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SUMMARY

Gene coexpression analysis refers to the discovery of sets of genes which exhibit
similar expression patterns across multiple transcriptomic data sets, such as mi-
croarray experiment data of public repositories. Arabidopsis Coexpression
Tool (ACT), a gene coexpression analysis web tool for Arabidopsis thaliana, iden-
tifies genes which are correlated to a driver gene. Primary microarray data from
ATH1 Affymetrix platformwere processed with Single-Channel Array Normaliza-
tion algorithm and combined to produce a coexpression tree which contains
�21,000 A. thaliana genes. ACT was developed to present subclades of coex-
pressed genes, as well as to perform gene set enrichment analysis, being unique
in revealing enriched transcription factors targeting coexpressed genes. ACT of-
fers a simple and user-friendly interface producingworking hypotheseswhich can
be experimentally verified for the discovery of gene partnership, pathway mem-
bership, and transcriptional regulation. ACT analyses have been successful in
identifying not only genes with coordinated ubiquitous expressions but also
genes with tissue-specific expressions.

INTRODUCTION

The introduction of microarray technology (Schena et al., 1995) enabled the study of multiple mRNA

expression levels from a biological sample. Researchers are urged to share the primary and processed

data of their microarray experiments, along with details of the experimental procedures, to public repos-

itories, such as Gene Expression Omnibus (GEO) (Barrett et al., 2013) and ArrayExpress (AE) (Kolesnikov

et al., 2015). The metadata of each microarray experiment are stored in repositories, in a Minimal Informa-

tion About Microarray Experiments (MIAME) (Brazma et al., 2001) – compliant manner. As such, not only

unnecessary repetitions of experiments are minimized but also microarray data are available. Over the

past 25 years, �3.5 million and �2.5 million sample data have been stored in GEO and AE, respectively.

Microarray preprocessing algorithms have been optimized and refined through the years, as has genome

and transcriptome knowledge advanced, enabling primary data reuse and reanalysis that increase result

reliability.

There are two main ways to assign biological functions to genes using microarrays: The first one is the dif-

ferential expression analysis where gene expression levels from samples of two or more biological condi-

tions are compared to identify genes with statistically significant differences in expression levels. The sec-

ond approach includes analyses with combined microarray experiments such as meta-analysis and

coexpression. Coexpression is usually larger in scale and involves the study of gene expression in a multi-

tude of samples from the same organism (Michalopoulos et al., 2012). Genes with similar expression pat-

terns tend to participate in related biological processes (Petereit et al., 2016). The most efficient way to

study global gene coexpression is based on the transcriptomic data analysis from a subset of samples

which contain the best representatives of each tissue or cell type, referred to as ‘‘condition-independent’’

coexpression analysis (Usadel et al., 2009). Due to the recent accumulation of large amounts of transcrip-

tomic data, a series of gene coexpression networks (GCNs) have been developed (Serin et al., 2016). GCNs

allow the study of the coexpression patterns of multiple genes in different biological conditions. Coexpres-

sion networks depict the degree of similarity between the expression profiles of all genes, in a particular set

of biological samples which may derive from different tissues, developmental stages, or environmental
iScience 24, 102848, August 20, 2021 ª 2021 The Authors.
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Table 1. Comparison of the old and new versions of ACT

Category Original ACT New ACT

Available samples ~1400 19,887

Selected samples 322 3500

Sources NASCArrays NASCArrays, GEO, ArrayExpress

Quality control No Yes

Normalisation algorithm MAS5.0 SCAN

Chip description file Default Affymetrix CDF Latest Brainarray CDF

Output Gene Coexpression List,

Gene Cliques, Co-correlation

scatterplot

Gene Coexpression Cladogram

Enrichment analysis Words, Gene Ontology Gene Ontology, Plant Ontology, Biological

Pathways, Protein Families, experimentally

verified Transcription Factors
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conditions. As genes under common regulatory control are likely functionally linked, the construction of

gene coexpression networks contributes to the identification of functional interactions between genes,

as well as the assignment of new roles to genes (He and Maslov, 2016).

Arabidopsis thaliana is a model plant organism that has largely contributed to molecular biology and

developmental genetics of plants, among others (Woodward and Bartel, 2018). A. thaliana possesses

one of the smallest genomes among plants, about 130 MBp and 5 diploid chromosomes (Arabidopsis

Genome, 2000). The latest version of Araport (Cheng et al., 2017) estimates the number of genes (including

transposable elements and pseudogenes) to�33,000, providing a solid basis of gene information for addi-

tional research. Furthermore, the plant’s short life cycle, small size, and ease in conditional cultivation and

genetic manipulation make it a perfect candidate for microarray experiments. As a result, the wealth of mi-

croarray data allowed multiple secondary analyses. There are several gene coexpression databases and

public tools for A. thaliana including ACT (Jen et al., 2006; Manfield et al., 2006), Atted-II (Obayashi

et al., 2018), AraNet v2 (Lee et al., 2015), EXPath 2.0 (Chien et al., 2015), PLANEX (Yim et al., 2013), Gene-

vestigator (Hruz et al., 2008), SeedNet (Bassel et al., 2011), FlowerNet (Pearce et al., 2015), AtGGM2014 (Ma

et al., 2015), and GEM2Net (Zaag et al., 2015), the latter four employing coexpression networks in their

approach. We introduce a new version of the ACT website, originally developed over 15 years ago,

bringing the tool up to date with the latest discoveries in microarray analysis and A. thaliana gene-related

data.
Design

The development of a new version of the ACT tool was prompted by the need to perform a major upgrade

on the original defunct tool (Table 1). The original ACT version (Jen et al., 2006; Manfield et al., 2006) was

based on 322 (out of�1400) randomly selectedmicroarray samples fromNASCArrays (Craigon et al., 2004),

normalized with MAS5.0 algorithm (Hubbell et al., 2002) along with default Affymetrix chip description file

(CDF) mapping 22,746 probe sets to more than 22,000 genes. The new version of ACT web tool is based on

3500 microarray samples, automatically selected as representatives of 19,887 samples which were rigor-

ously quality controlled, normalized with the novel Single-Channel Array Normalization (SCAN) algorithm

(Piccolo et al., 2012) in accordance with the latest BrainArray CDF (Dai et al., 2005), producing expression

values for 21,287 probes sets, each of which corresponds to a unique gene.

Correlation between all probe set pairs was performed by calculating their Pearson correlation coefficients

(r-values) (Pearson, 1895), in both versions. Old ACT was producing a gene list with the most correlated

genes to a gene of interest, sorted in descending order of the precalculated pairwise r-values between

the query gene and the rest of the genes. The coexpressed genes were containing clickable links, allowing

each gene to become the driver gene for a new analysis. Judging from the already visited links in the coex-

pression gene list results, users observed that the top coexpressed genes were also tending to be coex-

pressed amongst themselves. Nevertheless, it was difficult to keep track of the top coexpression partners,

after iteratively navigating the tool. To this end, graph-theory-based ‘‘Clique Finder’’ functionality was
2 iScience 24, 102848, August 20, 2021



Table 2. All the important enrichment results for AT4G13170

Enrichment summary for AT4G13170

Category p value Term ID Description

GO Biological process 1.2,10�176 GO: 0006414 translational elongation

7.0,10�156 GO: 0006412 Translation

GO Molecular function 5.9,10�194 GO: 0003735 structural constituent of ribosome

GO Cellular component 2.8,10�221 GO: 0022626 cytosolic ribosome

PO Plant anatomy 1.6,10�25 PO: 0020030 Cotyledon

1.6,10�25 PO: 0025099 embryo plant structure

PO Plant structure

development stage

8.4,10�17 PO: 0001078 plant embryo cotyledonary stage

KEGG 8.6,10�155 KEGG: ath03010 Ribosome - Arabidopsis thaliana (thale cress)

