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1. Introduction

Turkmenistan is situated at the northern edge of the belt of shortening related to the Arabia-Eurasia conti-

nental collision (Figure 1). Yet the active faulting within Turkmenistan is influenced both by Arabia-Eurasia 

plate convergence and by the motion of the South Caspian Basin (SCB), Figure 2a, which is an aseismic 

block that moves independently to its surroundings (e.g., Copley & Jackson, 2006; Djamour et al., 2010; 

Jackson et al., 2002). The directions, rates, and rotation poles of the SCB relative to Iran and Eurasia are not 

well resolved, thus limiting our understanding of the tectonic influence on the stratigraphy and evolution 

of the basin interior, and on the styles and rates of faulting around its margins.

The relative motion between the SCB and surrounding parts of NE Iran and Turkmenistan is partly ac-

commodated by the Shahroud left-lateral fault zone (SFZ, Figure  2a) in Iran and the right-lateral Main 

Köpetdag fault (MKDF, Figure 2a) in Turkmenistan (e.g., Hollingsworth et al., 2006, 2008, 2010). (We use 

the spellings for geographical and town names as used in Turkmenistan, rather than the Persian equivalents 

as often used in papers describing the regional tectonics. Thus Köpetdag rather than Kopeh Dagh, Aşgab-

at rather than Ashkabad). Determining the slip-rates and cumulative displacements on these two fault 

zones is hence important for examining the tectonic evolution of the SCB (e.g., Hollingsworth et al., 2008). 

Measurements of strain accumulation across the SFZ from both InSAR and GPS are consistent and show 

4.8 ± 0.8 mm/yr of left-lateral motion being stored across the fault (Mousavi et al., 2015). These present-day 

values are also consistent with late Quaternary rates of left-lateral faulting summed across the Abr and Khuj 

segments of the Shahroud fault (Javidfakhr et al., 2011). In contrast, the right-lateral slip-rate of the MKDF 

Abstract We provide the first measurement of strike-slip and shortening rates across the 200-km-

long right-lateral strike-slip Main Köpetdag Fault (MKDF) in Turkmenistan. Strike-slip and shortening 

components are accommodated on parallel structures separated by ∼10 km. Using Infra-red-stimulated 

luminescence and reconstruction of offset alluvial fans we find a right-lateral rate of 9.1 ± 1.3 mm/yr 

averaged over 100 ± 5 ka, and a shortening rate of only ∼0.3 mm/yr averaged over 35 ± 4 ka across the 

frontal thrust, though additional shortening is likely to be accommodated locally by folding and faulting, 

and regionally within the eastern Caspian lowlands to its south. The MKDF is estimated to have ∼35 km 

of cumulative right-lateral slip which, if these geological measurements are correct, would accumulate 

in only 3–5 Ma at the rate we have determined, suggesting that the present tectonic configuration started 

within that time period. We use the MKDF slip-rate to form a velocity triangle, from which we estimate 

the Iran-South Caspian and Eurasia-South Caspian shortening rates, and show that the South Caspian 

Basin moves at 10.4 ± 1.1 mm/yr in direction 333° ± 5 relative to Eurasia and at 4.8 ± 0.8 mm/yr in 

direction 236° ± 14 relative to Iran. In contrast to both the eastern Köpetdag and the Caspian lowlands the 

MKDF has little recent or historical seismicity. The rapid slip-rate estimated here suggests that it is a zone 

of high earthquake hazard.
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has proven difficult to constrain using geodetic methods. A pole of rotation for the SCB relative to Eurasia 

calculated from GPS measurements in northern Iran predicts a right-lateral rate of only ∼3 mm/yr on the 

MKDF (Djamour et al., 2010). Alternatively, a faster slip-rate of 6.7 ± 0.5 mm/yr can be inferred from GPS 

by taking the fault parallel velocity of the two stations sited in the eastern Caspian lowlands, and assuming 

that all is accommodated across the MKDF (Mousavi et al., 2013). InSAR measurements of strain accumu-

lation across the MKDF are contaminated by large changes in atmospheric conditions, giving a rate of strain 

accumulation anywhere in the range 5–12 mm/yr (Walters et al., 2013).

In this study, we present the initial findings of a joint Turkmenistan-UK project on the active tectonics of 

the territory of Turkmenistan. We provide the first estimate of late Quaternary slip-rate on the right-lateral 

MKDF, from the section between the towns of Serdar and Baharly (Figure 2b), by restorating the offset of 

displaced alluvial fans and by dating these fans using infra-red-stimulated luminescence dating. We then 

use our findings to further our understanding of the tectonics in this scientifically and economically im-

portant region. Destructive earthquakes have occurred within Turkmenistan, including the 1948 Ashagbat 

earthquake east of the MKDF, and the 1895 Krasnovodsk earthquake within the Caspian lowlands of Turk-

menistan (Ambraseys, 1997, Figure 2a). However, there is little evidence for major earthquake rupture on 

the MKDF itself, either recently or historically (e.g., Ambraseys, 1997; Ambraseys & Melville, 2005; Berbe-

rian, 2014; Berberian & Yeats, 2001, see Figure 3), and so our measurement of its slip-rate is of importance 

in estimating the hazard that it poses.
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Figure 1. GPS velocities from permanent stations within Iran (selected from those presented in Khorrami et al. (2019). 
The permanent stations MOBK and KHUR, from which we estimate the shortening rate and direction between Iran 
and Eurasia are marked in red, as is the station MAVT in northeast Iran. The Main Köpetdag fault (MKDF) is labeled 
and marked in red. The box represents the region shown in Figure 2a. Latitudes and longitudes in this, and in all later 
maps, are in degrees north and east.
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2. Motion of the South Caspian Basin (SCB) Relative to Its Surroundings

The SCB may have originated in the Mesozoic as part of a wider back-arc basin (e.g., Cowgill et al., 2016; 

Mosar et al., 2010; Vincent et al., 2007). Up to 20 km of sediment has been deposited in the basin interior, 

of which half has accumulated within the last 5.5 Ma (e.g., Allen et al., 2002; Green et al., 2009; Robert 

et al., 2014). Earthquakes with depths down to 80 km occur in a narrow band north of the northern margin 

of the SCB (north of the Apsheron Sill, marked AS, Figure 3) and down to 40 km beneath the Talesh and 

Caucasus mountains at its western margin (Aziz Zanjani et al., 2013; Jackson et al., 2002, Figure 3, also see 

Appendix A). The deep earthquakes north of the Apsheron sill are thought to result from underthrusting 

and subduction of the SCB basement, with the onset of subduction often assumed to correlate with the 

increase in sediment accumulation at 5.5 Ma (e.g., Allen et al., 2002), though some authors argue that the 

sediment accumulation can be explained as the result of river incision, sediment deposition, and subsidence 

due to sediment loading following early Pliocene sea-level drawdown (Green et al., 2009) rather than purely 

by tectonically driven subsidence.
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Figure 2. (a) Simplified active fault of the South Caspian region (MKDF = Main Köpetdag Fault, AS = Absheron 
Sill, SFZ = Shahrud Fault Zone, BQFZ = Barharden-Quchan Fault Zone). GPS velocities from NE Iran are from 
Mousavi et al. (2013). Historical earthquakes (Mw > 7) in Turkmenistan and adjacent parts of Iran are shown as 
white circles (from Ambraseys, 1997). Yellow squares represent towns. (b) Digital elevation model derived from stereo 
SPOT-6 satellite imagery. Active faults are marked by solid red lines where surface scarps are visible, and dotted where 
surface scarps are not identified. Reverse faults are annotated with teeth on their hanging-wall sides, and strike-slip 
faults annotated with paired opposing arrows. Parallel strike-slip and thrust faults are separated by ∼7–10 km, which 
represents the hanging-wall of the thrust. The hanging-wall exposes folded Tertiary deposits that are incised into 
Badlands. Several late Quaternary scarps are present within the hanging-wall, indicating additional shortening away 
from the frontal thrust. A right-stepping en-echelon arrangement suggests that further diffuse right-lateral slip may 
occur.



Tectonics

East of the Caspian, the MKDF runs along the Köpetdag range, which expose a sequence of lithologies rang-

ing from Jurassic to Quaternary in age (e.g., Ghassemi & Garzanti, 2019; Robert et al., 2014), which have 

been folded and deformed during several tectonic phases. Following the Cimmerian orogeny, a period of 

rifting oriented parallel to the older Paleotethys suture began in the mid Jurassic. Up to 7 km of mid-Jurassic 

to Tertiary sediments were deposited until a major phase of basin inversion and folding in the late Eocene 

(Robert et al., 2014). Jurassic deposits are exposed predominantly in the eastern parts of the range, with 

Cretaceous and Tertiary age deposits more common in the central and western parts. An onset of the pres-

ent-day tectonic activity, involving oblique strike-slip and reverse motion within the Köpetdag and eastern 

Alborz ranges, has been proposed anywhere from ∼10 Ma (e.g., Hollingsworth et al., 2008) to as recently as 

∼2 Ma (e.g., Ritz et al., 2006).

