
that the health states were sorted by the predicted mean valuations and plotted accordingly.
When comparing the two figures, Figure 1a shows an obvious variation of the observed
values around the predicted mean valuations obtained from the crude model, mainly for
the moderate and poor health states values. In contrast, Figure 1b suggests that model (1)
predicts the mean utilities quite well across the board.

The Bland–Altman agreement plots [26] in Figure 2a (crude model) and Figure 2b
(model (1)) indicate better and more precisely the quantification in terms of bias and/or
precision. The difference between the predicted and actual mean utilities is displayed
versus the mean bias in this context. The solid line in both figures indicates the mean bias,
whereas the 95% limits of agreement were depicted by the dotted lines. When comparing
the two plots, we can see that model (1) has greater agreement. This conclusion could
be drawn from a variety of observations. First, the range of the 95% limits of agreement
obtained from model (1) is 0.109, which is shorter than that of the crude model range of
0.136. Second, model (1) has a difference in mean bias of 0.0049, whereas the crude one
scores a value of 0.0064. Finally, model (1) scores a difference standard deviation of 0.027,
which is much smaller than that of the crude model with a value of 0.035.
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Figure 1. Actual and predicted mean health states valuations for (a) the crude model and (b) model (1).

The inferences for the utilities of the 49 SF-6D states in addition to the full health
are displayed in Table 1. The observed mean utilities of the Lebanon data are displayed
in column 2, whereas the UK predicted mean utilities and standard deviation that were
employed as informative priors in model (1) are displayed in column 3 and 4, respectively.
Additionally, the predicted mean utilities together with their standard deviations obtained
from the crude model are displayed in column 5 and 6, respectively, whereas the corre-
sponding estimates obtained from model (1) are displayed in column 7 and 8. It is evident
from Table 1 that model (1) provides a better predictive performance in comparison to the
crude overall, and as a result it scores a value of 0.028 for RMSE vs. 0.035 for the crude one.

Table 1 also shows another significant difference between the two models. For the
pits state, for example, the crude model estimates a value of 0.3463, despite the fact that
the observed mean for this health state is 0.3222, whilst the value from model (1) is 0.3292.
There are also differences in the performance of the two models due to monotonicity (in
which some good states are assigned a lower value than bad states). A total of 10,000 states
were picked randomly with no replacement from a total of 18,000 states. It is perhaps
worth noting that each of the 10,000 health states has 6–12 states adjacent to it, given they
only vary in one dimension. Then, as a result of choosing one health state randomly from
these 6 to 12 states, 10,000 adjacent pairs were generated. The results revealed that, out of
these 10,000 adjacent pairs, 10% show non-monotonicity in model (1) in comparison to 20%
for the crude one.
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(a) 

(b) 

Figure 2. Bland–Altman plot for (a) the crude model and (b) model (1).
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Table 1. Posterior estimates for the 49 health states in addition to full health.

Health State Observed Mean

UK Crude Model Model (1)