AtRegNet 1.0,10�22 AT1G72740 Homeodomain-like/winged-helix DNA-

binding family protein

7.5,10�13 TRB2 Homeodomain-like/winged-helix DNA-

binding family protein

Pfam 1.0,10�6 Pfam: PF01248 Ribosomal_L7Ae

Most of the terms describe ribosome properties. See also Figures S1 and S2 and Table S1.
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implemented: Genes were being treated as vertices and their pairwise correlations as edges. The top 100

coexpressed genes with a driver gene were being used to create a complete graph using all possible pair-

wise r-values. The edges were being pruned to keep only top 50%. Bron–Kerbosch algorithm (Bron and

Kerbosch, 1973) was discovering the possible maximal cliques (subgroups of genes which are all connected

to each other) of that gene network. Finally, overlapping cliques were being clustered to form subnetworks

of closely associated genes. Old ACT could also detect the most correlated genes to 2 functionally related

genes of interest through a scatter ‘‘cocorrelation’’ plot that was depicting the pairwise r-values between

the 2 user-defined genes and each of the other genes. Genes having higher r-values between themselves

and the 2 genes of interest, than the R value between those 2 genes, were being considered coexpressed to

the gene pair. To overcome the limitations of the original ACT such as user interface complexity, depen-

dency on arbitrary cutoff values (coexpression lists and Clique Finder) or flawed biological assumptions (co-

correlation plot), UPGMA hierarchical clustering method (Sokal and Michener, 1958) was used in the new

version. Hierarchical clustering takes into consideration all Pearson correlation coefficients of each gene

pair, transformed to distances. Thus, it constitutes an objective way to group coexpressed genes. ACT de-

picts theArabidopsis global coexpression landscape by using an interactive cladogram, which contains the

driver gene and its coexpressed genes in neighboring leaves. ACT gives the users the choice to find the

optimal coexpression gene list through increasing and decreasing the tree size, by observing the changes

in the tree topology and the biological enrichment p values, which provide hints of the preferable tree size.

The website was implemented using modern technologies, offering a user-friendly design, minimizing un-

necessary user interactions.

In the old ACT version, users could perform word or Gene Ontology enrichment analysis on the produced

gene lists. In the new version, the variety and quality of available enrichment analyses has significantly

increased. Enrichment categories include gene ontologies from Gene Ontology (Gene Ontology Con-

sortium, 2021), plant ontologies from Planteome (Cooper et al., 2018), biological pathways from KEGG

Pathways (Kanehisa and Goto, 2000), AraCyc (Schlapfer et al., 2017) and WikiPathways (Martens et al.,

2021), experimentally confirmed transcription factor gene targets from AtRegNet (Yilmaz et al., 2011)

and Plant Cistrome Database (O’Malley et al., 2016) and protein domains from Pfam (Mistry et al., 2021).
RESULTS

Ribosomal proteins

The ribosomal subunit in A. thaliana consists of 80 ribosomal proteins (r-proteins). A total of 249 ribosomal

protein genes are classified into 80 different r-protein types. None of these genes are single copy ones,
iScience 24, 102848, August 20, 2021 3



Table 3. HSP101 results of the over-representation analysis

Enrichment summary for HSP101

Category p value Term ID Description

GO Biological process 9.1,10�45 GO: 0009409 response to heat

Pfam 1.5,10�29 Pfam: PF00011 Hsp20/alpha crystallin family

1.5,10�5 Pfam: PF00012 Hsp70 protein

AtRegNet 2.3,10�24 AT3G09735 S1FA-like DNA-binding protein

5.6,10�24 HSF3 heat shock factor 3

2.3,10�19 HSFB2A heat shock transcription factor B2A

2.9,10�17 HSFC1 heat shock transcription factor C1

4.9,10�5 AT-HSFB2B winged-helix DNA-binding transcription factor

family protein

See also Table S2.
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meaning that most of the r-proteins are encoded by three or four expressed genes (Barakat et al., 2001).

AT4G13170, a gene coding for an L13 ribosomal protein, was selected as the driver gene for an ACT anal-

ysis. The default 5 ancestral nodes coexpression subtree had a total of 134 gene leaves (Figure S1). The tree

was also viewed by iTOL (Letunic and Bork, 2019) (Figure S2). Most correlated genes are structural constit-

uents of ribosome (Table S1). To verify that this finding is statistically significant, biological term enrichment

analyses were performed (Table 2). The enriched terms of all three aspects of Gene Ontology are indeed

related to ribosome and translation process, with very low false-discovery-rate (FDR)-adjusted p values,

ranging from �10�176 to �10�156. KEGG pathway analysis similarly suggested a ribosomal role and Pfam

analysis showed an enrichment of ribosomal protein families. Terms related to ‘‘cotyledon’’ and ‘‘embryo

structure’’ emerged as overrepresented plant anatomy terms in plant ontology, while a term combining the

last two terms (‘‘plant embryo cotyledonary stage’’) appeared as overrepresented in plant structure devel-

opmental stage analysis. Transcription factor enrichment analysis using both AtRegNet and Plant Cistrome

Database revealed two transcription factors, AT1G72740 (TRB5) and TRB2, which belong to the homeodo-

main-like/winged-helix DNA-binding family of proteins. This finding is in accordance with the discovery

that TRB family transcription factors regulate genes involved in the assembly of the translation mechanism

in plants (Schrumpfova et al., 2016).

The gene list of the subtree was used as input in a WebGestalt (Liao et al., 2019) GO biological process

overrepresentation analysis, using the list of the 21,273 genes which are studied in ATH1 microarray

chip, as reference. The results coincided with ACT’s enrichment analysis, showing ‘‘translation’’ as statically

significant overrepresented term. A BioGrid (Oughtred et al., 2021) Protein-Protein Interaction Network

Topology-based Analysis was also conducted, using the network expansion method with default parame-

ters. The resulting network (Figure S3) revealed polyubiquitin 3 (UBQ3) as one of the top-ranking neigh-

bors, while it should be noted that ubiquitin extension protein 1 (UBQ1) is one of the coexpressed genes

in the subtree.

A text mining-based protein–protein association network was created in STRING (Szklarczyk et al.,

2021), using the same gene list (Figure S4). Although three genes were not recognized, the resulting

131 gene network displays high connectivity amongst the nodes (network density (Coleman and Moré,

1983) 0.37).

A ThaleMine (Krishnakumar et al., 2015) list analysis of the 134 coexpressed genes was performed, which

revealed the same enriched GO terms albeit with lower p values (�10�109 for ‘‘translation’’) compared

with ACT. An additional analysis of interest is the Publication Enrichment, with the top two publications

(Barakat et al., 2001; Carroll et al., 2008) exhibiting p value between 10�256 and 10�235. Both publications

are related to the cytoplasmic ribosomal proteins.