The right-lateral MKDF that now bounds the Köpetdag range and the left-lateral SFZ within the east-

ern Alborz are together thought to accommodate a WNW expulsion of the SCB (e.g., Hollingsworth 

et al., 2006, 2010). The MKDF and SFZ terminate eastwards at the NNW-SSE right-lateral faults of the Bar-

harden-Quchan fault zone (BQFZ, Figure 2a), which cut through the Köpetdag range, and right-laterally 

displace anticlines in the Mesozoic and Tertiary bedrock, showing a change from shortening to strike-slip 

within this central part of the range (e.g., Hollingsworth et al., 2006). The BQFZ is likely to accommodate 

along-strike extension within the Köpetdag, as confirmed by recent GPS velocities (Mousavi et al., 2013), 

and separates the easternmost parts of the Köpetdag range that accommodate purely N-S Iran-Eurasia 

shortening, and in which Jurassic age rocks are exposed, from more westerly parts that are influenced by 

WNW expulsion of the SCB, and which expose predominantly Cretaceous and Tertiary rocks.
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Figure 3. Instrumental earthquakes of the South Caspian and its surroundings, updated from Jackson et al. (2002). The additional mechanisms are listed 
in Appendix A. Red lines represent active fault locations. (a) Earthquakes with depths of less than 34 km from the global CMT catalog or 26 km or less from 
waveform modeling. The earthquakes are divided by color, with thrust mechanisms in red, normal in blue, and strike-slip in yellow. (b) The depths of shallow 
earthquakes as shown in panel “a”, with color again representing mechanism type. (c) Earthquakes with depths of more than 33 km from the global CMT 
catalog or more than 26 km from waveform modeling. The inset, bottom left, shows the closely spaced earthquakes from the mid-Caspian. (d) Depths of deep 
earthquakes as shown in panel “c”.
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The available GPS measurements are confined to a narrow strip along the southern Caspian shore and a 

small number of stations in the folded terrain east of the Caspian (Figures 1 and 2a). All of these measure-

ments are likely to be contaminated by strain accumulation near the basin margins, as suggested by earth-

quakes in the eastern Caspian lowlands (e.g., Nemati et al., 2013, Figure 3) and by the imaging of folds and 

thrusts within the thick sedimentary sequence of the eastern Caspian lowlands (e.g., Radfar et al., 2019). 

Djamour et al. (2010) produced a model of South Caspian motion relative to Eurasia by finding a best fit to 

the available GPS velocities, which indicated a clockwise rotation of the South Caspian region about a pole 

of rotation that is sited only a few hundred kilometres NE of the Caspian. In turn indicating a right-lateral 

slip-rate on the MKDF of only ∼3 mm/yr, with a shortening component that varies along the fault length 

and comparable in magnitude to the strike-slip rate along its central section. Mousavi et al. (2013) instead 

extrapolate the velocities from stations MAR2 and MAVT stations (Figure 2a) to the MKDF, yielding a faster 

right-lateral strike-slip rate for the MKDF of 6.7 ± 0.5 mm/yr and shortening of 2.5 ± 1.0 mm/yr. Whether 

the rate from Mousavi et al. (2013) is representative of the SCB as a whole requires negligible deformation 

to occur within the region between the MKDF and SFZ, which might not be a valid assumption.

The variation in styles and rates of faulting around the SCB margins can be used to estimate the motion of 

the SCB relative to both Eurasia and to central Iran through the construction of a velocity triangle (Copley 

& Jackson, 2006; Jackson et al., 2002). As there is an unknown amount of deformation occurring across the 

Köpetdag and eastern Alborz, and also in the eastern Caspian lowlands between them, the trends of the 

range-parallel strike-slip faults within the SFZ and MKDF do not directly constrain the direction of motion 

of the SCB relative to Iran and Eurasia. Estimates have been made, however, based on the styles of faulting 

around the margins. An example, from Jackson et al. (2002), is shown on Figure 4. In the absence of GPS 

data, they used a value for the Iran-Eurasia shortening that is too high, and were limited by the lack of direct 

constraint on the rates of strike-slip within the Alborz and Köpetdag ranges. They estimate 7–10 mm/yr in 

a direction north of 300° for the motion of the SCB relative to Eurasia and 13–17 mm/yr in direction 210° 

relative to Iran. Copley and Jackson (2006), constructed velocity triangles to estimate a SCB-Eurasia motion 

of 11 ± 2 mm/yr in direction 335° ± 5 and a SCB-Iran motion of 7 ± 1 mm/yr in direction 225°.

In this paper we take advantage of improved measurements of Iran-Eurasia shortening from permanent GPS 

stations within Iran (Khorrami et al., 2019), along with direct measurements of range-parallel strike-slip 
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Figure 4. Construction of the velocity triangle in Jackson et al. (2002). Active faults are marked in red, with annotation 
as in Figure 2a. The motion of the SCB relative to Iran is likely to be orthogonal to the strike of the Alborz at the point 
where its component of left-lateral faulting dies away. The motion of the SCB relative to Eurasia must be clockwise of 
the strike of the MKDF, to reflect the right-lateral strike-slip and unknown amount of shortening across that range. 
Later GPS measurements have shown the rate of 15–20 mm/yr for the Iran-Eurasia shortening to be an overestimate. In 
this paper we use an updated GPS estimate of the Iran-Eurasia shortening, along with measurements of the strike-slip 
rates along the MKDF and SFZ, to estimate the amounts of South Caspian-Iran and South Caspian- Eurasia shortening, 
and to constrain the SCB motion relative to both Iran and Eurasia.
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in the eastern Alborz (Mousavi et al., 2015) and Köpetdag (this paper), to provide better constraint on the 

motion of the SCB relative to both Iran and Eurasia. The approach that we take in constructing our velocity 

triangle allows us to estimate the amount of shortening perpendicular to the eastern Alborz and Köpetdag, 

and thus the overall motion of the SCB.

3. Geomorphology of the MKDF

The right-lateral MKDF runs for over 200 km along the northern margin of the Köpetdag mountain range 

between longitudes 55°E and 57.5°E, adjacent to Baharly and Bereket towns (Figure 2). East of Baharly the 

Köpetdag rangefront continues, but the absence of large lateral offsets in the geomorphology, combined 

with the presence of vertical scarps, suggests that the active faulting is predominantly reverse. West of 

Bereket faulting is hard to trace through the plains of the eastern Caspian lowlands. Active fault scarps are 

visible along the northern margin of the Big Balkan range, but some of the activity on the MKDF appears to 

shift southwestward to Gumdag, where a pair of strike-slip earthquakes occurred in 1983 and 1984 (Jackson 

et al., 2002). The right-lateral strike-slip system then appears to continue to the Caspian shore at the Çelek-

en peninsula, beneath a series of en-echelon anticlines (Van Dijk et al., 2018). Presumably the right-lateral 

strike-slip continues offshore, toward the Apsheron Sill in the Caspian interior (AS on Figure 2a), though it 

is not clear how closely the onshore and offshore faults are connected structurally (e.g., Jackson et al., 2002).

A shortening component of slip exists along the entire 200 km length of the MKDF between Baharly and 

Bereket, as evidenced by a vertical component of displacement in late Quaternary landforms, and by the 

longer-term development of the Köpetdag Mountains. For a distance of ∼80 km eastwards from Serdar 

town, the dip-slip and strike-slip components of motion are accommodated on two parallel structures sep-

arated by 7–10 km orthogonal to strike. The parallel thrust and strike-slip faults of the MKDF are shown 

in detail in Figure 2b. Folding and faulting north of the strike-slip fault, within the hanging-wall of the 

thrust, indicates that a part of the shortening is accommodated within the hanging-wall. The right-stepping 

en-echelon arrangement of the hanging-wall structures might also suggest the presence of diffuse strike-

slip motion. It is in this section of the MKDF, as shown in Figure 2b, that we estimate the rate of strike-slip 

and shortening across the fault zone.

3.1. Rate of Strike-Slip on the MKDF

In November 2016, a joint team of Turkmenistan and UK scientists visited the MKDF to provide estimates 

of the long-term slip-rate on the fault. We targeted the part of the fault shown in Figure 2b, where strike-

slip and dip-slip components are separated onto sub-parallel structures at the surface. Large right-lateral 

cumulative displacements are seen along this section (Figures 2b and 5–7), and we consider it the most 

promising section for estimating the slip-rate of the fault, given that it becomes more diffuse toward both its 

eastern and western ends. To estimate the component of shortening we targeted the range-parallel reverse 

fault adjacent to a minor river cut close to the village of Borme (Figure 2b), where fresh cuttings through the 

gravel deposits outcrop in the channel margins (see Section 3.2).

Our strike-slip measurement site is shown in Figures 5 and 6a. Large alluvial fan systems have been deeply 

incised by rivers that record cumulative right-lateral displacements. Hollingsworth (2008) recognised that 

the rivers at our site, and others along a ∼10-km-long stretch of the fault extending WNW from our study 

site, appear to record consistent displacements of ∼900 m. We used Worldview-2 50 cm optical satellite 

imagery to provide a more detailed estimate of the offset. We then combine this estimate with constraint on 

the age of the fan in order to provide an estimate on slip rate.

In Figure 5, we show an oblique view of the MKDF looking west toward our study site. Southwest of the 

fault there is widespread exposure of bed rock, which is predominantly Mesozoic limestone. Northeast 

of the fault the topography is subdued, with large alluvial fans overlying folded and exhumed basin sed-

iments of Tertiary age, though isolated outcrops of limestone form shutter ridges along the purely strike-

slip fault, and also occur at a minor restraining bend. Northward-flowing river systems exit the bedrock 

exposures of the mountains and then incise into the fan surface. These rivers show apparent right-lateral 

deflections at the fault. We have labeled a series of five closely spaced rivers on the southwest side of the 

fault as A–E and a sixth as F. These six rivers appear to correlate with outlets on the other side of the fault, 
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also labeled A–F, implying relatively large and consistent amounts of right-lateral deflections (e.g., Holl-

ingsworth et al., 2008). A topographic profile drawn through the alluvial fans northeast of the fault (line 

X–Y on Figure 5) shows two convex-up surfaces, one corresponding to deposition associated with the five 

closely spaced rivers A–E, and the other corresponding to deposition from F. The elevations of these two 

fans, which are sourced from separate catchments, does not provide direct information on age, though their 

morphologies and the amount of displacement of streams within them suggest they are contemporaneous. 

