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Rapid screening of High-Entropy Alloys using neural 

networks and constituent elements  

A.E. Nassar and A.M. Mullis 

School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK 

Abstract 

Particularly over the past year, there has been a significant surge in machine learning (ML) methods to predict new High-Entropy 

Alloys (HEAs). Despite considerable achievements from these attempts, their models require datasets built on thermodynamic and 

Hume-Rothery (HR) features of the alloys. Often, some of these features are taxing to obtain and involve substantial estimations. 

Considering that an alloy’s composition is always known for certain, we present the idea of using compositional (atomic percentage) 

data with a simple neural network to predict HEA phases. This is to encourage the use of ML and enable the average researcher to 

rapidly screen potential HEA compositions. We also explore a neural network which uses HR features along with the atomic 

percentage data and compare the two models. The neural network working with compositional data only (NN1) achieved an average 

testing accuracy of 92%, whereas the neural network working with HR features as well as compositional data (NN2) achieved an 

average testing accuracy of 90%. That NN1 outperforms the vast majority of models of the present date has significant implications, 

as it shows that the complete abandonment of predictive features is not only possible but also advantageous. To validate the models, 

we use NN1 and NN2 to predict the solid-solution window of the AlxCrCuFeNi system. Both networks predicts that beyond x = 

1.4, the system is predominantly intermetallic. This was confirmed by arc-melting the x = 1.0, x = 1.3, x = 1.5 and x = 2 samples 

and studying their microstructures using SEM imaging. 

Keywords: High-Entropy Alloys; Multi-Principal Element Alloys; Neural network; Phase prediction; Solidification microstructure.

1. Introduction 

High-entropy alloys (HEAs) have attracted a great amount of academic attention over the past decade due 
to their vast potential applications. HEAs have come to be defined as multi-principal element alloys 

(MPEAs) with at least five elements all having equal, or near-equal, atomic ratios [1–4]. The consensus is 

also that HEAs form random single-phase solid solutions [5,6], although various dual-phase HEAs have 

been accepted [7–9]. Whether a HEA is single or dual-phase, the underlying lattices are generally high-
symmetry, simple-solid solutions such as face-centered-cubic (FCC), body-centered-cubic (BCC) or 

hexagonal close-packed (HCP) [10]. The unexpected stability of these phases is thought to stem from the 

large configurational entropy of mixing Δ𝑆𝑚𝑖𝑥  which reduces the Gibb’s free energy of their solutions [11]. 
However, the exploration of HEAs remains, by and large, a trial and error process involving experiments 

which vary the atomic ratio of an element which is added to a base of elements already known to form an 

HEA [12,13]. As such, developing predictive models is extremely important in making the search for novel 

HEA compositions a more efficient process and in turn, allowing their integration into industrial and real-

world applications to be accelerated. 

Until 2017 most HEA prediction attempts involved a process of ensuring that simple thermodynamic and 

Hume-Rothery (HR) criteria are met [14,15]. More recently, attempts to employ machine learning (ML) 

methods (particularly neural networks) in predicting HEA phases [16–18] have been made. The biggest 

differentiator between neural networks and methods based on thermodynamic and/or HR features is that 

NNs do not utilise equations or analytical criteria to make predictions. Another unique aspect of NNs is 

their anticipated improvement in predictive capability as HEA databases grow. Efforts are also already 

being made in designing HEAs with desired properties using ML [19,20]. By using a database containing 

AlxCoyCrzCuuFevNiw HEAs and their hardness values to train a ML model, Wen et al. [21] reportedly 

managed to design HEAs with hardness values up to 10% higher than the largest value observed in the 

database. Apart from neural networks, several other ML models involving HEA phase prediction have been 

explored with the Kth nearest neighbor algorithm [22] and the random forest classification algorithm [23] 

attracting significant attention. 
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However, as ML models rely heavily on HEA databases, a foreseeable problem halting their progress is the 

lack of systematic recording of HEAs and their properties. For example, the impacts which processing 

methods have on an alloy’s properties are often not considered when documenting HEAs. It is often the 
case that a given property of the same alloy can have two different reported values; these discrepancies are 

most likely attributed to differences in processing methods which have not been recorded. Some examples 

are the AlCoCrCu0.5FeNi alloy with hardness values reported to be 458HV, 563HV and 665HV [21], or the 