An aGoTool functional enrichment analysis, using Flame (Thanati et al., 2021), revealed that this ACT gene

list contained 114 UniProt (UniProt Consortium, 2021) ribosomal proteins (p value: 6.12,10�4) and 25 Inter-

Pro (Blum et al., 2021) ribosomal domains from 3 to 8 members each (p value range: �10�2 - �10�3).
4 iScience 24, 102848, August 20, 2021
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AT1G19670_at - CLH1
AT5G02940_at - AT5G02940
AT3G45140_at - LOX2
AT4G23600_at - CORI3
AT1G31550_at - AT1G31550
AT2G43530_at - AT2G43530
AT2G43550_at - AT2G43550
AT1G52000_at - AT1G52000
AT3G28220_at - AT3G28220
AT4G24350_at - AT4G24350
AT5G42650_at - AOS
AT1G29390_at - COR314-TM2
AT1G29395_at - COR413IM1
AT2G42530_at - COR15B
AT2G42540_at - COR15A
AT5G61660_at - AT5G61660
AT4G03400_at - DFL2
AT5G61810_at - APC1

Figure 1. ACT output of the coexpression subtree of COR15A with the default 5 ancestral nodes

See also Figure S3.
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Heat shock proteins

Heat shock proteins (HSP) are a family of proteins expressed in response to stressful conditions. Heat shock

protein 101 (HSP101) gene, belonging in the HSP100 family which is responsible for high temperature sur-

vival in A. thaliana (Tonsor et al., 2008), was used as input in ACT. After expanding the initial resulting sub-

tree to 11 ancestral nodes with a total of 44 gene leaves, the GO biological process analysis pointed the

‘‘resistance to heat’’ as top-ranking term and the Pfam analysis sortedmore than half of the genes in coding

proteins of theHSP20 family (Table 3). In addition, AtRegNet analysis discovered 5 transcription factors tar-

geting the genes of the subtree: The top-ranked transcription factor, AT3G09735, is poorly annotated,

while the consequent transcription factors, HSF3, HSFB2A, HSFC1, and AT-HSFB2B, are all heat shock

ones. Secondly, heat shock protein 90 (HSP90, AT5G56030) was selected as a driver gene. Expanding

the initial tree to 66 gene leaves, GO biological process analysis showed ‘‘resistance to heat,’’ ‘‘response

to temperature,’’ ‘‘response to high light intensity,’’ ‘‘response to abiotic stimulus,’’ and ‘‘protein folding’’

(Table S2) in accordance with HSP90 generic protein functions (Milioni and Hatzopoulos, 1997). KEGG

enrichment analysis demonstrated the term entitled ‘‘Protein processing in ER’’ which firmly confirms

HSP90 role as a chaperone assisting other proteins to fold properly and stabilize.

Response to cold

In A. thaliana, cold-regulated 15a (COR15A) gene enhances resistance to freezing (Artus et al., 1996; Wang

and Hua, 2009). We selected COR15A as driver gene (Table S3). COR15A and its homolog, COR15B, were

located next to each other in the resulting 18-gene-leaves coexpression subtree, along with 2 other cold-

regulated genes,COR314-TM2 andCOR413IM1 belonging to the same subclade (Figure 1). Biological pro-

cess analysis showed an overrepresented ‘‘cold acclimation’’ attribute.

Cell wall biogenesis

A member of cellulose synthase gene family, CEV1, was used for ACT analysis. CEV1 is a catalytic subunit of

cellulose synthase complexes involved in the primary cell wall formation (Burn et al., 2002; Daras et al., 2009).

The subtree was expanded to 7 nodes (Figure 2) and showed coexpression with other cellulose synthase genes

and proteins involved in cell expansion, such as COB, POM1, and cellulose synthase-interacting protein CSI1.

GeneOntology enrichment analysis of the coexpressed gene network for biological process demonstrated the

terms ‘‘plant-type primary cell wall biogenesis,’’ ‘‘polysaccharide biosynthetic process,’’ ‘‘cellulose biosynthetic

process,’’ and ‘‘beta-glucan biosynthetic process’’ as top hits (Table S4). Additionally, regardingmolecular func-

tion, top hits were the terms ‘‘cellulose synthase (UDP-forming) activity,’’ ‘‘cellulose synthase activity,’’ ‘‘S-meth-

yltransferase activity,’’ and ‘‘UDP-glycosyltransferase activity’’ corroborating the role of the genes in this network.
iScience 24, 102848, August 20, 2021 5
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AT1G04430_at - AT1G04430
AT3G49720_at - AT3G49720
AT4G18030_at - AT4G18030
AT4G27720_at - AT4G27720
AT3G61130_at - GAUT1
AT4G14360_at - AT4G14360
AT1G76670_at - AT1G76670
AT1G29470_at - AT1G29470
AT3G25140_at - QUA1
AT5G61240_at - AT5G61240
AT1G05850_at - POM1
AT5G49720_at - GH9A1
AT5G60920_at - COB
AT5G12250_at - TUB6
AT2G22125_at - CSI1
AT4G32410_at - CESA1
AT5G64740_at - CESA6
AT5G05170_at - CEV1
AT4G39350_at - CESA2
AT3G23820_at - GAE6
AT5G06700_at - AT5G06700
AT2G36880_at - MAT3
AT3G03780_at - MS2
AT5G17920_at - ATMS1
AT3G23810_at - SAHH2

Figure 2. CEV1 coexpression subtree as output by ACT expanded to 7 ancestral nodes

See also Figure S2.
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Gene Ontology analysis in terms of cellular component showed overrepresentation for ‘‘trans-Golgi network,’’

‘‘Golgi subcompartment,’’ and ‘‘plasmamembrane’’ supporting the function of these genes in those subcellular

compartments (Wightman and Turner, 2010).

Further, chitinase-like protein 2 (CTL2), a gene with probable role in secondary cell wall synthesis in

A. thaliana (Hossain et al., 2010; Koizumi et al., 2009), was used for an ACT analysis with the subtree

expanded to 22 nodes (Figure 3). GO biological process enrichment analysis of the 30 coexpressed genes

ranked ‘‘plant-type secondary wall biogenesis’’ as the top term (p value: 1.0,10�30) with ‘‘plant-type cell wall

biogenesis’’ a close second (p value: 4.8,10�25) and AraCyc analysis also proposed cellulose biosynthesis

as an enriched term (p value: 2.9,10�5). ‘‘Lignin catabolic process,’’ another enriched GO biological pro-

cess (p value 1.5,10�5), is in accordance with the finding that a mutation of CTL2 increases lignin accumu-

lation in dark-grown Arabidopsis seedlings (Hossain et al., 2010). The cotton ortholog of CTL2 is expressed

preferentially in cells with secondary walls (Zhang et al., 2004). A protein association network of the result-

ing coexpression subtree leaves was created using STRING (Figure 4A). This network showed a strong

connection between the driver gene and several genes in adjacent leaves of the subtree, especially those

of the IRX family of proteins. Finally, AtRegNet analysis showed VND7 as the top-ranked transcription factor

among other overrepresented ones. VND7 regulates patterns of secondary cell wall deposition in vascular

vessels (Yamaguchi et al., 2011) and is also known to bind to the promoters of many secondary cell wall

biosynthesis genes (Taylor-Teeples et al., 2015).