Posterior
Mean

Posterior
SD

Posterior
Mean

Posterior
SD

Posterior
Mean

Posterior
SD

111,111 1 1 0 1 0 1 0
111,621 0.8244 0.7482 0.0345 0.8276 0.0264 0.8218 0.0269
113,411 0.8544 0.7284 0.031 0.8713 0.0207 0.8637 0.022
115,653 0.7306 0.5652 0.0561 0.7073 0.0272 0.7116 0.0277
121,212 0.8422 0.8275 0.0261 0.8867 0.0194 0.8741 0.0209
122,233 0.8694 0.7475 0.034 0.8512 0.0235 0.8562 0.0259
122,425 0.7582 0.6784 0.0353 0.7686 0.0234 0.7652 0.0241
124,125 0.8478 0.7292 0.0475 0.8269 0.0245 0.835 0.0258
131,542 0.8283 0.6181 0.0304 0.8038 0.0236 0.7953 0.0257
132,524 0.7633 0.6574 0.037 0.7692 0.022 0.775 0.0232
133,132 0.8583 0.6942 0.0343 0.8517 0.0227 0.8467 0.0244
135,312 0.7556 0.6992 0.0488 0.7795 0.0221 0.7757 0.0229
142,154 0.7912 0.6844 0.0373 0.7527 0.0287 0.7569 0.0294
144,341 0.7418 0.72 0.0279 0.7335 0.0249 0.7425 0.0255
211,111 0.89 0.9197 0.0215 0.9434 0.0169 0.9176 0.0248
212,145 0.785 0.6927 0.0446 0.7693 0.0266 0.7591 0.0278
213,323 0.7833 0.7761 0.0296 0.8048 0.0208 0.8093 0.0215
221,452 0.8239 0.6237 0.0459 0.8178 0.0234 0.8148 0.0254
224,612 0.6461 0.6256 0.0392 0.7043 0.0238 0.6897 0.0244
232,111 0.8576 0.6987 0.0377 0.8525 0.0251 0.8336 0.0273
235,224 0.7676 0.6486 0.0335 0.7505 0.0241 0.7541 0.025
241,531 0.785 0.702 0.0352 0.7592 0.0251 0.7646 0.0266
312,332 0.8639 0.7472 0.0285 0.8207 0.0227 0.8348 0.0252
315,515 0.6983 0.6642 0.0363 0.7058 0.0247 0.7152 0.0247
321,122 0.8583 0.7638 0.0266 0.8527 0.0218 0.8542 0.0234
323,644 0.5717 0.5362 0.0287 0.6335 0.0256 0.6201 0.0257
332,411 0.8435 0.7217 0.0376 0.8125 0.0247 0.8289 0.0265
334,251 0.7347 0.6761 0.0532 0.7229 0.0251 0.7344 0.0258
341,123 0.8311 0.7009 0.0393 0.8055 0.0248 0.8085 0.0259
412,152 0.7933 0.6558 0.0371 0.7466 0.0251 0.7454 0.0277
414,522 0.7556 0.6612 0.0301 0.7505 0.023 0.7597 0.0235
421,314 0.8117 0.6689 0.0368 0.8067 0.0236 0.8066 0.025
425,131 0.6578 0.6771 0.0551 0.6973 0.0236 0.6935 0.0247
431,443 0.8247 0.638 0.0339 0.7775 0.027 0.7935 0.0274
432,621 0.7429 0.6468 0.0487 0.734 0.0237 0.7428 0.0254
443,215 0.7306 0.6548 0.0352 0.6718 0.0274 0.6746 0.0283
511,114 0.8578 0.6993 0.0379 0.8406 0.0247 0.8387 0.0267
512,242 0.6028 0.6906 0.0324 0.6647 0.0244 0.6573 0.0244
522,321 0.7778 0.6846 0.0324 0.7658 0.023 0.7654 0.0253
523,551 0.6072 0.6201 0.0471 0.6399 0.0257 0.6404 0.0261
531,635 0.7865 0.5323 0.0345 0.7258 0.0302 0.7438 0.0302
534,113 0.7235 0.7106 0.0437 0.7078 0.0249 0.7173 0.026
545,422 0.7006 0.6351 0.0322 0.6181 0.029 0.6365 0.0292
611,221 0.8211 0.6667 0.0521 0.7922 0.0253 0.7918 0.0275
614,434 0.5611 0.6497 0.0383 0.5826 0.0273 0.5922 0.0273
622,513 0.7072 0.5809 0.0392 0.6949 0.0259 0.6894 0.0275
625,141 0.5106 0.5561 0.0466 0.5755 0.0273 0.5582 0.028
631,355 0.7406 0.5823 0.0354 0.6749 0.0311 0.6948 0.0306
633,122 0.7141 0.6515 0.0338 0.6912 0.0249 0.6943 0.0261
642,612 0.685 0.5594 0.0336 0.6228 0.029 0.6633 0.0299
645,655 0.3222 0.3575 0.0186 0.3463 0.0252 0.3292 0.0237