Only this alluvial fan surface is observed, and there are no inset river terrace levels preserved where rivers 

have cut into it surface.

The closely spaced rivers A–E (Figure 5) are shown in detail in the satellite image in Figures 6a and 6b, we 

have annotated the image to show limits of bedrock exposure (purple), the extensive alluvial fan surface (or-

ange), and the drainage network (blue). We have identified small remnants of alluvial surface on the south-

west side of the fault, such that rivers A–E are incised into alluvium on both sides of the fault. We correlate 

these small fan remnants with the more extensive surface preserved to the northeast of the fault, based upon 

the degree of incision and color characteristics in the Worldview data. The surface can be distinguished 

from younger alluvial fan surfaces present on the southwest side of the fault as these younger surfaces are 

noticeably darker, with distributary channel networks that are more clearly defined (Figure 6b).
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Figure 5. Perspective view of the sample sites along the Main Köpetdag strike-slip fault (see Figure 2b for location). The fault separates Mesozoic limestone 
bedrock exposures of the Köpetdag range (in the distance) from alluvial fans deposited over exhumed basin sediments (in the foreground). Five stream channels 
(A–E) on the upstream, far, side of the fault correspond to five channels on the downstream side and are restored with ∼950 m of displacement (see Figure 6). 
A topographic profile along line X-Y is shown in the lower panel. Outlets A-E are all incised into the convex-up surface of a single fan complex. Pits 3 & 4 were 
excavated into this fan surface. Pit 1 was excavated into a separate fan complex, though the ∼950 m offset of outlet F, along with the similarity in sample age 
between the samples from Pit 1 and Pits 3 & 4, lead us to suspect they are contemporaneous.
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Rivers A-E on the southwest side of the fault all drain into river A on the northeast side. The remaining 

outlets on the northeast side receive catchment from minor streams or, in the case of D, do not have any 

catchment. In restoring the right-lateral displacement we assume that the rivers were established as linear 

courses and have subsequently accrued right-lateral displacement. As there are five closely spaced rivers, 

restoration of various amounts of slip are successful in aligning several of the channels, suggesting that 

continued fault slip has led to multiple periods of drainage capture. For instance, 250–350 m of displace-

ment provides a plausible restoration of rivers D and E southwest of the fault with A and B in the northeast 

(Figure 6c). We acknowledge that the right-lateral offsets of the other rivers may have been influenced by 

the presence of bedrock outcrops northeast of the fault, such that the rivers may have originally formed 

with apparent right-lateral deflections around these obstacles. However, as we also find a consistent ∼950 m 

offset that restores all of the rivers A–E to linear courses (Figure 6d), we consider this restoration to be the 

most parsimonious solution.

We measure the preferred offset of each river using the method shown for river A in Figure 7 (e.g., Kurtz 

et al., 2018). We trace the channel thalwegs, in blue, and the edges of the valley incision, as shown by yellow 

highlighting in Figure 7a. The valley edges are projected to the fault (yellow dotted lines). The preferred off-

set is measured through restoration of the channel thalweg. Any amount of restoration that allows overlap 

of the yellow polygons is considered plausible, and used to assign an uncertainty range. The values for each 

of the five rivers are then input as a triangular probability density function (PDF), as shown in Figure 7b, 
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Figure 6. Strike-slip site interpretation and restoration. (a) Worldview-2 satellite image, courtesy of the Digital Globe 
Foundation, of the sampling site on the strike-slip fault (see Figure 2b for location). The five drainage channels involved 
in the restoration are labeled A-E. Black box represents the region shown in Figure 7a. (b) Geomorphic map of the 
site, with the fault shown in red, major drainage in blue, and a well-preserved series of alluvial fan surfaces shown in 
orange. These alluvial fan deposits are exposed on both sides of the fault. Sample pits 3 and 4 are located within the red 
square. (c) Restoration of 250–350 m. (d) Restoration of 950 m.
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and then stacked to form a cumulative offset probability density function (COPD), as shown in Figure 7c. 

An assumption is made that the average offset follows a Gaussian distribution, such that the average offset 

and uncertainty are calculated from the mean and standard deviation of a best-fitting Gaussian distribution. 

The mean offset is 949 m, with uncertainty of ±94 m.

The rivers A to E are incised into an extensive alluvial fan surface (e.g., Figure 5) and we assume that ages 

of the uppermost fan deposition will approximate to the start of accumulation of displacement by the rivers. 

We excavated pits into the fan surfaces at four sites (pits 1–4, e.g., Figures 5, 6b and 8). One sample for IRSL 

(Infra-red-stimulated luminescence) dating was taken from each of pits 1 (38.67743 N 56.69678 E—sample 

T16-01, taken from the base of a silt layer overlying gravel deposits) and pit 3 (38.67356 N 56.71909 E—

sample T16-07, taken from a mixed sand/fine gravel layer within the alluvial sequence). Two samples were 

taken from pit 4 (38.67529 N 56.72086 E—samples T16-05 and T16-06, both extracted from a sandy silt 

layer within the alluvial gravel sequence). In pit 2 (38.68587 N 56.67277 E) we encountered hard, cemented, 

limestone cobbles under a thin (30 cm) soil that was not suitable for sampling for luminescence dating. We 

instead collected three examples of the pedogenic carbonate cements on the underside of limestone cob-

bles, from which we drilled individual carbonate layers (Figure B1 in Appendix B) that were dated using the 

U-series method as described in Gregory et al. (2014) and Campbell et al. (2019). The U-series results are 

tabulated in Appendix B (Table B1). They yielded ages that were widely variable between the three pebbles, 

and between sub-samples from the same pebble, and are not considered to be useful.

The IRSL dating results are provided in full in Appendix B (Table B2). We first applied the finite mixture 

model (FMM) of Galbraith and Green (1990) to identify grouping within the equivalent dose distributions. 
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Figure 7. Calculation of offset measurements. (a) Example of offset calculation for channel A. The channel thalweg is marked in blue and the entire channel 
width in yellow. Preferred offset is assigned from restoration of the thalweg itself, with the range of possible offsets defined as those that allow some overlap of 
the yellow regions. (b) Probability density functions (PDFs) representing maximum, minimum and preferred measurements of offset for each of the channels 
A-E. (c) Cumulative offset probability density function (COPD). An assumption is made that the average offset follows a Gaussian distribution, such that the 
average offset and uncertainty are calculated from the mean and standard deviation of a best-fitting Gaussian distribution [e.g., Kurtz et al., 2018].

Figure 8. Field photograph looking east at Sample pit 3 (Figure 6b) and the incised alluvial fan surface that is right-
laterally displaced by ∼950 m.
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We consider all four samples to be contemporaneous based upon the geomorphic setting, as described ear-

lier, and all showed grouping equivalent to ∼100 ka in age. We combined the four individual IRSL sample 

yield ages of 104 ± 8 ka (T16-01), 107 ± 8 ka (T16-05), 91 ± 9 ka (T16-06), and 117 ± 10 ka (T16-07) (Ta-

ble B2; Figure 6b) using a central age to provide an age estimate of 105,200 ± 4,700 years (see Appendix B). 

Given a displacement of 949 ± 94 m of the fan surface, this age range yields a slip-rate of 7.8–10.4 mm/yr 

(or 9.1 ± 1.3 mm/yr).

3.2. Rate of Shortening on the Reverse Fault at Borme

To estimate the rate of shortening across the thrust fault that runs parallel to the main strike-slip fault 

we collected two IRSL samples (samples T16-03 and T16-04) from a natural river cutting at 38.64065 N 

56.89874 E, close to the village of Borme (see Figure 2b). A perspective view looking southwest toward the 

site is shown in Figure 9 and Worldview-2 satellite imagery and interpretation is shown in Figure 10. A 

discrete fault scarp displaces the surface of an alluvial fan (F2). The fan surface on the hanging-wall side of 

the fault has subsequently been incised by a stream, which correlates with a small alluvial fan (F1) in the 

immediate footwall. The topographic profile along line X-Y in Figure 9 shows the convex-up shape of this 
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Figure 9. Perspective view looking southwest of the sample site along the reverse fault scarp at Borme (see Figure 2b for location). Topographic profile X-Y is 
drawn across the convex-up surface of an alluvial fan F1. The surface of fan F1 has been incised by the presently active river channel. Fan F1 is incised into an 
older alluvial fan F2, which is preserved as remnants on both eastern and western sides of the river catchment. Two fault scarps are visible, and run between 
the white arrows. The northern of the two faults separates badland topography in its hanging-wall (in distance) from its low-relief footwall (in foreground). The 
northern (closer) scarp in the F2 surface decreases in height toward the river channel, showing that it has been partially buried by deposition associated with 
F1. The southern scarp appears to be smaller than the northern one. No scarp is visible in the F1 surface. The red square represents the river-cutting sample 
location.
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small fan. F1 is not displaced across the fault, and so post-dates the most recent measureable displacement 

at the surface.