We decided to useCTL2 as gene input to ATTED-II, Genevestigator and Genemania (Franz et al., 2018). We

selected the top 29 coexpressed genes from the resulting coexpression gene list of each tool, additionally
6 iScience 24, 102848, August 20, 2021
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AT1G08340_at - AT1G08340
AT1G27440_at - GUT2
AT2G37090_at - IRX9
AT3G16920_at - CTL2
AT5G17420_at - IRX3
AT5G44030_at - CESA4
AT4G18780_at - IRX1
AT3G18660_at - PGSIP1
AT5G15630_at - IRX6
AT5G54690_at - GAUT12
AT5G03170_at - FLA11
AT2G38080_at - IRX12
AT5G60020_at - LAC17
AT5G60720_at - AT5G60720
AT3G62020_at - GLP10
AT4G27435_at - AT4G27435
AT3G50220_at - IRX15
AT4G28500_at - NAC073
AT5G60490_at - FLA12
AT2G28760_at - UXS6
AT1G62990_at - KNAT7
AT4G33330_at - PGSIP3
AT5G05390_at - LAC12
AT1G79420_at - AT1G79420
AT1G31720_at - AT1G31720
AT2G40120_at - AT2G40120
AT1G66810_at - AT1G66810
AT1G28470_at - NAC010
AT4G18550_at - DSEL
AT5G06930_at - AT5G06930

Figure 3. CTL2 coexpression subtree as output by ACT

The majority of the genes are related to plant-type secondary wall biogenesis.
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including the driver gene CTL2 for a total of 30 genes per list. We used g:Profiler (Raudvere et al., 2019) as a

common enrichment analysis tool and used each coexpression gene list from the four different tools as

input. The top g:Profiler Biological Process enrichment term for ACT gene list was ‘‘plant-type secondary

wall biogenesis’’ (p value: 2.6,10�30). g:Profiler also proposed ‘‘plant-type secondary wall biogenesis’’ as

top enriched term for ATTED-II and Genevestigator (p values: 7.6,10�18 and 8.0,10�12 respectively). The

same term appeared in the Genemania g:Profiler enrichment results, albeit with a much higher p value

(1.5,10�5). In addition, the individual lists were inserted into a String protein–protein interaction (PPI)

network creation analysis (Figure 4) and network density (Coleman and Moré, 1983) was calculated for

each graph: 0.36 for ACT, 0.42 for ATTED-II, 0.40 for Genevestigator, and 0.17 for Genemania.
Photosynthesis

PSB28 protein is a component of photosystem II (PSB28), aiding in the repair and de novo synthesis of PSII

complex proteins as a response to extreme high light-induced stress (Parrine et al., 2018). The default ACT

search produced a subtree that proposed ‘‘photosynthesis’’ as the top biological process. We expanded

the coexpression subtree to the point whereminimump values were achieved. A total of 41 ancestral nodes

resulted to a 729-gene-leaves tree upon which biological term analyses were performed (Table 4). Top

terms for biological process, KEGG and AraCyc analysis all showed ‘‘photosynthesis’’ as overrepresented,

while cellular component proposed ‘‘plastid’’ as the plant organelle coinciding with molecular function

analysis top term of ‘‘pigment binding’’ and plant anatomy’s ‘‘cotyledon primordium.’’ In addition, Pfam

showed chlorophyll-binding protein as a top protein family and AtRegNet discovered phytochrome inter-

acting factor 4 (PIF4) as a top transcription factor.
iScience 24, 102848, August 20, 2021 7



Figure 4. Protein-Protein Interaction networks of the CTL2 coexpressed gene list results from different tools

STRING protein networks using the coexpressed genes to CTL2 according to ACT (A), ATTED-II (B), Genevestigator (C)

and Genemania (D).
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Circadian rhythm

LATE ELONGATED HYPOCOTYL (LHY) gene plays a role in the A. thaliana circadian clock (Lu et al.,

2009). Using LHY for an ACT analysis and after expanding the subtree to 8 nodes (Table 5), the top bio-

logical process enriched term in the subtree of 21 gene leaves was ‘‘rhythmic process.’’ KEGG pathway

also proposed circadian rhythm in Arabidopsis as enriched term and Pfam categorized 8 of the genes as

coding transcription factors that belong to the B-box zinc finger (zf-B_box) and Myb-like DNA-binding

domain (Myb_DNA-binding) families. AtRegNet found timing of cab expression 1 (TOC1), a key clock

component that integrates the environmental information to coordinate circadian responses (Perales

and Mas, 2007), as a targeting transcription factor. Interestingly, two transcription factor genes, RVE8

and CCA1, which bind to the promoter of TOC1 (Farinas and Mas, 2011), were among the correlated

genes.

Chloroplast and mitochondrial proteins

The ATH1 genome array contains probesets for 72 chloroplast genes. Using one of those genes, photo-

system II reaction center protein T, as a driver gene in ACT and reducing the ancestral nodes to 4, a coex-

pression tree that contained exclusively all 72 available chloroplast genes (recognized by the ‘‘ATCG’’ pre-

fix of the probeset ID), was produced (Figure 5). The first seven genes were related to translation, while the

rest were predominantly related to photosynthesis.
8 iScience 24, 102848, August 20, 2021



Table 4. Enrichment summary table for PSB28

Enrichment summary for PSB28

Category p value Term ID Description

GO Biological process 5.9,10�123 GO: 0015979 Photosynthesis

2.2,10�74 GO: 0019684 photosynthesis, light reaction

GO Molecular function 3.3,10�12 GO: 0031409 pigment binding

GO Cellular component 0 GO: 0044434 chloroplast part

0 GO: 0044435 plastid part

PO Plant anatomy 2.6,10�125 PO: 0000015 cotyledon primordium

2.6,10�125 PO: 0025432 cotyledon anlagen

KEGG 1.4,10�40 KEGG: ath00195 Photosynthesis - Arabidopsis thaliana

(thale cress)

AraCyc 8.1,10�24 AraCyc: PWY-101 photosynthesis light reactions

AtRegNet 5.8,10�5 PIF4 phytochrome interacting factor 4

Pfam 1.2,10�13 Pfam: PF00504 Chlorophyll A-B binding protein

All of the over-represented terms are related to photosynthesis.
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The ATH1 genome array studies the expression of 27mitochondrial genes (recognized by the ‘‘ATMG’’ pre-

fix of the probeset ID). Unlike chloroplast genes, the mitochondrial ones are not located in a single subtree

but are rather found in clusters. There are two subtrees containing grouped mitochondrial genes, the first

with 10 and the second with 11 leaves. The first tree has only hypothetical proteins (Figure 6A) while the

second one is better annotated (Figure 6B) and possesses biological process enrichments of ‘‘cellular respi-

ration’’ (p value: 1.3,10�7) and ‘‘energy derivation by oxidation of organic compounds’’ (p value: 1.5,10�7).

The rest of the mitochondrial genes are clustered in groups of two or three.

Anther and pollen

ABORTEDMICROSPORES (AMS) gene plays a role in tapetal cell development (Xu et al., 2010). It was used

as a driver gene to an ACT analysis and the resulting subtree was expanded to 12 ancestral nodes (101

genes). Biological process enrichment analysis produced ‘‘pollen wall assembly’’ as the top-ranking

term, cellular component analysis discovered ‘‘pollen coat’’ as an enriched term, and the top three ranking

terms for plant anatomy analysis were ‘‘sporangium wall,’’ ‘‘tapetum,’’ and ‘‘anther’’ (Table 6).