Al3FeNiCoCrCu alloy with a microstructure reported to be intermetallic (IM) [24] and solid-solution (SS) 

[25]. Generally, to achieve maximal results from a NN, the size of the data set should be as large as possible, 

with only alloys with high uncertainty being omitted. The data set used in this work finally included 391 

alloys taken from references [24–26]. In order for the metallurgical community to make progress in ML to 

predict HEAs, HEA databases need to be put together with clear outlines of the processing techniques used 

to manufacture them. 

The work presented within employs two neural networks, each with different input features. The first neural 

network (NN1) receives solely composition data as inputs. The second neural network (NN2) receives five 

input features in addition to the composition data which NN1 receives. These features are: entropy of 

mixing, enthalpy of mixing, valence electron concentration, atomic radius difference and Pauling 

electronegativity difference (Δ𝑆𝑚𝑖𝑥 , Δ𝐻𝑚𝑖𝑥 , VEC, 𝛿 and Δ𝜒 respectively). More precisely, the composition 

information used is atomic percentage. NN1 is designed with the motive that composition is essentially the 

only information which is known with high accuracy about an HEA, whereas all other possible input 

features (whether Hume-Rothery or thermodynamic) involve many estimates and calculations of averages. 

The inconsistency in the values of such parameters has been a pervasive issue until now and is often 

observed between databases or within the same database.  

To highlight the need for our proposed model NN1 (which abandons all predictive parameters completely), 

considering the controversy around each parameter’s relevance serves as a good example. Dongbo Dai et 

al. [27] show, using ML methods, that VEC to be the most important parameter in HEA phase prediction 

and Δ𝑆𝑚𝑖𝑥  to be the least important, whereas in the ML-based study of Huang et al., 𝛿 is concluded to be 

the most relevant parameter [28]. Separate studies consistently conflict about the matter of parameter 

weightings, and this is further highlighted in a study by Zhang et al., where their use of ML with extended 

Miedema theory concludes that formation enthalpy and 𝛿 are the most relevant parameters in HEA 

prediction [29]. These are but a few examples that highlight the lack of unison within the field.  

To outline another topic of controversy, Li et al. [30], Zhang et al. [31] and Zeng et al. [32] all show that 

using more than four predictive parameters results in diminishing returns on the testing accuracy of ML 

models. However, the model with highest reported testing accuracy today uses 13 features [33], outlining 

once more that the use predictive parameters inherently evokes a lack of coherency within the field. Otto et 

al. [34] had highlighted the shortcomings of HEA predictive parameters in 2013, in a study which outlined 

that MPEAs sharing similar HR values need not have the same resulting structures. The conclusions of this 

study certainly relate to the lack of consensus observed today. As such, we investigate the complete 

abandonment of these predictive parameters by using atomic percentage data only. 

In this work, models NN1 and NN2 were used to predict the solid-solution window of the AlxCuCrFeNi 

quinary alloy. This alloy was chosen due to the lack of studies which have been carried out on it, coupled 

with interest in probing its phases. The neural network predicts that at the x =1.4 composition, the system 

transitions from solid-solution to intermetallic. To confirm this, the x = 1.0, x = 1.3, x = 1.5 and x = 2.0 

compositions were manufactured. Studying the microstructures of these alloys using SEM, it was confirmed 

that the x = 1.5 alloy indeed contained a dominant intermetallic phase in comparison to the x = 1.0 and x = 
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1.3 compositions. This confirms the transition at x = 1.4. The x = 2.0 alloy was made to further confirm the 

presence of the intermetallic and explore its growth.  