We used differential kinematic GPS to measure several high-resolution topographic profiles orthogonal to 

the fault scarp in F2. The scarp height increases with distance away from the stream outlet due to deposi-

tion of the young alluvial fan F1 in the immediate footwall of the fault, as evident on Figure 9. The largest 

vertical displacement that we measured was 12 m on a profile ∼200 m from the stream outlet (Figures 10b 

and 10c). We consider this measurement to be most representative of the displacement since abandonment 

of the F2 alluvial fan surface but is a minimum value, as we neglect any deposition of younger alluvium in 

the footwall. A second small scarp is visible in the surface of F2 in the perspective view and Worldview-2 

imagery (Figures 9 and 10b), but was not crossed by our GPS profile. We do not have a direct measurement 

of the height of this second scarp, though from the shadowing visible in the satellite image it appears that 

it is substantially lower than the frontal scarp. We do not account for the displacement of the F2 surface 
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Figure 10. (a) Worldview-2 satellite image, courtesy of the Digital Globe Foundation, of the sampling site on the thrust (see Figure 2b for location). (b) 
Geomorphic map of the site, with faults shown in red, major drainage in blue, and three generations of alluvial fan surfaces labeled F1 to F3 (youngest to 
oldest). IRSL sample location is shown. (c) Topographic profile across the frontal thrust, following the black line in “b.” (d) Field photograph looking southeast 
along the frontal scarp from the main river channel. (e) Sample site in the incised river channel margin. Samples taken from sandy silt layers, within the black 
ellipses.
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across this small scarp, or for any potential broader-wavelength folding or faulting of the F2 surface within 

the hanging-wall.

The two IRSL samples from F2 (T16-03 and 04) provide an age of 35,600 ± 1,800 years (see Appendix B for 

full methods), which in turn yield a minimum uplift rate of ∼0.3 mm/yr. We do not have a direct estimate of 

the fault dip to turn this rate into either a rate of shortening or a slip-rate along the fault plane, but assuming 

a dip of 30–60°S yields a rate of shortening at the surface of 0.2–0.5 mm/yr, and slip along the fault plane of 

0.4–0.6 mm/yr. If we further assume that the thrust flattens into a décollement at a relatively shallow depth 

the overall rate of shortening is likely to be equivalent to the surface fault slip-rate, which will be larger than 

the 0.3 mm/yr of uplift that we have measured, and possibly in the range 0.4–0.6 mm/yr it the surface dip 

is in the range 30–60°. We also do not have a constraint on shortening within the hanging-wall of the fron-

tal thrust, which contains additional fault and fold scarps (Figure 2b), and which would add to the overall 

shortening. The uplift rate of 0.3 mm/yr that we estimate across the frontal thrust is hence a firm minimum 

value for the overall shortening.

4. Discussion

We determine that the right-lateral slip-rate of the MKDF is 9.1 ± 1.3 mm/yr. This is accompanied by fault 

orthogonal shortening of at least 0.3 mm/yr, as measured across the frontal thrust. These slip-rates confirm 

the MKDF to have one of the most rapid known slip-rates of all active faults across the Arabia-Eurasia 

collision zone, equivalent or larger than the Tabriz fault of NW Iran (Rizza et al., 2013), and comparable to 

the slip rate on many of the other major strike-slip faults of Asia (e.g., Yeats, 2012). The strike-slip rate of 

9.1 ± 1.3 mm/yr is within the wide range of 8.5 ± 3.5 mm/yr permitted from available InSAR measurements 

of strain accumulation (Walters et al., 2013). In this discussion, we assess the impact of this rate on earth-

quake hazard, the relative motion of the South Caspian Basin, and the timing of initiation of the presently 

active structures.

4.1. Earthquake Hazard

Although seismically quiet through recent decades, the potential for devastating earthquakes in Turkmeni-

stan is shown by a magnitude 7.3 event in 1948 that caused widespread damage in the capital city of Aşgabat 

(e.g.,Berberian & Yeats, 2001; Tchalenko, 1975, Figure 2a), with a present population of ∼1 million. The 

epicenter and strongest shaking from the 1948 earthquake were southeast of the city, and it is likely that it 

was associated with fault-related folds that are present along the Köpetdag margin adjacent to the city (e.g., 

Berberian & Yeats, 2001). The region west of Aşgabat was shaken by the Ms 7.0 1929 Bäherden (Baharden) 

earthquake, which ruptured a N-S right-lateral strike-slip fault of the Quchan-Baharden fault zone (e.g., 

Hollingsworth et al., 2006; Tchalenko, 1975, Figure 2a). Further west, a number of significant earthquakes 

have occurred in the Caspian lowlands, including substantial earthquakes of magnitude 6.0–7.5 in 1895, 

1946, and 2000, as well as smaller, surface-rupturing, strike-slip earthquakes at Gumdag in 1983 and 1984 

(Ambraseys, 1997; Jackson et al., 2002) (Figures 2a and 3). There are few indications of earthquakes in 

Turkmenistan further back in history, with the only available evidence from archeological investigations. 

The Parthian city of Nissa, on the western outskirts of the modern city of Aşgabat, shows apparent earth-

quake-related damage dated to 280 BCE, and earthquake damage at ∼2000 BCE is inferred from excavations 

at the Bronze Age settlement of Ak-Depe, also in the vicinity of Aşgabat (Berberian & Yeats, 2001).

The right-lateral strike-slip MKDF between longitudes 55°E and 57.5°E is a notable gap in the record of 

recent and historical significant earthquakes (e.g., Figures 2a and 3). Given its length of over two hundred 

kilometres, the MKDF is potentially capable of producing large (Mw > 7.5) earthquakes and measurement 

of its slip rate is an important step in understanding its earthquake potential. We have shown that slip is 

accumulating rapidly, at 9.1 ± 1.3 mm/yr. The absence of known historical rupture of the MKDF may indi-

cate that the historical record is incomplete, but it is also likely that significant amounts of slip have accu-

mulated since the most recent event. Paleoseismic investigation of the fault zone is required to discriminate 

between these possibilities and to build a record of earthquake timing and recurrence.
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4.2. Regional Tectonics

We combine our measurement the right-lateral strike-slip rate on the 

MKDF with constraints on the left-lateral slip-rate on the SFZ in the east-

ern Alborz, and of the rates of shortening between central Iran (i.e., the 

low-lying and relatively slowly deforming desert interior) and Eurasia 

obtained from permanent GPS measurements, to place constraints on 

the regional tectonic motions through construction of a velocity triangle 

(Figure 11).

For the Iran-Eurasia motion we use the range in velocity between per-

manent GPS stations KHUR and MOBK in central Iran (Khorrami 

et al., 2019, Figure 1), which is 11.5–12.3 mm/yr. The directions of sta-

tions KHUR and MOBK are similar, with an average of 358.5°. We select 

these two stations because they are sited at the longitudes of the eastern 

South Caspian Basin, such that their velocities are likely to be representa-

tive of Central Iran at the longitudes represented in our velocity triangle. 

They are located within the low-lying and aseismic central Iranian desert, 

west of the deforming zones of eastern Iran and south of the deformation 

associated with the Alborz of northern Iran. The uncertainties associated 

with these permanent stations are also small in comparison to nearby 

campaign stations (Figure 1).

We separate the relative motion of Iran and the South Caspian into strike-

slip parallel to the eastern Alborz and a component of shortening perpen-

dicular to the range. For the range-parallel strike-slip component we use 

the 4.8 ± 0.8 mm/yr obtained by Mousavi et al. (2015) with InSAR, and a 

strike of 244°. The Shahrud Fault system (SF) is the main fault identified 

in the geomorphology and has comparable late Quaternary estimates of 

slip rate, such that we assume the strain accumulation is likely to be ac-

commodated across this fault, as represented on Figure 11 by the green 

line (with thick error bar) extending WSW from the Iran vertex, with the 

gray shaded band allowing for the uncertainty in Iran-Eurasia motion. 

There is also an unknown amount of shortening in the perpendicular 

direction, so the Caspian vertex must lie SSE of SF in the green shaded 

area outlined in dashes. There is no requirement for the shortening to be 

localized on the Shahrud fault, and it is likely that it is distributed within 

and at the margins of the eastern Alborz, and also within the lowlands of 

the eastern Caspian.

We separate the relative motion of the South Caspian and Eurasia into strike-slip parallel to the Köpetdag 

along with a component of shortening in the perpendicular direction. The Main Köpetdag fault is the only 

strike-slip fault parallel to the range, and we therefore assume that its slip-rate is representative of the strike-

slip component of the South Caspian-Eurasia relative motion. From the measurements presented in this 

paper, the strike-slip rate on the Main Köpetdag Fault (KF) is 9.1 ± 1.3 mm/yr (this paper) in direction 300°, 

which is the red line (with thick error bar) extending NW from the Eurasia vertex. Shortening in the perpen-

dicular direction, resulting both from reverse faulting north of the MKDF as well as distributed shortening 

further south toward the Caspian lowlands, means that the Caspian vertex must lie NE of KF in the pink 

shaded area outlined in dashes.

The overlap region, consistent with the strike-slip motions on both the Shahroud and Main Köpetdag 

Faults, and incorporating the expected shortening related to both Iran-South Caspian and Eurasia-South 

Caspian motion, is the quadrilateral outlined in red. The star in the center is a plausible velocity for the 

South Caspian Basin and is 10.4 ± 1.1 mm/yr in direction 333° ± 5 relative to Eurasia and at 4.8 ± 0.8 mm/

yr in direction 236° ± 14 relative to Iran. These rates compare favorably with earlier estimates of SCB-Eur-

asia motion of 11 ± 2 mm/yr in direction 335° ± 5 and SCB-Iran motion of 7 ± 1 mm/yr in direction 225° 
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Figure 11. Velocity triangle for calculating the component of shortening 
associated with motion of the South Caspian Basin (SCB) relative to both 
Iran and Eurasia, and the motion of the SCB relative to its surroundings. 
The Iran-Eurasia motion is known from Khorrami et al. (2019) and is 
11.9 ± 0.4 mm/yr. The strike-slip component on the Shahrud Fault (SF) 
is 4.8 ± 0.8 mm/yr toward 244° (Mousavi et al., 2015), which is the green 
line (with thick error bar) extending WSW from the Iran vertex, with 
the shaded band allowing for the uncertainty in Iran-Eurasia motion. 
The strike-slip component on the Kopet Dag Fault (KF) is 9.1 ± 1.3 mm/
yr (this paper) toward 300°, which is the red line (with thick error bar) 
extending NW from the Eurasia vertex. The eastern Alborz and western 
Köpetdag also accommodate range-perpendicular shortening associated 
with SCB-Iran and SCB-Eurasia motion, respectively, so the Caspian 
vertex must lie SSE of SF in the green shaded area and NE of KF in the 
pink shaded area. The overlap is the quadrilateral outlined in red, with its 
center point marked by a star. We also mark the velocity of GPS station 
MAVT.
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made by Copley and Jackson (2006). The shortening rate between Eurasia and the SCB, perpendicular to 

the Köpetdag, is 5.5 ± 1.1 mm/yr and between Iran and the SCB, perpendicular to the eastern Alborz, is 

1.0 ± 1.0 mm/yr. Also shown on Figure 11 is the motion of GPS station MAVT in the flat Caspian lowlands 

of Iran, north of the eastern Alborz (7.7 mm/yr in direction 324° relative to Eurasia). The motion of MAVT 

is a fair approximation to the motion of the South Caspian Basin, though misses some of the deformation 

occurring on and between the eastern Alborz and Köpetdag.