Embryo development

Embryo defective 1692 (emb1692 or Lefkothea) gene is a nuclear-encoded RNA-binding protein, participating

in chloroplast group II intron and nuclear pre-mRNA splicing. emb1692 protein controls embryonic and post-

embryonic development and is mainly expressed in meristems localized to both nuclei and chloroplasts (Daras

et al., 2019). ACT analysis of emb1692 gene resulted in an expanded network of 68 nodes (Figure S5). Most of

the genes belong to pentatricopeptide repeat (PPR) which is mainly involved in RNA metabolism in organelles

having essential roles in their biogenesis and embryo development (Lurin et al., 2004). Since emb1692 gene par-

ticipates in chloroplast group II intron splicing, a network with PPR genes justifies the role of coexpressed genes

in RNA metabolism. Gene Ontology analysis of the network for biological process demonstrated the terms

‘‘RNA modification,’’ ‘‘embryo development,’’ ‘‘seed development,’’ ‘‘RNA processing,’’ and ‘‘chloroplast

RNA modification’’ firmly related to genes functions. In addition, enrichment summary of plant structure devel-

opment stage resulted in terms related with different embryonic stages (Table 7) supporting the role of

emb1692 and its coexpressed genes to control embryonic development. Enrichment summary of PFAM

showed PPR and DYW gene family as top hits. DYW family is a subgroup of PPR gene family and is essential

mainly for RNA editing in organelles (Okuda et al., 2009).

We decided to use emb1692 to compare ACT’s internal enrichment analysis tool to g:Profiler. emb1692

coexpression gene list produced by ACT was used as input for a g:Profiler enrichment analysis. Both tools

proposed ‘‘RNA modification’’ as the top biological process term and ‘‘plastid’’ and ‘‘chloroplast’’ as top

cellular component terms. The list includes 6 genes named as embryo defective: EMB1006, emb1703,

emb1688, EMB3120, EMB2729, and emb1692. Thus, ‘‘embryo development’’ emerged as a statistically
iScience 24, 102848, August 20, 2021 9



Table 5. Enrichment analysis results for the LHY coexpression subtree after it was expanded to 7 ancestral nodes

Enrichment summary for LHY

Category p value Term ID Description

GO Biological process 6.8,10�12 GO: 0048511 rhythmic process

KEGG 5.6,10�7 KEGG: ath04712 Circadian rhythm - plant - Arabidopsis thaliana

(thale cress)

Pfam 1.8,10�11 Pfam: PF00643 B-box zinc finger

1.0,10�4 Pfam: PF00249 Myb-like DNA-binding domain
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significant enriched biological process term in ACT (p value: 1.1,10�4), as it discovered 10 genes described

by this term. Nevertheless, g:Profiler failed to characterize this term as significant (p value: 1.0), as it only

discovered 2 genes described by this particular term.

DISCUSSION

New approaches that distinguish ACT from other coexpression tools for A. thaliana, as well as its previous

version, were employed. The samples used in new version of ACT are more than 10 times the previous

amount, from representative distinct tissues, selected from an even larger sample pool. As a result, the pro-

duced r-values are improved and do not contain any kind of tissue bias. While ACT similarly exclusively re-

lies on data from a single microarray platform, tools, such as ATTED-II and EXPath, use bothmicroarray and

RNA-seq data, showing significant discrepancy between coexpression calculation based on the two data

sets. The previous version of our tool used MAS5.0 single-array normalization algorithm (Hubbell et al.,

2002) for data processing and normalization. Soon after the development of original ACT, though, Affyme-

trix suggested that MAS5.0 should be primarily used to obtain a quick report regarding the performance of

the arrays and to identify any obvious problems, rather than as a main normalization method (Affymetrix,

2018; Dziuda, 2010). Instead, they suggested the submission of the final set of arrays to RMA (Irizarry et al.,

2003) or PLIER (Hubbell, 2005) multi-array normalization algorithms. Most coexpression analysis tools

indeed employ RMA which assumes that probe intensity value distribution across all samples is common.

This assumption makes multiarray normalization algorithms unsuitable for coexpression analysis, as sam-

ples derive from different tissues or research groups. This may explain why multiarray normalization algo-

rithms introduce a large number of correlation artifacts (false correlated gene pairs among the top most

correlated ones) and single-array MAS5.0-normalized data provide by far the best platform for inferring

PPIs (Lim et al., 2007). Consequently, SCAN (Piccolo et al., 2012) was used over the other single-array alter-

native, MAS5.0, and RMA. SCAN algorithm offers a novel normalization method that preprocesses each

sample independently from each other and it performs a GC content bias correction, increasing the total

signal-to-noise ratio. The use of SCAN along with the large and diverse microarray sample pool guarantees

the avoidance of spurious correlations between genes, a pitfall which arises when a combination of a small

number of samples and a quantile normalization algorithm is used (Usadel et al., 2009). Default Affymetrix

CDF that was used to map ATH1 probe sets to genes both in original ACT and in most other coexpression

tools, contains 22,746 noncontrol probe sets defined in 2002. However, 5.47% of those probe sets do not

correspond to any gene and 3.82% correspond to multiple genes. Furthermore, total number of genes

mapped by the array using the default CDF is 22,168, out of which the 118 are obsolete. To maintain a

one-to-one relation between probes and genes, ATTED-II selected a single probe set of the outdated

default Affymetrix CDF for each gene, Planex performed its own mapping programmatically, EXPath dis-

carded all the ambiguous mappings, and AtGGM2014 used the mappings provided by TAIR (Lamesch

et al., 2012). Instead, new version of ACT uses up-to-date BrainArray CDF (Dai et al., 2005) which lacks

the drawbacks of the default CDF, as it ensures that each probe set corresponds to a single gene and

vice versa, totaling 21,287 nonobsolete genes. Furthermore, BrainArray is annually updated, defining its

probe sets according to the current genomic and transcriptomic knowledge.

ACT’s strength lies in simplicity and focus, specifically catering for molecular biologists, producing easy-to-

understand biologically relevant outputs, avoiding user information overload which characterized the orig-

inal version and other coexpression tools. Furthermore, the overrepresentation of adjusted p values are

presented in commonly understood numeric format (e.g. 1.0∙10�15) instead of the scientific numeric format

(e.g. 1.0E-15), while results with p values>0.05 are omitted to prevent the inclusion of nonstatistically sig-

nificant terms. The enrichment summary tables are easy to produce inside ACT, provide various
10 iScience 24, 102848, August 20, 2021
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ATCG00020_at - PSBA
ATCG00040_at - MATK
ATCG00510_at - PSAI
ATCG01040_at - YCF5
ATCG00120_at - ATPA
ATCG00710_at - PSBH
ATCG01050_at - NDHD
ATCG00630_at - PSAJ
ATCG00590_at - ORF31
ATCG00070_at - PSBK
ATCG00280_at - PSBC
ATCG00300_at - YCF9
ATCG00340_at - PSAB
ATCG00540_at - PETA
ATCG00480_at - PB
ATCG00720_at - PETB
ATCG01090_at - NDHI
ATCG01100_at - NDHA
ATCG00550_at - PSBJ
ATCG00560_at - PSBL
ATCG00570_at - PSBF
ATCG00580_at - PSBE
ATCG00380_at - RPS4
ATCG00640_at - RPL33
ATCG00650_at - RPS18
ATCG00440_at - NDHC
ATCG00470_at - ATPE
ATCG01020_at - RPL32
ATCG00690_at - PSBT
ATCG00080_at - PSBI
ATCG00220_at - PSBM
ATCG00050_at - RPS16
ATCG01110_at - NDHH
ATCG00170_at - RPOC2
ATCG01120_at - RPS15
ATCG00770_at - RPS8
ATCG00150_at - ATPI
ATCG00700_at - PSBN
ATCG00210_at - YCF6
ATCG00330_at - RPS14
ATCG00730_at - PETD
ATCG00660_at - RPL20
ATCG00190_at - RPOB
ATCG00065_at - RPS12A
ATCG00420_at - NDHJ
ATCG00430_at - PSBG
ATCG00490_at - RBCL
ATCG00130_at - ATPF
ATCG00140_at - ATPH
ATCG00520_at - YCF4
ATCG00530_at - YCF10
ATCG00350_at - PSAA
ATCG00270_at - PSBD
ATCG00680_at - PSBB
ATCG00500_at - ACCD
ATCG01060_at - PSAC
ATCG01070_at - NDHE
ATCG01080_at - NDHG
ATCG00600_at - PETG
ATCG00160_at - RPS2
ATCG00180_at - RPOC1
ATCG00670_at - PCLPP
ATCG00790_at - RPL16
ATCG00820_at - RPS19
ATCG00360_at - YCF3
ATCG00780_at - RPL14
ATCG00750_at - RPS11
ATCG00760_at - RPL36
ATCG00800_at - RPS3
ATCG00810_at - RPL22
ATCG00740_at - RPOA
ATCG01010_at - NDHF

