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Modeling the Covid-19 Epidemic using Time Series Econometrics∗

Adam Goliński† and Peter Spencer‡

Abstract

The classic ‘logistic’ model has provided a realistic model of the behaviour of Covid-19 in China

and many East Asian countries. Once these countries passed the peak, the daily case count fell back,

mirroring its initial climb in a symmetric way, just as the classic model predicts. However, in Italy and

Spain and most other Western countries, the first wave of the epidemic was very different. The daily

count fell back gradually from the peak but remained stubbornly high. The reason for the divergence

from the classical model remain unclear. We take an empirical stance on this issue and develop a model

framework based upon the statistical characteristics of the time series. With the possible exception of

China, the workhorse logistic model is decisively rejected against more flexible alternatives.

1 Introduction

There are many different ways of analyzing and projecting the progress of an epidemic like Covid-19. Avery,

Bossert, Clark, Ellison, and Ellison (2020) group these approaches into two broad types. On the one hand,

there are the large computer models that analyze the spread of the disease and the effects of public health

interventions in fine detail, like the one used by the UK government and its advisors (Ferguson et al., 2020).

These ‘mechanistic’ models are largely theory-based and in that sense resemble the large theory-based models

constructed by central banks to analyze the effect of their policy interventions on the economy. On the other

hand, many epidemiologists fit curves suggested by the theoretical dynamics to the time series data and use

these to make data-based predictions. An example is the model used by the Institute for Health Metrics and

Evaluation (IHME) at the University of Washington to make the forecasts that underpin hospital resource

planning in the US and White House briefings. This fits daily mortality data using the Gaussian bell curve

(Murray, 2020). Avery, Bossert, Clark, Ellison, and Ellison (2020) classify these as ‘phenomenological’

models and note their resemblance to reduced-form econometric models. We also follow this data-based

approach.

∗We are grateful to Karl Claxton, Nigel Rice, Luigi Siciliani for insightful comments. We are also indebted to a referee for
helpful suggestions.

†Department of Economics and Related Studies, University of York, YO10 5DD; adam.golinski@york.ac.uk.
‡Department of Economics and Related Studies, University of York, YO10 5DD; peter.spencer@york.ac.uk.
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These two approaches complement each other nicely. Large-scale theoretical models are very useful for

analyzing policy interventions and other structural changes but can miss important links, especially when

confronted with ‘black swan’ events such as a financial breakdown or the emergence of a new variant of a

virus like Covid-19. Moreover, it is hard to know what values to attribute to the parameters that govern the

initial spread of a novel virus and the subsequent behavioural response. Small data-based models usually

provide better forecasts. The Bank of England’s Monetary Policy Committee uses both types of model for

informing their decisions and forecasting (Burgess et al., 2013). Reduced form models can also be used to

check the properties of the theoretical models and match them better to the data (Meenagh, Minford, and

Wickens, 2009).

Although epidemiological models may differ in many respects, they are all based on the same underlying

theory and invariably predict that the daily counts for infections and deaths follow a bell-shaped curve. In

other words, once the peak is passed and the daily count begins to fall, it follows a path that mirrors the

upward climb, before coming to an end. In the large mechanistic models, this classic pattern follows from the

dynamics of the epidemic, which naturally slows as the disease runs through the population and immunity

increases. Precautionary behaviour on the part of the public and policymakers are also likely to be important

in slowing the spread of the disease. In the phenomenological models, the daily count follows a bell-shaped

path by assumption and means that the cumulative count follows a sideways S−shaped logistic curve.

These symmetric dynamics have provided a reliable way of modelling outbreaks of influenza and other

epidemics in the past. Indeed, simple regression models based on fitting the bell (or logistic) curve to the

data, also proved accurate in predicting the path of the Covid-19 outbreak in China and many East Asian

countries (Jia, Li, Jiang, Guo, and Zhao, 2020, Batista, 2020). However, the experience of Italy and Spain,

which was followed by the US, the UK and many other countries, has been very different. The daily mortality

figures have fallen back gradually from the peak in these countries, but have remained stubbornly high. This

contrast is apparent in the daily infections series plotted for China and for Italy in Figure 1.

A positive skew in the national time series can appear because they aggregate data for areas that are hit

by the virus at different times. However, data for hospital admissions and fatalities in hard-hit regions and

cities like Lombardy in Italy and New York in the US also exhibit a pronounced skew.1 A positive skew in

the infections data may reflect measurement problems, such as improvements in the testing regime. It could

also be due to the non-normality of community transmission. For example, the number of transmissions

per person is known to have a long tail, due to the presence of ‘superspreaders’. It has also been suggested

that delays, such as the infection period, may have a gamma distribution with a long tail (Shen, Taleb, and

Bar-Yam, 2020). Another plausible reason for the skew in mortality data is that the length of time from

infection to death or recovery follows a gamma distribution (Hogg and Craig, 1978, Bird, 2013). Some people

1These data are available at: https://covidtracking.com/data.
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recover or regrettably die very quickly, but others take much longer. This distribution is used by the MRC

Biostatistics Unit to infer the true number of infections and the reproduction number (R) from mortality

figures for the UK regions (Seaman and De Angelis, 2020). There is also a positive skew in the reporting lag

(Bird and Neilsen, 2020, Birrell, Blake, van Leeuwen, and De Angelis, 2020).