2. Methodology 

 

2.1 Data compilation 

The data on phases and HR features of the alloys was collected using references [24–26]. We expanded on 

these datasets by adding the composition data for each alloy. As such, a column dedicated to each element 

present in the database was initiated, with cells pertaining to absent elements in any given HEA being 

populated with an arbitrary, small number (-0.05 chosen in this work). These cells were not populated with 

zeros in order to avoid large error gradients in the weight calculations. Figure 1 shows a 5-row print of the 

data including composition as part of the input features. Finally, the output prediction from each of the 

models is either a 1 or a 0. The data was arranged such that a “1” correlates to a solid-solution (SS) or a SS 

with intermetallic (SS+IM). This choice was made as many accepted HEAs have minor IM phases and the 

orthodox definition that a HEA must strictly comprise a single-phase SS is evolving. In turn, a “0” signals 
an amorphous (AM) structure, an IM or (AM + IM). Although data in references [24–26] contained binary 

alloys, these were omitted in our work. However, our final database contained ternary alloys as well as 

MPEAs. Omitting the binary alloys was done in order to avoid their presence in the testing sets, which 

would lead to deceiving inflated accuracies. On the other hand, ternary alloys were retained as they aid the 

NN in developing connections between certain elements, yet are not as predictable as binaries. The data 

was shuffled to avoid the formation of patterns and bias and finally, feature scaling was implemented such 

that each instant in the column of a given HR parameter was divided by the maximum value in the column 

(see Equation 1). Feature scaling was not applied to composition columns, as maintaining the sum of each 

row to be around 100 and maintaining the constant arbitrary value of -0.05 influences the NN performance. 𝑥𝑖,𝑛𝑒𝑤 = 𝑥𝑖𝑥𝑚𝑎𝑥                                                                                           (1) 

Where 𝑥𝑖 is instance number i in feature x and 𝑥𝑚𝑎𝑥 is the largest value in feature x. 𝑥𝑖,𝑛𝑒𝑤 is the updated 

value of 𝑥𝑖. 

2.3 Neural networks 

Figures 2a and 2b shows a schematic of the architectures used for NN1 and NN2, respectively. The neural 

networks were constructed using the Keras API in the Google Collaboratory environment, with the Pandas 

library used to import the final data set of 391 alloys. A 70/30 split was used between the training and 

Figure 1: 5-row print of the data set used in NN2. ‘Z’ denotes the difference in atomic radii and ‘Ed’ the difference in 
Pauling electronegativity. The SS/IM column indicates the HEA’s phase, with 1 indicating (SS) or (SS+IM) and 0 
indicating a (AM), (IM) or (AM+IM). Only 7 of the 37 elements present in the database are shown. A small arbitrary 

value (-0.05) was chosen to indicate the absence of an element. 
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testing data respectively for each of the NNs. To assess the average prediction accuracies of the neural 

networks the data was shuffled and fed back to the models three times. Choosing the right hyperparameters 

for the neural networks is of vital importance in maximising their performance. NN1 (neural network 

including elemental composition data only) is the main focus of this work as it uses a dataset which, to the 

best of the authors’ knowledge, has not been used to this scale before. The optimal hyperparameters for 

NN1 were found to be: learning rate = 0.3, batch size  = 3, number of hidden layers = 9 and the maximum 

number of units in a hidden layer = 192. The input dimension for NN1 is 37, in accordance with the number 

of elements in the database, while the output layer comprises 1 unit. Each of the above parameters was 

chosen as the best value by iterating through a pre-defined range. For instance, in determining the best 

learning rate, a range of values from 0.1 to 1 were probed, with the value leading to best predictive accuracy 

being chosen.  

 

The activation function chosen for the hidden layers was the Rectified Linear Unit (ReLU) activation 

function, as it yielded the best results when compared to other activation functions. The ReLU activation 

function maintains the value being passed to a unit in the hidden layer unless the value is negative, in which 

case the value is made equal to zero [35] (see Figure 3a). This simple calculation keeps its computational 

cost to a minimum making it a very frequently used function. For the output layer the logarithmic sigmoid 

(logsig) activation function was used as this generates outputs of either 0 or 1 (see Figure 3b). As the NN 

is classifying binary features, this is the optimal activation function for this purpose.  

The sigmoid activation function is described as per Equation 2 [36]. 𝑆(𝑥) = 11 + 𝑒−𝑥                                                                            (2) 

Where x is any input value which is forced to a zero or one output denoted as S(x). 