4.3. Timing of Initiation of Faulting

The initiation of the presently active tectonics of the SCB is debated. Acceleration in sediment accumula-

tion at 5.5 Ma is often thought to mark increased tectonic subsidence associated with the onset of subduc-

tion at that time, though the accelerated sedimentation could also be due to changes in sediment supply 

and loading, and hence independent of changes in local tectonics (Allen et al., 2003; Green et al., 2009). 

Devlin et al. (1999) suggest a change in the tectonics of the SCB at ∼3.4 Ma from the onset of folding of 

strata. Paleomagnetic data (Cifelli et al., 2015; Mattei et al., 2017, 2019) indicate that the eastern Alborz and 

Kopeh Dagh experienced short-lived vertical axis rotation between 4-6 Ma, which the authors interpret as 

predating the present-day tectonics, followed by an onset of large-scale strike-slip faulting along the Kö-

petdag from as little as ∼2 Ma. Ritz et al. (2006) also argue that the present configuration started as little as 

2 Ma, on the basis of a transition from transpressional to transtensional components in the active faults of 

the Alborz at this time.

The total cumulative right-lateral motion across the MKDF has been estimated at about 35 km (Lyberis & 

Manby, 1999; Hollingsworth et al., 2006, 2008). The geological displacement of Hollingsworth et al. (2008) 

comes from the apparent displacement of an anticline exposing folded Neogene to Cretaceous rocks, sited 

close to Baharly (Figure 2a). They stress that the 35 km is an upper limit for strike-slip displacement, given 

that they neglect any apparent strike-slip displacement introduced by oblique slip on the fault, though this 

amount of right-lateral slip is supported by the ∼30 km of range-parallel extension in the central Köpetdag 

estimated by Hollingsworth et al.  (2006). Lyberis and Manby  (1999) independently estimate ∼35 km of 

right-lateral displacement across the MKDF, but in their case, the estimate comes from resolving 75 km of 

N-S shortening across the western Köpetdag into orthogonal strike-slip and shortening components.

Hollingsworth et al. (2008) infer the onset of SCB expulsion at ∼10 Ma based on an assumed slip rate for the 

MKDF and the ∼35 km of geological displacement as described above. At the faster slip-rate we have esti-

mated here the 35 km of displacement would accumulate in only 3–5 Ma. If the strike-slip offset is less than 

35 km then the fault may have initiated more recently. These age estimates are, of course, only approximate. 

They rely on limited geological data and on an assumption that present-day slip-rates can be extrapolated 

over millions of years but, nonetheless, appear to support a relatively young timing for the tectonic reorgan-

ization of NE Iran and the South Caspian and onset for the present tectonic configuration.

In Section 4.2, we calculated the amounts of shortening expected across the western Köpetdag and eastern 

Alborz as well as the velocity of the SCB relative to Iran and Eurasia. We use these velocities to estimate the 

total amounts of strike-slip and shortening expected if the presently active structures initiated at 3–5 Ma. 

These estimates are, of course, only approximate. They rely on estimates of geological offset on the MKDF 

that are uncertain, as described above, and an assumption that the slip-rate averaged over ∼100 ka is appli-

cable over timescales of millions of years. Nonetheless, the exercise is useful in assessing the possible sense 

of motion along the Apsheron sill in the central Caspian.

We estimate that shortening between the SCB and Eurasia will occur at 5.5 ± 1.1 mm/yr, resulting in be-

tween 13.2 and 33 km of shortening perpendicular to the western Köpetdag at that rate. Shortening between 

Iran and the SCB in the range 0–2 mm/yr will allow up to 10 km of shortening to accumulate during the 

most recent tectonic phase. Over the last 3–5 Ma the SCB will have moved by 28–57 km in direction 333° ± 5 

relative to Eurasia. Resolving the 333° direction of SCB-Eurasia motion onto the ∼295° trend of the Aps-

heron Sill along the northern margin of the SCB results in ∼17–35 km of shortening orthogonal to the sill, 

and 22–45 km of right-lateral strike-slip parallel to it. Although these estimates are only approximations, 

they suggest that faulting associated with the Apsheron Sill may have a significant strike-slip component in 

addition to shortening, and that the total amount of shortening within the present tectonic regime may be 
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relatively modest. Our results do not, however, resolve whether the subduction of SCB basement initiated 

with the onset of the present tectonic phase (e.g., Jackson et al., 2002) or whether it began earlier (e.g., 

Green et al., 2009).

5. Conclusions

With a right-lateral strike-slip rate of 9.1 ± 1.3 mm/yr the Main Köpetdag fault of Turkmenistan is amongst 

the fastest moving of all faults within the Arabia-Eurasia continental collision. Our result has implications 

for the hazard posed by the fault, for which there is no historic record of significant earthquakes over much 

of its length. Our slip-rate estimate, when combined with existing estimates of left-lateral slip-rate on the 

Shahroud fault of Iran and of Iran-Eurasia shortening, allows us to calculate that the direction and magni-

tude of motion of the South Caspian Basin relative to its surroundings. Our ability to make this measure-

ment offers a significant advancement in our understanding the tectonic development of this enigmatic, 

aseismic, and predominantly water-covered block within the wider Arabia-Eurasia continental collision.

Appendix A: Earthquake Source Parameters

Figure 3 contains an update of the earthquakes with reliable teleseismically determined source parameters 

in the Caspian region, updating the earlier compilation by Jackson et al. (2002). The new earthquakes are 

listed in Tables A1–A3. Table A1 contains those whose parameters are estimated from long-period P and 

SH body-wave modeling, using the method and velocity structures described by Jackson et al. (2002). Their 

waveforms are shown in Figures A1–A5.
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Date Time

Lat. Long

Depth

Mw Strike Dip Rake ReferenceYr Mo Day Hr Min km

1999 11 19 4 40 36.92 54.9 26 5.4 80 32 78 Nemati et al. (2013)

2000 1 26 23 0 40.02 52.9 50 5.1 358 37 174 Figure A1

2004 5 28 12 38 36.29 51.61 22 6.2 110 34 76 Tatar et al. (2007)

2004 10 7 21 46 37.13 54.48 28 5.5 47 44 71 Nemati et al. (2013)

2005 1 10 18 47 37.1 54.57 29 5.2 69 31 68 Nemati et al. (2013)

2006 10 12 17 8 39.76 54.7 41 5.1 111 70 119 Figure A2

2014 2 10 2 6 40.29 48.8 59 5.3 219 40 −179 Figure A3

2016 10 26 14 15 39.49 54.41 28 5.3 311 30 124 Figure A4

2017 5 13 18 1 37.77 57.2 5 5.6 182 79 −172 Figure A5

Table A1 
Earthquakes in Figures 3b and 3d in Addition to Those Listed in Jackson et al. (2002), Whose Centroid Depths Have 
Been Obtained Through Body-Waveform Modeling, as Described Above

Date Time

Lat. Long

Depth

Mw Strike Dip Rake %dcYr Mo Day Hr Min km

2012 1 19 12 35 36.29 58.83 19 5.3 292 24 80 82

Additional small earthquakes from the eastern Caspian lowlands

2000 9 19 15 19 38.3 57.48 32 5.1 40 78 −3 91

2002 10 19 15 57 39.04 54.91 18 5.1 214 52 39 85

Table A2 
Earthquakes in Figure 3b in Addition to Those Listed in Jackson et al. (2002), Whose Source Parameters are Taken From 
the gCMT Catalog
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Table A2 
Continued

Date Time

Lat. Long

Depth

Mw Strike Dip Rake %dcYr Mo Day Hr Min km

2012 10 1 8 43 38.5 55.54 17 4.9 217 70 7 96

2013 12 9 1,133 38.6 55.6 12 5.1 209 73 16 97

2014 2 13 8 35 38.59 56.24 21 5 313 89 −179 79

2017 2 5 13 46 39.26 54.81 13 4.9 47 32 67 86

2017 2 5 15 59 39.3 54.73 14 4.8 81 26 114 99

Note. For consistency with Jackson et al. (2002), only those with centroids shallower than 34 km, with Mw ≥ 5.3 and 
with more than 70% double-couple solutions should be included (line 1 only). But smaller earthquakes from the eastern 
Caspian lowlands have been included (lines 3–9), to show all that are available.