Whatever the reason for this asymmetry, it is clear that the classic model has failed us badly this time.

This has been documented by several recent studies. For example, Marchant, Samia, Tanner, and Cripps

(2020) show that IHME forecasts are usually overtaken by the data within a few days. We show that the

classical model also fails in many other countries. Instead of trying to delve deeper into the data to try and

find the reasons for this failure, we take an empirical stance and develop a model that is based upon the

statistical characteristics of the national time-series. We model the daily mortality data for the first wave in

fifteen countries published by the European Centre for Disease Control (ECDC). We use these data rather

than infections because of the acute public and policy interest focus on these data and because they are less

prone to measurement error.

We use the tools developed by econometricians to handle non-standard time-series, representing economic

growth and speculative bubbles in financial markets for example, to analyze the dynamics of an epidemic.

We compare the performance of the classical logistic model with flexible models based on the gamma and

beta functions using an expanding data sample designed to mimic the data available to policymakers as

an epidemic evolves in real time. At each stage, we identify the best fitting model using the Schwartz

Information Criterion (SIC) and test forecasting performance using four-week projections.

This exercise identifies three distinct phases. The logistic model systematically under-forecasts over all

three phases, but initially, in the upswing phase of the epidemic, its in-sample fit compares reasonably well

with its rivals. But after a month or so, as the peak is passed and any asymmetries become apparent, the

gamma and beta models fit much better than the logistic. Because they have greater flexibility to handle

the initial stages of the epidemic, this is the case even in countries like Germany and Denmark that do not

exhibit much of a skew. The gamma model is more robust than the beta in the face of data irregularities

during this phase and generates more reliable forecasts. In the final phase, typically after a couple of months,

the end-wave features become apparent. In most countries, mortality rates fall close to zero and the beta

model with its distinct cut-off feature performs better than the gamma in terms of both in-sample fit and

post-sample forecast accuracy. However, in the US, Brazil and Portugal, which move into the second wave

without much of a hiatus, the gamma model still outperforms the beta over the full sample.

The next section of the paper sets out the three theoretical models and Section 3 explains how these

are fitted to the data. The results are presented in Section 4. Section 5 offers some final observations and

suggestions for future research.
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2 Modelling an epidemic using time-series econometrics

Econometricians are used to dealing with difficult economic and financial times series. Their data often

violate the classical assumptions adopted in the statistical texts and thus need to be handled using special

techniques. For example, macroeconomic data like GDP exhibit exponential growth and financial prices

can exhibit speculative bubbles that are explosive. They may respond with long and variable lags to policy

interventions and exogenous shocks. These data may be measured with error and subject to structural shifts

as behaviour or government policies change.

As Castle, Doornik, and Hendry (2020) argue, epidemiological data are fraught with similar problems.

These econometricians have used sophisticated linear trend fitting techniques to decompose the cumulative

death counts. They split each series into trend and remainder terms, then project them forward and recom-

bine them to produce a forecast for the following week. As they note, a significant fall in outcomes relative

to extrapolations from such models can be an indication that policy interventions are having the desired

effect. Epidemiologists use similar models to separate the noise from the trend in the time-series and use the

trend to estimate the reproduction number R, the number of people an infected person is likely to infect.

However, deviations from a linear trend can occur for many other reasons. For example, as the death

toll mounts and people begin to worry about the virus and its consequences, they are likely to modify their

behaviour in a way that reduces outcomes relative to a linear extrapolation. Longer term, the trend should

bend as immunity builds up and the population becomes less susceptible to the disease. These endogenous

feedback effects are built into the non-linear dynamics of the epidemiological models, which allow the trend

to change as the epidemic progresses. This should in principle improve forecasts beyond the weekly horizon

and make it more likely that systematic forecast errors are due to government interventions or other external

influences.

2.1 The logistic process

These epidemiological models range from the large-scale computer models built by the Imperial College and

other modelling groups to simple data-based curve-fitting techniques. For example, many epidemiologists fit

a logistic curve to the cumulative number of infections C(t):

C(t)

K
=

1

1 +Ae−rt
, (1)

where: A = K/C(0) − 1, K is the final epidemic size and r ≥ 0 the propagation or infection rate (see for

example Batista (2020), equation (2)). However, in view of the well known issues around estimation with

non-stationary data (Sims, 1980), we model the number of new cases. Differentiating (1) and substituting

Ae−rt = K/C(t) − 1 shows that the number of new cases at any time is a bell-shaped function of the
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accumulated cases:
dC(t)

dt
= rC(t)

(

1−
C(t)

K

)

. (2)

This model provides a simple way of allowing for the non-linear feedback mechanisms, loosely based on

the SIR (susceptible, infectious, removed) model (Kermack, McKendrick, and Walker, 1927, Avery, Bossert,

Clark, Ellison, and Ellison, 2020, Dimdore-Miles and Miles, 2020). Initially, with C(0) cases observed when

the outbreak is detected, all of them are ‘infectious’ and they will infect other ‘susceptible’ people at the

rate r per unit of time (dt) causing dC(0) = rC(0)dt new cases. Thus initially, the disease will spread

exponentially, at the reproduction rate ρ = dC(t)/(C(t)dt) = r. However, various negative feedbacks then

arise, which reduce the reproduction rate.