To predict the phase of a previously uninvestigated HEA using the NNs designed in this work, the HEA’s 
five features (Δ𝑆𝑚𝑖𝑥, Δ𝐻𝑚𝑖𝑥, VEC, 𝛿 and Δ𝜒) must first be calculated, allowing the HEA to be added to the 

database. The atomic percentages of the alloy’s elements must also be calculated in a manner that is 

Figure 2a: – Schematics of NN1 and b: NN2 architectures. Number of hidden layers and number of units per layer shown 

are not representative of the true models but help in visualising the networks. The output layer in both architectures is 

shown as a Sigmoid activation function with binary output. 

a) b) 
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consistent with the database. Upon adding the HEA to the database, the cell indicating the HEA’s phase 
can be randomly chosen (0 or 1), as this will not affect the NN’s prediction. The HEA of unknown phase 

is then intentionally made to be the only alloy in the “testing set”, as the rest of the alloys (all 391) in this 
case are used in the training set to enhance the NN’s learning. In this work, this process was applied for the 

AlxCuCrFeNi alloys, yielding predictions which were verified. 

 

2.4 Alloy fabrication 

The ingots were prepared using an arc-melter with a water-cooled copper hearth and a current of 230 Amp. 

For each of the alloy, aluminium and copper were first melted together in a high-vacuum furnace to avoid 

the formation of aluminium oxide. The remaining elements were then progressively added to the Al-Cu 

binary using the arc-melter. The arc-melter’s vacuum chamber was purged with Argon four times before 

each melt. As the final alloy was reached by progressively adding elements to the Al-Cu binaries, all the 

intermediate alloys as well as the final alloy were turned over and melted four times to ensure homogeneity. 

Each of the constituent elements had a purity of ˃ 99.9 wt%.  

2.5 Sample analysis 

The ingots obtained from the arc-melter were hot mounted using Phenolic resin and grounded using 

abrasive SiC paper down to the P2500 size. The mounted alloy was then automatically polished using 

Colloidal Silica and etched with aqua regia for 15 seconds to be observed under a Hitachi SU8230 scanning 

electron microscope (SEM). The SEM was used in backscattered electron detection mode to examine the 

microstructures of the samples.  

3 Results and discussion 

 

3.1 Neural networks 

To accurately assess the neural networks in this work, the original dataset was shuffled and refed to the 

NNs three times. This ensures that alloy systems which are easier to predict do not consistently appear in 

the testing set, inflating the accuracy. Such systems may be tertiary alloys or HEAs which share the same 

base of elements and differing only slightly in composition. Figures 4 and 5 show the accuracy and loss of 

NN1 and NN2, respectively, for three different runs between which the data was shuffled. It is important 

to ensure that the NN’s performance is not affected by data shuffling as this confirms that its results are 

reproducible with other data sets and that its predictions are scalable as the dataset grows. The accuracy the 

NN achieves in the test set (set of data the neural networks had not been exposed to before) is recorded after 

each run, with the average accuracy of the three runs taken to be the representative value of the NN’s 

Figure 3a: Rectified Linear Unit and b: Sigmoid activation functions. 

a) b) 
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accuracy. A NN’s accuracy in the test set is calculated by finding the number of correctly predicted 

instances as a percentage of the total number of instances in the training set.  

For predictions on the testing set, NN1 and NN2 achieved average accuracies of 92% and 90%, respectively. 

To further confirm the advantage of introducing compositional information to the dataset, a third NN 

operating only on HR features was also implemented and found to achieve a testing accuracy of 81%. To 

the best of the authors’ knowledge, the only model which exceeds the performance of NN1 was 

implemented by Lee et al. [33], which achieved a testing accuracy value of 93%. Considering that this 

model uses 13 predictive features and a generative adversarial framework, NN1 appears to retain the 

aforementioned advantage of simplicity and scalability. That NN1 achieves a testing accuracy of 92% has 

significant implications, as it shows that the complete abandonment of predictive parameters is not only 

possible but also advantageous. This result comes as no surprise, since atomic percentage data does not 

require estimations to be made (unlike thermodynamic and HR features), hence leading to datasets that are 

more consistent and less prone to errors. Although vast efforts have been expended on modifying 

Figure 4: – Training loss and accuracy for NN1. Between each set of plots, the data is shuffled and 70% of the 

data is taken for training. 
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thermodynamic and HR parameters to capture finer phenomenological details [37–40], the saturation in the 

number of parameters has become evident and the field is in need of a leaner approach. 