RMSE 0.035 0.028

Another aspect to show the difference in the performance between the two models is
reflected in Figure 3, which displays the predicted mean utilities from the crude (Figure 3a)
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and model (1) (Figure 3b) versus the actual values of the 49 states, along with the 45◦ line of
unity (solid line). In theory, the predicted mean utilities are expected to lie approximately
on the unity line, hence this would be assessed as a good agreement. When comparing the
two figures, we can see that model (1) has greater agreement, given the valuations tend to
be closer to the perfect line, whilst the corresponding estimates obtained from the crude
model tend to show a larger scatter as they deviate largely from the unity line. Therefore,
we can stress that model (1) produces better predictions and is much more precise than the
crude one.
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Figure 3. Actual and predicted utilities for (a) the crude model and (b) model (1).
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To this end, it could be argued that it is hard to observe from the graphs and/or from
the table a substantial difference in the performance of the two models (i.e., predictions)
with respect to the data. However, the difference in terms of health and quality of life
is substantial. Note that a key element in our study is the valuation of health states in
order to calculate QALYs. Thus, extremely precise estimation of the health state utility
values is an important component of this. As an example, note from Table 1 that health
state 642,612 has a predictive utility value of 0.6228 from the crude model and 0.6633
from model (1), whereas the observed mean value for this health state is 0.685. Thus, the
difference in utility estimates is almost 0.04. This could result in an increase in QALYs
from a treatment that prolongs life by one year from 0.5 to 0.54, which for a treatment
costing £10,000 would reduce the cost per QALY from £20,000 to £18,518 and make it below
the cost effectiveness threshold used by the UK National Institute for Health and Clinical
Excellence. That is, it could potentially influence whether or not a treatment or health care
program is funded. This could, in turn, potentially impact on the validity of the resource
allocation decisions made.

4. Discussion

In Kharroubi [20], a nonparametric Bayesian model was developed to allow results
from one country to be used as prior information for a valuation study in a new country.
In the present study, this model was applied to explore whether the use of Lebanon value
sets alongside the existing evidence from the UK provides better valuation estimates
than analyzing the Lebanon data alone. Analysis revealed that the UK evidence served
as significant prior knowledge to the Lebanon analysis. More specifically, the model
that includes the UK data as informative priors produced better predictions much more
precisely than the model that excludes the UK data under all prediction criterion used,
such as the estimated versus observed mean utilities, mean predicted error, and RMSE.
This is a promising approach that suggests that already existing valuation studies can be
merged with a smaller valuation study in another country to derive value sets, thereby
making own country value sets more attainable for LMICs.

The approach provided in this paper is a replica of that used to model the US, Hong
Kong, and Japan alongside existing UK data [20–23]. The previous analyses were based
on the following assumptions: (1) cultural similarities between the nations under study,
for example, the UK population’s preferences are very similar to those in the US; and
(2) all countries in question had plenty of data. Typically, different countries might have
different preferences, as well as different population compositions, work, cultures, and
languages, all of which could potentially impact the relative values assigned to various
health dimensions (for instance, physical functioning or vitality), and the position of every
health state on the [0, 1] scale. As a result, the proposed approach may not always produce
correct estimations. In the present study, we aimed to explore if such an approach could be
used in countries with small populations and various demographic compositions, work,
cultures, and languages, and if so, how generalizable these approaches may be by using
experience from a European country, such as the UK, to facilitate the analysis of a value set
in another Asian country or LMIC, such as Lebanon.