Figure 5. Coexpression tree containing exclusively

all 72 chloroplast genes
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Figure 6. Mitochondrial genes coexpression trees

(A) Coexpression tree containing 10 correlated Mitochondrial genes. All proteins are hypothetical.

(B) Coexpression tree containing another 10 correlated Mitochondrial genes
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descriptions for each term with links redirecting to relevant external databases and can be easily copied

through any web browser.

Most tools, including ACT, performGeneOntology enrichment analysis. ACT enrichment analysis takes ac-

count of GeneOntology terms of all evidence codes which describe the selected genes. On the other hand,

tools such as g:Profiler omit GO terms of specific evidence codes, thus missing overrepresented terms in

their analysis. Therefore, ACT reveals biologically relevant enriched GO terms which g:Profiler fails to

discover, as it happened with highly informative term ‘‘embryo development,’’ in the case of emb1692 co-

expression list enrichment analysis. Some tools offer additional enrichment options, such as pathway anal-

ysis (EXPath, ATTED-II) or transcription element identification (ATTED-II). However, while ATTED-II iden-

tifies bona fide cis-elements in correlated genes without identifying the transcription factors that target

those motifs, ACT identifies enriched experimentally verified transcription factors targeting coexpressed

genes, an information crucial to molecular biologists as it reveals the transcription factors that orchestrate

gene coregulation. This specific kind of enrichment analysis is unique to ACT which uses data of confirmed

transcription factors directly targeting A. thaliana genes from both AtRegNet and DAP-seq experiment-

based Plant Cistrome database. Moreover, the gene list of each ACT sub tree is provided in an easy-to-

use format for downstream analysis. Links to STRING for creating PPI networks and ThaleMine for gene

list analysis which includes bibliography enrichment, are provided through ACT.

SeedNet and GEM2Net differ in their approach, as they categorize genes through their gene expression,

both positively and negatively, based on seed germination and biotic/abiotic stress, respectively. Although

SeedNet provides a comprehensible coexpression network visualization while including both correlated

and anticorrelated genes, it offers no enrichment analysis. Furthermore, its AGI Code-Gene Symbol corre-

spondence is erratic. GEM2Net, on the other hand, is specific in its analysis, providingmultiple distinct sub-

categories of biotic and abiotic stress conditions. This is contrary to ACT’s global coexpression landscape

analysis. Nevertheless, ACT’s analysis using AMS as driver gene, produces results comparable to Flower-

Net, proving that the analyses of ACT are not only solid at identifying ubiquitously expressed genes, but

tissue specific genes as well. Furthermore, each subcategory of GEM2Net has a different sample pool

which does not exceed two-digit numbers in a single case, limiting the consistency of the tool. Finally,

its enrichment analysis results are complicated for the viewer and only provide specialized enrichment

terms in many different stress categories instead of a single unanimous result table.

ACT identifies coexpressed genes to a user-selected gene of interest. It outputs a tree whose leaves consist of

the driver gene and genes of similar expression patterns, implying participation in common biological pro-

cesses and pathways. The properties of a gene of unknown function can be inferred by examining the subtree

of coexpressed genes and their statistically significant overrepresented biological terms. When the driver gene

has known partners and functions, ACT replicates known biology by ‘‘rediscovering’’ those genes and terms, a

fact that validates ACT analysis. Different genes were used for the validation of ACT’s gene coexpression anal-

ysis potential. For instance, since ribosome is a multimolecular complex, all ribosomal structural proteins are

expected to be available during ribosome biogenesis. Thus, using a ribosomal protein gene as driver, a total

of 134 genes that coded for structural constituents of ribosome were found clustered in the coexpression

tree. Genes in chloroplast DNA are expected to be clustered in a correlation analysis as other tissues e.g.,

leaves, contain chloroplasts and others e.g., roots, do not. This hypothesis was verified byACT since all available
12 iScience 24, 102848, August 20, 2021



Table 6. AMS coexpression tree major enrichment results

Enrichment summary for AMS

Category p value Term ID Description

GO Biological process 7.9,10�22 GO: 0010208 pollen wall assembly

GO Cellular component 1.5,10�6 GO: 0070505 pollen coat

PO Plant anatomy 9.9,10�17 PO: 0025306 sporangium wall

1.2,10�15 PO: 0025313 Tapetum

6.3,10�15 PO: 0009066 Anther
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chloroplast genes were grouped together in a single clade. Examining genes related to cell wall biogenesis,

revealed VND7 as a key transcription factor which regulates the coexpressed genes, a finding that was already

experimentally confirmed (Yamaguchi et al., 2011), while theCTL2 gene, with a probable role in cell wall biosyn-

thesis (Hossain et al., 2010; Koizumi et al., 2009) was grouped with proteins engaged in cellulose synthesis. Our

results confirmed the coexpression of several diverse genes although functionally relatedby usingdriver specific

genes such as emb1692 (Daras et al., 2019).

In order to compare ACT with other related coexpression tools, such as ATTED-II, Genevestigator and Gene-

mania, we established the same conditions by selecting the same number of top ranking genes coexpressed

withCTL2 for each tool and by using external tools such as, String and g:Profiler. ACT, ATTED-II, and Geneves-

tigator exhibited similar String network densities, while Genemania produced the sparsest network (0.17). In

g:Profiler analysis (which was chosen so that all enrichment analyses were based on the same gene reference

list), ACT outperformed all its competitors, as its p value for the top enriched term which described CTL2

was many orders of magnitude lower than that of the other tools. This suggests that ACT discovered a larger

number of genes described by the ‘‘plant-type secondary cell wall biogenesis’’ term, proving that the gene hi-

erarchical clustering approach performs better than the coexpression gene list creation and/or that the metic-

ulous sample selection ultimately results in stronger gene correlations.