  

3.2. Microstructure analysis 

According to the NNs designed in this work, x = 1.4 is the composition in the AlxCuCrFeNi system at which 

the output changes from “1” to “0” as x increases. As such, the compositions directly above and below this 

point were chosen to be manufactured (x = 1.3 and x = 1.5), as well as compositions further away from this 

critical point (x = 1.0 and x = 2.0). In total, four alloys from the AlxCuCrFeNi system are fabricated using 

a combination of high-vacuum furnace and arc-melting. The x = 1.0 and x = 1.3 compositions corresponded 

to “1” in binary, indicating SS or (SS+IM) structures, whereas the x = 1.5 and x = 2.0 compositions 

corresponded to “0” in binary, indicating AM, IM or (AM +IM) structures. 

Figure 5: – Training loss and accuracy for NN2. Between each set of plots, the data is shuffled and 70% of the 

data is taken for training. 
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The microstructure of the x = 1.0 alloy can be seen in Figure 6a, where a predominantly dendritic structure 

is evident. A minor phase is present in the matrix however and is more visible at the higher magnification 

in Figure 5b. This IM has been previously characterised as AlFe0.23Ni0.77 with a volume fraction reported to 

be 18% (obtained via XRD peak intensity analysis) [41]. Its reported B2 structure confirms that it is likely 

to be the Al-Ni phase in which Fe substitutes Ni. The x = 1.3 alloy displays a very similar morphology (see 

Figure 7a), where the needle-like intermetallic remains within the dendrites’ vicinity but extends further 
outwards than what is observed in the x = 1.0 microstructure (see Figure 7b). Observing the fine (nano-

scale) precipitates within the dendrites of both alloys, it is likely that they have formed via spinodal 

decomposition. Comparing these microstructures with some of the single-phase solid-solution HEAs (e.g. 

Cantor alloy – CoCrFeMnNi), it can be argued that they display overly complex morphologies to be 

classified as HEAs. However, many multi-phase alloys have been reported over the last decade that have 

been widely accepted as HEAs [42–44], as long as the behavior of the MPEA is consistent with HEA 

properties. Since such MPEAs have been classified as HEAs comprising (SS+IM) structures and encoded 

as “1” entries in the datasets, it is fully expected that the x = 1.0 and x = 1.3 compositions be predicted 

accordingly. 

The x = 1.5 alloy was found to comprise two unique features in its microstructure (both which confirm its 

classification as an alloy with dominant IM phases). The first feature, shown in Figure 8a, is the morphology 

of the IM phase forming a structure commonly referred to as “Chinese script” [45,46]. Unlike the x = 1.0 

and x = 1.3 alloys, the IM phase here does not adhere to the local vicinity of the dendrites. Rather, the IM 

phase forms a Chinese script structure extending into the matrix. The second feature in this alloy (seen in 

100 µm 

a) 

5 µm 

b) 

Figure 6a: – Micrograph of Al1.0CrCuFeNi showing dendritic structure b: Appearance of needle-like IM only 

observable at higher magnifications. 

100 µm 

a) 

40 µm 

b) 

Figure 7a: – Micrograph of Al1.3CrCuFeNi showing dendritic structure b: higher magnification micrograph of 

Al1.3CrCuFeNi, showing increased presence of IM phase relative to the x = 1.0 composition 
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Figure 8b) has been observed previously in Al2CrCuFeNi2, where it is referred to as a “sunflower” structure 
[47]. In this work, Guo et al. classify the petals of the sunflower structure to be a eutectic of a Ni-Al-rich 

B2 phase and a Cr-rich BCC phase. The internal section of the structure is considered to be where the 

primary B2 phase originates from and within this region, fine BCC precipitates form as a result of spinodal 

decomposition. Finally, the needle-like IM observed in the x = 1.0 and x = 1.3 compositions is still present 

at the vicinity of the dendrites. 