Date Time

Lat. Long

Depth

Mw Strike Dip Rake %dcYr Mo Day Hr Min km

2001 6 10 1 52 39.87 53.89 57 5.4 315 35 116 69

2006 10 12 17 8 39.8 54.73 48 5.3 273 26 74 74

2009 6 2 14 39 40.28 53.01 58 5 229 63 −26 92

2012 10 7 11 42 40.75 48.44 44 5.1 284 36 −103 89

2014 1 14 13 55 40.28 52.88 45 5 288 38 81 96

2014 6 7 6 5 40.37 51.57 46 5.4 127 24 −64 57

2015 3 22 22 45 40.27 52.07 39 5.1 170 70 19 83

Note. Only those with centroids deeper than 28 km, with Mw ≥ 5 and with more than 40% double-couple solutions are 
selected.

Table A3 
Earthquakes in Figure 3d in Addition to Those Listed in Jackson et al. (2002), Whose Source Parameters are Taken From 
the gCMT Catalog
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Figure A1. P (top) and SH (bottom) nodal planes and waveforms (observed, solid; synthetic, dashed) for the January 
26, 2000 on the Caspian coast of Turkmenistan. Numbers beneath the heading are strike/dip/rake/centroid depth/
seismic moment (in Nm). The station code for each waveform is accompanied by a letter identifying its position on the 
focal sphere, arranged clockwise alphabetically. The time window used for the inversion is marked by vertical bars on 
each waveform. P and T axes are solid and open circles on the P focal sphere. STF is the Source Time Function. The 
50 km depth is well constrained by the clear surface reflection at YAK, HIA and KMO (for P) and eastern stations for 
SH. The gCMT depth was 65 km.



Tectonics

WALKER ET AL.

10.1029/2021TC006846

18 of 27

Figure A2. P (top) and SH (bottom) nodal planes and waveforms for the October 12, 2006 earthquake in the Caspian 
lowlands of Turkmenistan. The depth of 41 km is well constrained by the surface reflections at YAK, TLY, HIA (for P) 
and HIA, MAGO, BNI for SH. The gCMT depth was 48 km.
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Figure A3. P (top) and SH (bottom) nodal planes and waveforms for the February 10, 2014 earthquake near Baku in 
Azerbaijan. Seismograms are noisy for this event, but surface reflections at stations in the NE (for P) and KBS (for SH) 
support the depth of about 59 km (The sS surface reflection lies near a nodal plane for most of the other SH stations). 
The depth of 41 km is well constrained by the surface reflections at YAK, TLY, HIA (for P) and HIA, MAGO, BNI for 
SH. The gCMT depth was 69 km.
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Figure A4. P (top) and SH (bottom) nodal planes and waveforms for the October 26, 2016 earthquake in the Balkhan 
region of coastal Turkmenistan. The depth of 28 km is well constrained by clear surface reflections at many stations. 
The gCMT depth was 28 km.
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Figure A5. P (top) and SH (bottom) nodal planes and waveforms for the May 13, 2017 earthquake near Bojnurd in the 
Kopet Dag. The earthquake was a double event, seen in the STF, which is responsible for the double-downward pulse at 
NE stations (which cannot be due to pP which is up), and the shallow depth is well constrained. The gCMT depth was 
fixed at 12 km.
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Appendix B: Quaternary Dating Methods

In this appendix, we present a full U-series data table (Table  B1) and photographs of the sampled car-

bonate horizons (Figure B1). The U-series methods are as described in Gregory et al. (2014) and Campbell 

et al. (2019). In Table B2 we present full details of the luminescence dating and in Figure B2 we present the 

plots of single-grain IRSL measurements for each of the six samples used in this study. The IRSL field sam-

pling is as described in Grutzner et al. (2017). Sample preparation followed standard K-feldspar treatments, 

incorporating a density separation at 2.58 gcm−3 with no etch, applied to 180–212 μm grains.
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Sample

238U 
(ppm)

232Th 
(ppm)

(234U/238U)act 
(1 s-rel.)

(230Th/238U)act 
(1 s-rel.)

(232Th/238U)act 
(1 s-rel.)

Uncorrected 
age (years 

BP)

Corrected 
age (years 

BP)
Age error 

(−2 s; years)

Age error 
(+2 s; 
years)

Initial 
(234U/238U)act

% Meas. 
230Th 
from 

detrital 
material

T16-02A 1.777 0.470 1.141 (0.2%) 1.016 (0.2%) 0.0866 (0.3%) 217,000 209,000 9,000 9,000 1.254 1.3%

T16-02B 2.832 0.574 1.098 (0.2%) 1.037 (0.2%) 0.0663 (0.3%) 276,000 270,000 9,000 9,000 1.209 0.5%

T16-02C 2.011 0.675 1.164 (0.2%) 1.224 (0.2%) 0.1098 (0.2%) 570,000 560,000 70,000 130,000 1.804 0.1%

T16-02D 1.468 0.355 1.139 (0.2%) 1.102 (0.2%) 0.0790 (0.2%) 294,000 286,000 12,000 12,000 1.311 0.5%

T16-02E 1.214 0.795 1.159 (0.3%) 1.188 (0.3%) 0.2144 (0.3%) 410,000 390,000 40,000 40,000 1.477 0.5%

Note. Measured isotope ratios were analyzed on a Nu Plasma MC-ICP-MS at the University of Oxford. Corrected ages account for initial detrital 230Th present in 
sample, based on the 232Th concentration in the sample and the average continental crust atomic ratio, 230Th/232Th = 5.4 ± 5.4 ppm (uniform distribution). Age 
error (2 sigma) was calculated using a Monte Carlo simulation. Years BP is years before 1950 CE.

Table B1 
U-Th Ages of Five Calcite Subsamples Drilled From Pedogenic Carbonate Cements on the Underside of Limestone Cobbles (Figure SX)
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Single grain post-infra-red infra-red stimulated luminescence (Post-IR IRSL) measurements on K-Feldspar 

grains were made in the Sheffield luminescence laboratory using the approach described in Rhodes (2015) 

and Zinke et al. (2017). Some samples displayed grouped equivalent dose distributions (see figures in ap-

pendix), and for these four samples the finite mixture model (FMM) of Galbraith and Green (1990) was 

used, implemented using the software of Burow (2020) in R. Three of the four samples analyzed using the 

FMM are from the same surface (see main text), and must therefore have the same depositional age, and 

the fourth (T16-01) comes from a nearby surface that appears of similar age based upon our geomorphic 

interpretations, allowing us to treat all for samples as contemporaneous. All displayed a significant age 

component at around 100,000 years which is considered the most likely depositional age for these samples. 

The FMM for each IRSL sample yield ages of 104 ± 8 ka (T16-01), 107 ± 8 ka (T16-05), 91 ± 9 ka (T16-06), 

and 117 ± 10 ka (T16-07) (Table B2; Figure 6b). We combined these four ages using a central age approach 
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Figure B1. Photographs of the five carbonate layers from three clasts selected for U-series age determination. All three 
clasts were taken from Sample Pit 2, see main text. The resulting ages are given in Table B1.
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with zero overdispersion, with systematic uncertainty removed from individual ages, and a systematic un-

certainty of 2% added in quadrature to the combined result; for these samples this provides an age estimate 

of 105,200 ± 4,700 years.

Two remaining samples (T16-03 and 04, Table B2) were analyzed by the discrete minimum approach de-

scribed in Rhodes  (2015). An overdispersion value of 15% was used for all samples, based on previous 

experience from age-controlled single grain samples from Australian geoarcheological contexts (Rhodes 

et al., 2010). Every grain measured was assessed for fading; no indication of significant systematic fading 

was observed. Sediment dose rates were estimated using ICP-OES for K and ICP-MS for U and Th, corrected 

for water and grain size attenuation, and internal dose rate estimation assumed an internal K content of 

12.5 ± 2.5% (Huntley & Baril, 1997). The two individual sample ages were then combined, using a similar 

approach as described above, to provide an age of 35,600 ± 1,800 years.
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Figure B2. Grain age distributions for each of the six samples. (a) T16-01 Shfd-17051 Measured single grain post-IR IRSL225 data; dashed line represents FMM 
age estimate of 104 ± 8 ka (see Table B1). (b) T16-03 Shfd-17053 Measured single grain post-IR IRSL225 data; dashed line represents discrete minimum age 
estimate of 34 ± 3 ka (see Table B1). (c) T16-04 Shfd-17054 Measured single grain post-IR IRSL225 data; dashed line represents discrete minimum age estimate 
of 37 ± 2 ka (see Table B1). (d) T16-05 Shfd-17055 Measured single grain post-IR IRSL225 data; dashed line represents FMM age estimate of 107 ± 8 ka (see 
Table B1). (e) T16-06 Shfd-17056 Measured single grain post-IR IRSL225 data; dashed line represents FMM age estimate of 91 ± 7 ka (see Table B1). (f) T16-07 
Shfd-17057 Measured single grain post-IR IRSL225 data; dashed line represents FMM age estimate of 117 ± 9 ka (see Table B1).
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Field code Notes Lab code
Depth 

(m)
Sediment 

K (%)
Sediment 
U (μg/g)

Sediment 
Th (μg/g)

Dose 
rate 

mGy/
yr

1 sigma 
uncertainty

Grain 
numbers 

measured/
signal

Equivalent 
Dose (Gy)

1 sigma 
uncertainty

Age 
(kyr)

1 sigma 
uncertainty

Prop-
ortion

T16-01 Site D, pit, river terrace Shfd-17051 0.6 1 2.2 6.1 2.64 ±0.13 200/83 7.4 ±0.5 2.8 ±0.2 0.14

25.9 ±1.7 9.8 ±0.8 0.1

135 ±12 51 ±5 0.08

274 ±16 104 ±8 0.27

618 ±26 234 ±15 0.4

T16-03 Site F, river bank Shfd-17053 1.80 1.3 3.5 7.6 3.23 ±0.13 200/26 108 ±8 34 ±3