Concluding, the new version of ACT is not a mere incremental update over the previous version. Instead, it

is essentially a new tool only inheriting the pivotal role of Pearson correlation coefficients. We anticipate

that ACT can be a useful tool in the community of plant molecular biologists, as it serves as a starting point

for creating experimentally verifiable hypotheses regarding functional partner discovery, gene function

prediction, and regulatory role elucidation of transcription factors.
Limitations of the study

Themain limitation of ACT is inherited by the transcriptomic technology it is basedon:Microarrays are unable to

study the expression of genes for which noprobe is available on the surface of the chip. In addition, cross-hybrid-

ization may distort the estimation of the correlation between members of the same family of genes and other

genes, especially when default CDF is used. These issues are overcome by the use of RNA-seqwhich steadily re-

placesmicroarrays. Publicly availableRNA-seqdata forA. thalianahaveexceeded that ofmicroarray data, both in

terms of quantity and quality. However, although RNA-seq has higher sensitivity, its output is highly comparable

with that of microarrays, especially in average expression levels (Chen et al., 2017). Additionally, RNA-seq-based

and microarray-based GCNs have been shown to produce similar correlation values (Malatras et al., 2020) and

comparable biological pathway enrichments (Obayashi et al., 2018). RNA-seq has not yet replaced fullymicroar-

rays as the selectionof thebest normalizationmethod forgenecoexpression analysis is still up for debate.On the

other hand, microarray normalization algorithms have been developed and perfected over the lifespan of this

technology.Thus, theexpressionandcoexpressionof thegenes isaccuratelyestimatedwithmicroarrays. Further-

more, tools suchasExpressionAngler (Austinetal., 2016;Toufighiet al., 2005) andArabidopsiseFPviewer (Winter

et al., 2007), which are prominent in the plant biology community, are also fully based on microarrays. Another

known limitationofACT is its inability toportrayanticoexpressedgenes.Genepairwisecorrelationsareconverted

tonon-negativedistancevalueprior tohierarchical clustering. Thus,geneswithanticorrelatedexpressionprofiles

cannot be inferred. Furthermore, the coexpression tree depiction assumes that any gene may only be part of a

single group of functional partners. This limitation of the hierarchical clustering methods contradicts known

biology, where a genemay possess multiple ‘‘independent’’ functions. Finally, although there are hints to define

the optimal tree size, its estimation may be to some degree subjective.
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Table 7. Enrichment summary table for emb1692 after it was expanded to 8 ancestral nodes

Enrichment summary for emb1692

Category p value Term ID Description

GO Biological process 1.5,10�7 GO: 0009451 RNA modification

1.1,10�4 GO: 0009790 embryo development

1.1,10�4 GO: 0048316 seed development

1.5,10�4 GO: 0006396 RNA processing

2.2,10�4 GO: 1900865 chloroplast RNA modification

PO Plant structure developmental stage 5.9,10�6 PO: 0001078 plant embryo cotyledonary stage

6.6,10�6 PO: 0001081 mature plant embryo stage

Pfam 1.5,10�11 Pfam: PPR_2 PPR repeat family

1.5,10�11 Pfam: PPR PPR repeat

1.3,10�8 Pfam: DYW_deaminase DYW family of nucleic acid deaminases

See also Figure S5.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Arabidopsis thaliana microarray

samples - ArrayExpress

(Kolesnikov et al., 2015) https://www.ebi.ac.uk/arrayexpress/

Arabidopsis thaliana microarray

samples - GEO

(Barrett et al., 2013) https://www.ncbi.nlm.nih.gov/geo/

Arabidopsis thaliana microarray

samples - NASCArrays

(Craigon et al., 2004) http://bar.utoronto.ca/NASCArrays/index.php

Full list of microarray samples

used for ACT

This paper https://data.mendeley.com/datasets/hgvk669v89/

Software and algorithms

Single channel array normalisation (SCAN) (Piccolo et al., 2012) https://www.bioconductor.org/packages/release/

bioc/html/SCAN.UPC.html

Brainarray Custom CDF version 23 (Dai et al., 2005) http://mbni.org/customcdf/23.0.0/ensg.download/

pd.ath1121501.at.ensg_23.0.0.tar.gz

Simpleaffy (Miller, 2018) https://web.archive.org/web/20201024030658/

http://www.bioconductor.org/packages/release/bioc/

html/simpleaffy.html

affyQCReport (Parman et al., 2021) https://bioconductor.org/packages/release/bioc/

html/affyQCReport.html

affyPLM (Bolstad et al., 2005; Brettschneider

et al., 2008)

https://bioconductor.org/packages/release/bioc/

html/affyPLM.html

Phangorn version 2.5.5 (Schliep et al., 2017) https://cran.r-project.org/web/packages/phangorn/

index.html

WebGestalt (Liao et al., 2019) http://www.webgestalt.org/

String version 11 (Szklarczyk et al., 2021) https://version-11-0.string-db.org/

Interact tree of life (iTOL) version 6 (Letunic and Bork, 2019) https://itol.embl.de/

g:Profiler (Raudvere et al., 2019) https://biit.cs.ut.ee/gprofiler/gost

Flame (Thanati et al., 2021) http://flame.pavlopouloslab.info

Atted-II version 10 (Obayashi et al., 2018) https://atted.jp/

Genevestigator (Hruz et al., 2008) https://genevestigator.com/

Genemania (Franz et al., 2018) https://genemania.org/

EXPath 2.0 (Chien et al., 2015) http://expath.itps.ncku.edu.tw/index.html

PLANEX (Yim et al., 2013) http://planex.plantbioinformatics.org/

SeedNet (Bassel et al., 2011) http://netvis.ico2s.org/dev/seednet/#/

FlowerNet (Pearce et al., 2015) https://www.cpib.ac.uk/anther/

AtGGM2014 (Ma et al., 2015) https://labs.plb.ucdavis.edu/dinesh-kumar/

atggm2014.html

GEM2Net (Zaag et al., 2015) http://urgv.evry.inra.fr/GEM2NET/

Thalemine (Krishnakumar et al., 2015) https://bar.utoronto.ca/thalemine/begin.do

Gene ontology (Gene Ontology Consortium, 2021) http://geneontology.org/

Planteome (Cooper et al., 2018) https://planteome.org/

KEGG pathways (Kanehisa and Goto, 2000) https://www.genome.jp/kegg/pathway.html

AraCyc (Schlapfer et al., 2017) https://plantcyc.org/
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WikiPathways (Martens et al., 2021) https://www.wikipathways.org/index.php/

WikiPathways

AtRegNet (Yilmaz et al., 2011) https://agris-knowledgebase.org/moreNetwork.html

Plant Cistrome database (O’Malley et al., 2016) http://neomorph.salk.edu/dap_web/pages/index.php

Pfam (Mistry et al., 2021) http://pfam.xfam.org/

Cytoscape (Shannon et al., 2003) https://cytoscape.org/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Ioannis Michalopoulos (imichalop@bioacademy.gr).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d The microarray samples analyzed during the current study are available at:https://doi.org/10.17632/

hgvk669v89.1

d ACT is freely available at www.michalopoulos.net/act

d Any additional information required to reanalyse the data reported in this paper is available from the lead

contact upon request.
METHOD DETAILS

Expression data collection and processing

For coexpression analysis, all microarray data should be comparable to each other. Therefore, they need to

originate from the same organism and the same type of chip and to be normalised with the same algorithm

and the same parameters. ArrayExpress (Kolesnikov et al., 2015), GEO (Barrett et al., 2013) and NASCArrays

(Craigon et al., 2004) public repositories were searched for Arabidopsis thalianamicroarray experiments of

all chip platforms. It was discovered that the most popular microarray chip in use is the Affymetrix Arabi-

dopsis ATH1 Genome Array [GEO:GPL198; ArrayExpress:A-AFFY-2] representing more than 50% of the to-

tal microarray data volume. Arabidopsis thaliana ATH1 raw microarray data (CEL files) and their respective