Experimental studies in different countries are needed for deriving value sets, such as
the EQ-5D, or SF-6D. Typically, such work is very expensive and is potentially wasteful.
The present work suggests that the use of the already existing data as potential prior
information can improve the prediction accuracy. This offers the potential to reduce the
number of states to be valued and so reduce the cost of cross-country valuation studies.
This will be extremely crucial in countries without the same capacity to perform large-
scale evaluation exercises, especially (1) in countries with small settings and LMICs or
(2) in the context of data collection post the COVID-19 pandemic, through costly and
time-consuming face-to-face interviews with techniques, such as SG and TTO.
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It is perhaps noteworthy that our basic model (1) has the key benefit of allowing more
than two countries to be analyzed. On this basis, Equations (3) and (4) may be generalized
further to generic forms in order to handle n countries:

E(u(x)) = ∑ n
k=1E(uk(x)) + γ + βTx (7)

and variance–covariance matrix:

∑ n
k=1cov

(

uk(x), uk

(

x′
))

+ σ2c
(

x, x′
)

(8)

where ∑ n
k=1E(uk(x)) represents the total expected utility of state x and ∑ n

k=1cov(uk(x), uk(x
′))

represents the total variance-covariance matrix between uk(x) and uk(x
′) for two distinct

states x and x′. Note that both ∑ n
k=1E(uk(x)) and ∑ n

k=1cov(uk(x), uk(x
′)) in Equations (7)

and (8) are obtained from the analysis of the existing datasets in n different countries.
Ongoing research is underway to demonstrate this idea for three different countries,
namely the UK, HK, and Japan. In this respect, it is important to highlight that this also
requires stronger assumptions: relevance of all included countries in the analysis, especially
when data from one country are limited compared to those from another one. For example,
if a large sample is available for the UK but only limited data are available from Japan,
would it still be sensible to assign the same weights to the evidence estimated from these
two countries when trying to improve the estimates for a country with only limited data
available? It could be argued that this should be done in the context of the specific relevance
that estimates from each country may have in terms of another one. In addition, prior
sensitivity checks may become crucial to see how much giving different weights to the
estimates of different countries may actually affect the results. All of the above are the
subject of further work.

The analyses presented in this paper were carried out using empirical examples, which
is beneficial and a valuable addition to the literature. Similar analysis via simulated data
would be incredibly useful for further work in order to learn how valuations from different
countries or ethnic groups vary, and to investigate the association between how different
such countries are and how important the use of informative priors is. This in turn would
allow for investigating the whole range of distances between national valuations [27].
Examining this would form a key research agenda for the future.

One limitation of the present work is that it is unclear whether a value set developed
using an own country dataset modeled alongside a new country’s dataset tend to be
acceptable, given various international funding agencies recommend the use of a country’s
own valuations to calculate QALYs for use in CUA. However, when the estimations are
correct or the ranking of health states and the position of each health state on the [0, 1]
scale are similar to those derived through a large-scale evaluation exercise, this may not
be a major concern. Another limitation is related to the quality of the data acquired in
Lebanon and, in turn, the adequacy of our model formulation. The SF-6D valuation data
from the pilot study in Lebanon should not be considered as a representative sample of
the Lebanon general population, given the study sample was obtained from AUB where
most of the respondents were highly educated. In the case when there is bad data with a
poor signal to noise ratio, we believe this could bias the valuation results, suggesting that
this approach may not always provide precise predictions. Future research with a more
representative sample of the Lebanon general population is then encouraged to produce a
Lebanese-specific SF-6D value set. However, because of the way that we modelled health
state preference data using the nonparametric Bayesian method, it is unlikely that this
would have an impact on the resulting estimates, though this could be assessed in further
research.

5. Conclusions

The simple idea of using the UK results as informative priors to the Lebanon analysis
proves to be significant in terms of generating better estimations than analyzing Lebanon
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data alone. Such an analysis (borrowing strength from existing countries’ valuations) tends
to allow much smaller studies than have hitherto been used upon producing valuations
for new countries. This kind of analysis will be hugely important in countries with a
smaller setting and/or LMICs without the same capacity to conduct large-scale valuations,
thereby making own country value sets more attainable. Ongoing research is underway to
demonstrate this idea for more than two countries.

Supplementary Materials: Supplementary Materials available at https://www.mdpi.com/article/
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