T16-04 Site F, river bank Shfd-17054 0.60 1.5 2.4 8.4 3.26 ±0.16 200/127 119 ±4 37 ±2

T16-05 Nr site D, pit, river 
terrace

Shfd-17055 1.1 1.3 2.2 7.3 2.95 ±0.13 200/57 24.2 ±3.9 8.2 ±1.4 0.02

83.6 ±9.7 28 ±4 0.06

179 ±14 61 ±5 0.35

317 ±19 107 ±8 0.53

826 ±116 280 ±41 0.04

T16-06 Nr site D, pit, river 
terrace

Shfd-17056 1.1 0.9 1.8 4.8 2.37 ±0.1 200/57 85.7 ±13.9 36 ±6 0.07

215 ±19 91 ±9 0.43

482 ±49 203 ±22 0.47

4,000 ±1,332 1,690 ±568 0.03

T16-07 Nr site D, pit, river 
terrace

Shfd-17057 1 0.6 1.7 2.8 1.95 ±0.09 200/69 8.8 ±0.7 4.5 ±0.4 0.12

87.3 ±12.1 45 ±7 0.06

229 ±17 117 ±10 0.26

674 ±29 345 ±21 0.57

Note. Also shown are sediment concentrations of K (ICP-OES determination), U and Th (ICP-MS determinations), the total dose rate including internal beta dose rate contribution and cosmic 
dose rate, adjusted for water and grain size attenuation. The numbers of grains measured and the numbers that provided a finite age estimate are shown. Several samples displayed significant 
clustering of equivalent dose values, and these were analyzed using a finite mixture model (FMM); results for these are shown in bold type and represent the values most likely to represent 
depositional age. The final column shows the proportion of results for that sample apportioned by the FMM to each age estimate. See text for further details.

Table B2 
Field Code, Sample Locations, Laboratory Code, and Depth for Single Grain K-Feldspar Post-IR IRSL at 225°C Sediment Dating Samples
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Data Availability Statement

FAIR data access statement: Commercial Worldview-2 data used within this analysis were obtained through 

application to the DigitalGlobe foundation and are available for purchase from Maxar (https://www.max-

ar.com/). Stereo SPOT-6 data were purchased under academic licence from Airbus and are available for 

purchase (https://www.airbus.com/space.html). Seismological analyses use data archived by IRIS (iris.

edu/hq/) and the Global CMT catalog (https://www.globalcmt.org/). All data derived from IRSL and U-se-

ries dating is provided in full within the main body of the paper, and archived in Zenodo at http://doi.

org/10.5281/zenodo.5037978 (Walker et al., 2021). We thank Prof. Siddharth Saxena of the Cambridge Cen-
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bassador of Turkmenistan to the UK for their kind help and logistical support. We thank the President of 

Turkmenistan for his support of the joint Turkmenistan-UK Scientific collaboration.

References

Allen, M. B., Jones, S., Ismail-Zadeh, A., Simmons, M., & Anderson, L. (2002). Onset of subduction as the cause of rapid Pliocene-Quater-
nary subsidence in the South Caspian basin. Geology, 30(9), 775–778. https://doi.org/10.1130/0091-7613(2002)030<0775:oosatc>2.0.co;2

Allen, M. B., Vincent, S. J., Alsop, G. I., Ismail-zadeh, A., & Flecker, R. (2003). Late Cenozoic deformation in the South Caspian region: Ef-
fects of a rigid basement block within a collision zone. Tectonophysics, 366(3–4), 223–239. https://doi.org/10.1016/s0040-1951(03)00098-2

Ambraseys, N. N. (1997). The Krasnovodsk (Turkmenistan) earthquake of 8 July 1895. Journal of Earthquake Engineering, 1(02), 293–317. 
https://doi.org/10.1080/13632469708962370

Ambraseys, N. N., & Melville, C. P. (2005). A history of Persian earthquakes. Cambridge university press.
Aziz Zanjani, A., Ghods, A., Sobouti, F., Bergman, E., Mortezanejad, G., Priestley, K., et al. (2013). Seismicity in the western coast of the 

South Caspian Basin and the Talesh Mountains. Geophysical Journal International, 195(2), 799–814. https://doi.org/10.1093/gji/ggt299
Berberian, M. (2014). Earthquakes and coseismic surface faulting on the Iranian Plateau (Vol. 17). Elsevier.
Berberian, M., & Yeats, R. S. (2001). Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. Journal of 

Structural Geology, 23(2–3), 563–584. https://doi.org/10.1016/s0191-8141(00)00115-2
Burow, C. (2020). calc_FiniteMixture: Apply the finite mixture model (FMM) after Galbraith (2005) to a given De distribution. Function 

version 0.4.1. In S. Kreutzer, C. Burow, M. Dietze, M. C. Fuchs, C. Schmidt, M. Fischer, et al. (Eds.), Luminescence: Comprehensive Lumi-

nescence Dating Data Analysis. R package version 0.9.10. Retrieved from https://CRAN.R-project.org/package=Luminescence
Campbell, G. E., Walker, R. T., Abdrakhmatov, K., Carolin, S., Carr, A. S., Elliott, J. R., et al. (2019). Rapid late quaternary slip, repeated pre-

historic earthquake rupture, and widespread landsliding associated with the Karakudzhur Thrust, Central Kyrgyz Tien Shan. Tectonics, 
38(11), 3740–3764. https://doi.org/10.1029/2018tc005433

Cifelli, F., Ballato, P., Alimohammadian, H., Sabouri, J., & Mattei, M. (2015). Tectonic magnetic lineation and oroclinal bending of the 
Alborz range: Implications on the Iran-Southern Caspian geodynamics. Tectonics, 34(1), 116–132. https://doi.org/10.1002/2014tc003626

Copley, A., & Jackson, J. (2006). Active tectonics of the Turkish-Iranian plateau. Tectonics, 25(6). https://doi.org/10.1029/2005tc001906
Cowgill, E., Forte, A. M., Niemi, N., Avdeev, B., Tye, A., Trexler, C., et  al. (2016). Relict basin closure and crustal shortening budg-

ets during continental collision: An example from Caucasus sediment provenance. Tectonics, 35(12), 2918–2947. https://doi.
org/10.1002/2016tc004295

Devlin, W., Cogswell, J., Gaskins, G., Isaksen, G., Pitcher, D., Puls, D., et al. (1999). South Caspian Basin: Young, cool, and full of promise. 
Geological Society of America Today, 9(7), 1–9.

Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J. F., Hinderer, J., et  al. (2010). GPS and gravity constraints on conti-
nental deformation in the Alborz mountain range, Iran. Geophysical Journal International, 183(3), 1287–1301. https://doi.
org/10.1111/j.1365-246x.2010.04811.x

Galbraith, R. F., & Green, P. F. (1990). Estimating the component ages in a finite mixture. International Journal of Radiation Applications and 

Instrumentation - Part D: Nuclear Tracks and Radiation Measurements, 17(3), 197–206. https://doi.org/10.1016/1359-0189(90)90035-v
Ghassemi, M. R., & Garzanti, E. (2019). Geology and geomorphology of Turkmenistan: A review. Geopersia, 9(1), 125–140.
Grützner, C., Carson, E., Walker, R. T., Rhodes, E. J., Mukambayev, A., Mackenzie, D., et al. (2017). Assessing the activity of faults in conti-

nental interiors: Paleoseismic insights from SE Kazakhstan. Earth and Planetary Science Letters, 459, 93–104. https://doi.org/10.1016/j.
epsl.2016.11.025

Green, T., Abdullayev, N., Hossack, J., Riley, G., & Roberts, A. M. (2009). Sedimentation and subsidence in the south Caspian Basin, Azer-
baijan. Geological Society, London, Special Publications, 312(1), 241–260. https://doi.org/10.1144/sp312.12

Gregory, L. C., Thomas, A. L., Walker, R. T., Garland, R., Mac Niocaill, C., Fenton, C. R., et al. (2014). Combined uranium series and 10Be 
cosmogenic exposure dating of surface abandonment: A case study from the Ölgiy strike-slip fault in western Mongolia. Quaternary 

Geochronology, 24, 27–43. https://doi.org/10.1016/j.quageo.2014.07.005
Hollingsworth, J. (2008). Active tectonics of NE Iran (PhD Thesis). University of Cambridge.
Hollingsworth, J., Fattahi, M., Walker, R., Talebian, M., Bahroudi, A., Bolourchi, M. J., et al. (2010). Oroclinal bending, distributed thrust 

and strike-slip faulting, and the accommodation of Arabia–Eurasia convergence in NE Iran since the Oligocene. Geophysical Journal 

International, 181(3), 1214–1246.
Hollingsworth, J., Jackson, J., Walker, R., & Nazari, H. (2008). Extrusion tectonics and subduction in the eastern South Caspian region 

since 10 Ma. Geology, 36(10), 763–766. https://doi.org/10.1130/g25008a.1
Hollingsworth, J., Jackson, J., Walker, R., Reza Gheitanchi, M., & Javad Bolourchi, M. (2006). Strike-slip faulting, rotation, and along-

strike elongation in the Kopeh Dagh mountains, NE Iran. Geophysical Journal International, 166(3), 1161–1177. https://doi.
org/10.1111/j.1365-246x.2006.02983.x

Huntley, D. J., & Baril, M. (1997). The K content of the K-feldspar being measured in optical dating or in thermoluminescence dating. 
Ancient TL, 15, 11–13.

WALKER ET AL.