MIAME (Brazma et al., 2001) meta-data were programmatically downloaded from the aforementioned pub-

lic repositories. After duplicate and corrupt sample removal, using an in-house PHP script, our dataset con-

sisted of 19,887 unique microarray samples from 1390 studies. A suitable normalization algorithm was

selected for this single channel microarray chip: The samples were normalized with the Single Channel

Array Normalisation (SCAN) algorithm (Piccolo et al., 2012) using Brainarray Custom Chip Description

File (version 23) (Dai et al., 2005). A MySQL relational database was designed to store all required data:

gene expression values and metadata of each sample, as well as Arabidopsis thaliana gene description

terms. Gene names and brief descriptions were downloaded from Thalemine (Krishnakumar et al., 2015),

gene ontologies from Gene Ontology (Gene Ontology Consortium, 2021), plant ontologies from Plan-

teome (Cooper et al., 2018), biological pathways from KEGG Pathways (Kanehisa and Goto, 2000), AraCyc

(Schlapfer et al., 2017) and WikiPathways (Martens et al., 2021), transcription factor gene targets from

AtRegNet (Yilmaz et al., 2011) and Plant Cistrome Database (O’Malley et al., 2016) and protein domains

from Pfam (Mistry et al., 2021). Most of those data were programmatically downloaded, exploiting BioMart

(Kinsella et al., 2011) XML-based data retrieval system, in the majority of the cases.
Quality control

Sample quality is decisive for a large-scale coexpression analysis. To eliminate low quality samples, a qual-

ity control strategy, similar to that of Muscle Gene Sets (Malatras et al., 2019), was conducted using
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simpleaffy (Miller, 2018), affyQCReport (Parman et al., 2021) and affyPLM (Bolstad et al., 2005; Brettsch-

neider et al., 2008) packages of BioConductor suite (Gentleman et al., 2004; Huber et al., 2015) in R (R

Core Team, 2019).For the Quality control step, primary data were normalised with MAS5.0 algorithm (Hub-

bell et al., 2002) using the Affymetrix default CDF. Affymetrix provides array quality metrics for each sample

as well as general guidelines for the value thresholds, for example the percentage difference of present

genes between samples of the same study should be no higher than 10% and 30 to 50 ratio of GAPDH

and b-actin should not be higher than 1.25 and 3, respectively. As an additional quality control within series,

Normalized Unscaled Standard Error (NUSE) and Relative Log Expression (RLE) multi-array metrics were

used. NUSE boxplots should be centered at 1 with the low-quality samples centered above 1.1. RLE box-

plots should be centered at near 0 and have similar spread with low-quality samples having an absolute

spread higher than 0.2. Low-quality samples were identified primarily based on the output of RLE and

NUSE. In the final step, whole plant or mutant samples were identified by examining the meta-data infor-

mation of each sample and were manually removed. Eventually, 6933 distinct, wild-type, healthy samples

were selected for coexpression analysis.

Gene coexpression tree creation

Pairwise sample correlations were calculated using Pearson Correlation Coefficient (r-values) (Pearson,

1895), using the expression values of 21,273 non-obsolete Arabidopsis thaliana genes, in the 6933 previ-

ously selected samples and a sample distance matrix was created using the d = 1 – r formula (Kassambara,

2017), resulting in a distance matrix, in Phylip format (Felsenstein, 2008), with a value range [0, 2] where the

lowest value represents complete correlation and the highest value, complete anti-correlation. Based on

the distancematrix, a sample correlation tree was created in Newick format (Archie et al., 2008), using Phan-

gorn (Schliep et al., 2017) R package implementations of UPGMA (Sokal and Michener, 1958). On that tree,

each leaf represented a unique sample. Since our main aim was the study of the global (i.e. tissue-indepen-

dent) coexpression landscape of Arabidopsis thaliana, tissue bias had to be minimised by choosing the

most representative samples of the entire dataset. Thus, the tree of 6933 sample-leaves, was programmat-

ically pruned in an iterative procedure using an in-house algorithm trimming close leaves, where in each

iteration the leaf with the shortest distance to its first common node was trimmed, leaving 3500 leaves

which represent the most distinct samples. The gene expression values of the 3500 samples were used

for the calculation of pairwise gene correlations as r-values and a gene distance matrix using the same

d = 1 – r formula. Finally, the 21,273 gene-leaves coexpression tree was created, using UPGMA based

on the distance matrix. That Newick-formatted tree constitutes the end product of the coexpression anal-

ysis and also the basis of ACT. To evaluate the resemblance between the distance matrix and the tree pro-

duced, the Cophenetic Correlation Coefficient (CPCC) (Farris, 1969), the correlation between the original

distance matrix and the distance matrix represented by the tree (cophenetic matrix), was calculated. The

cophenetic matrix was extracted using the cophenetic function from R stats package. The CPCC of our

tree was 0.5923.

Web tool implementation

The web server is hosted on a Linux Ubuntu 18.04, 16-core, 64 GBmemory system. A web-based user inter-

face was created using HTML5 and CSS along with the Bootstrap library and certain JavaScript functions,

such as the gene name and probe set ID auto-completion of the search field. All ACT scripts performing

tasks such as the database connection, tree visualisation and enrichment analysis are written in PHP and

run on an HTTPS protocol-verified Apache 2.4.29 web server.

An Arabidopsis thaliana gene is selected by the user, deemed the ‘‘driver’’ gene, and a gene coexpression

subtree with 5 ancestral nodes is produced, based on the location of that driver gene on the gene coex-

pression tree. A scale bar, referring to r-values, is also displayed at the top of the subtree. The tree leaf

names contain both the probe set ID and the official gene name. To define another probe set as the driver

gene, the user clicks on this probe set ID, while clicking on a gene name redirects externally to the gene

page entry in Thalemine. The tree size can also be altered producing a subtree with up to 25% of the total

genes. The subtree can be downloaded in Newick format and can be viewed externally on the iTOL tree

viewer (Letunic and Bork, 2019). Gene descriptions can be found on a table below.

By selecting any enrichment analysis from a drop-down menu, a relevant gene term over-representation

analysis can be performed. The analysis is performed on the fly with the input being the genes depicted

on the current subtree and over-represented biological terms (gene or plant ontologies, pathways,
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targeting transcription factors and protein domains) are displayed on the enrichment summary table. p

value calculations are based on Hypergeometric Distribution (Forbes et al., 2011). Over-represented terms

are ranked by their False Discovery Rate (FDR) (Benjamini and Hochberg, 1995) adjusted p values in

ascending order. Only those terms with an FDR-adjusted p value %0.05 are presented. For each term,

the hit percentage (times the term appearing in the coexpression subtree over its appearances in all avail-

able genes) and the over-representation rate (times observed over expected) are also presented.

Increasing or decreasing the tree size affects the results of this analysis. By increasing the size of a tree, en-

riched terms that are not available in a smaller tree, may be revealed. On the other hand, a larger subtree

may contain gene subclades of different functions, so decreasing the tree size would yieldmore specialised

enriched term results. To this end, observing the fluctuations of biological term enrichment p values may

also be helpful to determine the optimal tree size. In a second table, a full list of the genes of the subtree are

displayed, along with all terms of that category that describe them, with links to their source website.

Finally, the gene list of the subtree can also be downloaded to be used in subsequent analyses e.g. Web-

Gestalt and links to STRING, Thalemine, g:Profiler and Flame websites are redirecting the gene list for

additional analyses.
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