 

The Al2CrCuFeNi alloy has a brittle nature that is notably reflected in its mechanical behavior. Figure 9a 

shows a visible collection of micro-cracks in the surface morphology of the alloy. It is important to note 

that the cracks shown were not intentionally induced via mechanical operations, but rather as a result of 

handling of the alloy in standard processes such as mounting, cutting etc. Such cracks further confirm that 

the prediction made by the models is correct and that the Al2CuCrFeNi alloy comprises excessive 

dominance of IM phases in its microstructure. Figure 9b shows an SEM micrograph of Al2CuCrFeNi, 

outlining the presence of coarse spherical precipitates in the interdendritic region, together with much finer 

spherical and needle shaped precipitates decorating the dendrite boundaries. Although the exact structures 

of the observed IM phases have not been identified, the study of their morphologies is not the primary 

objective of this work – the focus within is to confirm the application of the presented rapid-screening 

method. However, the extremely brittle nature of the alloy indicates that these dominant IM phases are 

A2/B2 precipitates, as these phases take away from the alloy’s ductility and have been shown to grow with 
increasing aluminium content in alloys such as AlxCoCrFeMnNi [48]. 

10 µm 

a) 

2 µm 10 µm 

b) 

4 µm 

Figure 8a: – Micrograph of Al1.5CrCuFeNi showing “Chinese script” IM structure in the matrix at low 
magnification (left) and high magnification (right) b: “Sunflower” structure in Al1.5CrCuFeNi showing matrix 

dominated by intermetallics (left) and higher magnification focusing on lamellar region (right). 



10 

 

 

4 Conclusions 

In this study, two models were designed to predict HEA phases. The first model – a neural network referred 

to throughout the work as NN1 – operated with a dataset including atomic percentage data only and yielded 

an average prediction accuracy of 92%. The second model, NN2, used a dataset including HR features as 

well as atomic percentage data. NN2 yielded an average prediction accuracy of 90%. The HR features 

added to the database for NN2 are Δ𝑆𝑚𝑖𝑥 , Δ𝐻𝑚𝑖𝑥, VEC, 𝛿 and Δ𝜒.  

As far as the authors are aware, the predictive accuracy of NN1 is only 1% less than the highest accuracy 

achieved by researchers to date. The fact that NN1 performs with such accuracy has significant implications 

as it shows that the complete abandonment of predictive features is not only possible but also advantageous. 

This result comes as no surprise, since atomic percentage data does not require estimations to be made 

(unlike thermodynamic and HR features), thus leading to datasets that are more consistent and less prone 

to errors. Due to the current saturation in the number of predictive parameters, a lean and accurate approach 

such as that of NN1 is crucial in achieving models that are scalable for rapid use by researchers. 

NN1 and NN2 were used to predict the limit of the SS in the AlxCuCrFeNi system, yielding the prediction 

that at x = 1.4 the system transitions from a SS/SS+IM to an IM/AM. The x = 1.0, x = 1.3, x = 1.5 and x = 

2.0 alloys were manufactured using an arc-melter to confirm the predictions obtained from the models NN1 

and NN2. The x = 1.0 and x = 1.3 compositions were confirmed to comprise SS+IM microstructures with 

the IM phase adhering to the vicinity of the dendrites.  

The x = 1.5 system showed a significantly more complex microstructure, in which a “Chinese script” IM 

was observed in addition to a “sunflower structure” comprising a lamellar eutectic surrounding nano-scale 

preciptates appearing to have formed via spinodal decomposition. As such, the prediction of NN1 and NN2 

is justified upon observing the complexity of the x = 1.5 micrographs. Finally, the x = 2 composition (which 

was manufactured to confirm IM saturation as x is increased) yields an alloy that is very brittle in nature 

and a microstructure showing the clear presence of coarse spherical IM precipitates in the interdendritic 

region, together with much finer spherical and needle shaped precipitates decorating the dendrite 

boundaries. 
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100 µm 

a) 

40 µm 

b) 

Figure 8a: – Micro-cracks in microstructure of Al2.0CrCuFeNi outlining the brittle nature of the alloy b: 

Overall microstructure of Al2.0CrCuFeNi showing coarse sphere-like and needle intermetallics in its matrix. 
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