10.1029/2021TC006846

26 of 27

Acknowledgments

This work was supported by the 
Leverhulme Trust Research Project 
Grants “EROICA” (RPG-2018-371) and 
“NEPTUNE” (RPG-2018-243), by the 
NERC-ESRC Increasing Resilience to 
Natural Hazards program “Earthquakes 
without Frontiers” (NE/J02001X/1), the 
NERC-funded COMET (GA/13/M/031), 
and allocation 0009090 from the 
Research England GCRF Support 
Fund. Worldview-2 satellite imagery 
was courtesy of the DigitalGlobe 
Foundation. Maps were prepared using 
Generic Mapping Tools software (Wes-
sel & Smith, 1995). We thank Massimo 
Mattei, Stefano Tavani, an anonymous 
reviewer, and Associate Editor Jessica 
Thompson Jobe for detailed and con-
structive comments that helped shape 
the paper.



Tectonics

Jackson, J., Priestley, K., Allen, M., & Berberian, M. (2002). Active tectonics of the south Caspian basin. Geophysical Journal International, 
148(2), 214–245. https://doi.org/10.1046/j.1365-246x.2002.01005.x

Javidfakhr, B., Bellier, O., Shabanian, E., Siame, L., Léanni, L., Bourlès, D., & Ahmadian, S. (2011). Fault kinematics and active tectonics at 
the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): Geodynamic implications for NNE Iran. Journal of Geody-

namics, 52(3–4), 290–303. https://doi.org/10.1016/j.jog.2011.02.005
Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., et al. (2019). An up-to-date crustal deformation map of 

Iran using integrated campaign-mode and permanent GPS velocities. Geophysical Journal International, 217(2), 832–843. https://doi.
org/10.1093/gji/ggz045

Kurtz, R., Klinger, Y., Ferry, M., & Ritz, J. F. (2018). Horizontal surface-slip distribution through several seismic cycles: The Eastern Bogd 
fault, Gobi-Altai, Mongolia. Tectonophysics, 734, 167–182. https://doi.org/10.1016/j.tecto.2018.03.011

Lyberis, N., & Manby, G. (1999). Oblique to orthogonal convergence across the Turan block in the post-Miocene. AAPG Bulletin, 83(7), 
1135–1160. https://doi.org/10.1306/e4fd2e97-1732-11d7-8645000102c1865d

Mattei, M., Cifelli, F., Alimohammadian, H., Rashid, H., Winkler, A., & Sagnotti, L. (2017). Oroclinal bending in the Alborz Mountains 
(Northern Iran): New constraints on the age of South Caspian subduction and extrusion tectonics. Gondwana Research, 42, 13–28. 
https://doi.org/10.1016/j.gr.2016.10.003

Mattei, M., Visconti, A. L., Cifelli, F., Nozaem, R., Winkler, A., & Sagnotti, L. (2019). Clockwise paleomagnetic rotations in northeastern 
Iran: Major implications on recent geodynamic evolution of outer sectors of the Arabia-Eurasia collision zone. Gondwana Research, 71, 
194–209. https://doi.org/10.1016/j.gr.2019.01.018

Mosar, J., Kangarli, T., Bochud, M., Glasmacher, U. A., Rast, A., Brunet, M. -F., & Sosson, M. (2010). Cenozoic-recent tectonics and uplift in 
the Greater Caucasus: A perspective from Azerbaijan. In M. Sosson (Ed.), Sedimentary basin tectonics from the Black Sea and Caucasus 
to the Arabian platform (Vol. 340, pp. 261–280). Geological Society of London, Special Publication. https://doi.org/10.1144/sp340.12

Mousavi, Z., Pathier, E., Walker, R. T., Walpersdorf, A., Tavakoli, F., Nankali, H., et al. (2015). Interseismic deformation of the Shahroud 
fault system (NE Iran) from space-borne radar interferometry measurements. Geophysical Research Letters, 42(14), 5753–5761. https://
doi.org/10.1002/2015gl064440

Mousavi, Z., Walpersdorf, A., Walker, R. T., Tavakoli, F., Pathier, E., Nankali, H. R. E. A., et al. (2013). Global Positioning System con-
straints on the active tectonics of NE Iran and the South Caspian region. Earth and Planetary Science Letters, 377, 287–298. https://doi.
org/10.1016/j.epsl.2013.07.007

Nemati, M., Hollingsworth, J., Zhan, Z., Bolourchi, M. J., & Talebian, M. (2013). Microseismicity and seismotectonics of the South Caspian 
Lowlands, NE Iran. Geophysical Journal International, 193(3), 1053–1070. https://doi.org/10.1093/gji/ggs114

Radfar, A., Chakdel, A. R., Nejati, A., & Soleimani, M. (2019). New insights into the structure of the South Caspian Basin from seismic 
reflection data, Gorgan Plain, Iran. International Journal of Earth Sciences, 108, 379–402. https://doi.org/10.1007/s00531-018-1659-x

Rhodes, E. J. (2015). Dating sediments using potassium feldspar single-grain IRSL: Initial methodological considerations. Quaternary 

International, 362, 14–22. https://doi.org/10.1016/j.quaint.2014.12.012
Rhodes, E. J., Fanning, P. C., & Holdaway, S. J. (2010). Developments in optically stimulated luminescence age control for geoarchaeolog-

ical sediments and hearths in western New South Wales, Australia. Quaternary Geochronology, 5, 348–352. https://doi.org/10.1016/j.
quageo.2009.04.001

Ritz, J. F., Nazari, H., Ghassemi, A., Salamati, R., Shafei, A., Solaymani, S., & Vernant, P. (2006). Active transtension inside central Alborz: 
A new insight into northern Iran–southern Caspian geodynamics. Geology, 34(6), 477–480. https://doi.org/10.1130/g22319.1

Rizza, M., Vernant, P., Ritz, J. F., Peyret, M., Nankali, H., Nazari, H., et al. (2013). Morphotectonic and geodetic evidence for a constant 
slip-rate over the last 45 kyr along the Tabriz fault (Iran). Geophysical Journal International, 193(3), 1083–1094. https://doi.org/10.1093/
gji/ggt041

Robert, A. M., Letouzey, J., Kavoosi, M. A., Sherkati, S., Müller, C., Vergés, J., & Aghababaei, A. (2014). Structural evolution of the Kopeh 
Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Marine and Petroleum 

Geology, 57, 68–87. https://doi.org/10.1016/j.marpetgeo.2014.05.002
Tatar, M., Jackson, J., Hatzfeld, D., & Bergman, E. (2007). The 28 May 2004 Baladeh earthquake (Mw 6.2) in the Alborz, Iran: Overthrusting 

of the South Caspian Basin margin, partitioning of oblique convergence and the seismic hazard of Tehran. Geophysical Journal Interna-

tional, 170, 249–261. https://doi.org/10.1111/j.1365-246x.2007.03386.x
Tchalenko, J. S. (1975). Seismicity and structure of the Kopet Dagh (Iran, USSR). Philosophical Transactions of the Royal Society of London 

- Series A: Mathematical and Physical Sciences, 278(1275), 1–28. https://doi.org/10.1098/rsta.1975.0019
Van Dijk, J., Ajayi, A. T., Eid, T., Eldali, M., Ellen, H., Guney, H., et al. (2018). An integrated geological model for the greater Çeleken area 

central Caspian Basin, Turkmenistan; complex syssedimentary transcurrent faulting and compartmentalization in Plio-Pleistocene 
clastic reservoirs. In Abu Dhabi International Petroleum Exhibition & Conference, 12-15 November. Society of Petroleum Engineers paper 
SPE-192978-MS.

Vincent, S. J., Morton, A. C., Carter, A., Gibbs, S., & Barabadze, T. G. (2007). Oligocene uplift of the western Greater Caucasus; an effect of 
initial Arabia-Eurasia collision. Terra Nova, 19(2), 160–166. https://doi.org/10.1111/j.1365-3121.2007.00731.x

Walker, R. T., Bezmenov, Y., Begenjev, G., Carolin, S. A., Dodds, N., Gruetzner, C., et al. (2021). Slip-rate on the Main Kopetdag (Kopeh 
Dagh) Strike-slip fault, Turkmenistan, and the active tectonics of the South Caspian. Tectonics. https://doi.org/10.5281/zenodo.5037978

Walters, R. J., Elliott, J. R., Li, Z., & Parsons, B. (2013). Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmos-
phere-corrected InSAR. Journal of Geophysical Research: Solid Earth, 118(7), 3674–3690. https://doi.org/10.1002/jgrb.50236

Wessel, P., & Smith, W. H. (1995). New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33), 329. 
https://doi.org/10.1029/95eo00198

Yeats, R. (2012). Active faults of the world. Cambridge University Press.
Zinke, R., Dolan, J. F., Rhodes, E. J., Van Dissen, R., & McGuire, C. P. (2017). Highly Variable Latest Pleistocene-Holocene Incremental slip 

rates on the Awatere Fault at Saxton River, South Island, New Zealand, revealed by Lidar mapping and luminescence dating. Geophys-

ical Research Letters, 44. https://doi.org/10.1002/2017GL075048

WALKER ET AL.

10.1029/2021TC006846

27 of 27


	Slip-Rate on the Main Köpetdag (Kopeh Dagh) Strike-Slip Fault, Turkmenistan, and the Active Tectonics of the South Caspian
	Abstract
	1. Introduction
	2. Motion of the South Caspian Basin (SCB) Relative to Its Surroundings
	3. Geomorphology of the MKDF
	3.1. Rate of Strike-Slip on the MKDF
	3.2. Rate of Shortening on the Reverse Fault at Borme

	4. Discussion
	4.1. Earthquake Hazard
	4.2. Regional Tectonics
	4.3. Timing of Initiation of Faulting

	5. Conclusions
	Appendix A: Earthquake Source Parameters
	Appendix B: Quaternary Dating Methods
	Data Availability Statement
	References