The classic feedback mechanism is provided by herd immunity. If people who have had the disease are

less susceptible to catching it again, then they move into the ‘removed’ class. As they increase as a share

of the population (N) the probability that an infectious person will meet a susceptible one falls from 1 to

(1−C(t)/N)). This results in rC(t)(1−C(t)/N)dt new cases per unit of time, resulting in (1) with K = N .

However, there is a problem with this interpretation. If this were the only mechanism at work, we would

expect K to be of a similar size to the population N . But it is much smaller than N empirically, suggesting

that C is under-recorded. For example, Dimdore-Miles and Miles (2020) assume that the number of new

cases that are symptomatic and recorded is a fraction π of the true number. If C represents the true number

and Co the recorded number, then substituting C = Co/π into (2) gives the model:

dCo(t)

dt
= rCo(t)

(

1−
Co(t)

πK

)

.

Thus the estimator πK effectively replaces K. However, as they conclude the value of π would need to be

extremely low to fully explain the low value of this estimate.

Precautionary feedbacks can also help to reduce the reproduction rate, as argued in the introduction.

For example, as C grows, people are likely to modify their behaviour in a way that mimics the effect of

immunity, reducing the reproduction rate ρ = r(1 − C(t)/K) via the K parameter. This behaviour can

be reinforced by government interventions like lockdown. On a more pessimistic view, if immunity from

exposure to the disease is partial or tends to fall with the time since exposure, or indeed if the precautionary

response depends upon the recent rather than the cumulative number of cases, then there may not be an

upper limit to the cumulative number of cases.

The logistic model is designed to explain the transmission of a virus within a closed community. But

apart from the country where the virus originates, all the initial cases will involve people that have recently

entered the country and the number of new cases n will be related to the number of new arrivals rather than

C. Thus in the initial stages, before community transmission begins: dC(0) = ndt and not dC(0) = nC(0)dt
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as implied by the logistic model.

However, the main problem with this model is that the bell and logistic curves are symmetric. The bell

curve has a single peak at C = K/2. Once this is passed, the number of new cases begins to fall, following

a path that mirrors the upward climb, before slowing to a stop as C approaches K. This was in fact the

experience of China and many East Asian countries, which is why the logistic curve fits their data well.

Unfortunately, the experience in many other countries has been very different. The number of deaths fell

back from the peak, but then remained stubbornly high.

2.2 A long, thin-tailed epidemic

We need a more flexible model to allow for these possible effects. Mathematically, we can achieve this simply

by raising the C and (1− C/K) terms in (2) by the powers α and β. This makes it a beta function, which

is much more flexible:
dC(t)

dt
= rC(t)α

(

1−
C(t)

K

)β

. (3)

Alternatively, suppose that the negative feedback effects mean that the reproduction rate ρ follows an

exponential rather than a power law as the number of cases mounts: ρ(t) = re−γC(t). Then:

dC(t)

C(t)
= ρ(t)dt = re−γC(t)dt ⇐⇒ dC(t) = rC(t)e−γC(t)dt.

Importantly, in this model, there is no upper limit on the total number of cases as there is in the logistic

and beta models. This makes it easier to fit to data sets in which the number of cases is falling but remains

high, making it difficult to estimate the end-point parameter K. Theoretically, as noted, there could be

situations in which the disease becomes endemic and there is no limit to the cumulative number of cases.

The performance of this exponential feedback model can be improved by changing the power of the C term

to α, thus giving the trend a form similar to that of the gamma density function:

dC(t) = rC(t)αe−γC(t)dt. (4)

This function is used extensively in statistics to describe probability distributions, the well-known χ2 dis-

tribution being a special case (Mood, Graybill, and Boes, 1973). Its mathematical properties are reviewed

in Appendix 1.

These processes are non-stationary and should be handled using techniques developed for modelling non-

stationary economic data, like growth and inflation. Their dynamics are dictated by stochastic differential

equations with drift (i.e. trend) and volatility terms, like those used to model interest rates (Ait-Sahalia,

1996). We give the volatility term a form that is congruent with the drift.
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3 Modelling the daily number of deaths

The logistic model outlined in the previous section was originally developed to explain the number of new

infections. However, in the absence of mass testing, the true numbers of people who are infected and those

that have recovered are likely to be much larger than those recorded, especially if there is a large proportion

of asymptomatic cases. To avoid these measurement problems, we extend the reasoning of the logistic

infections specification to track deaths instead, following Murray (2020) and many others.

Suppose for example that deathsD(t) represent a constant lagged fraction of the true number of infections

C(t). Substituting this into (4) and suitably reinterpreting the parameters:

dD(t) = g(D(t)) = rD(t)αe−γD(t)dt. (5)

We discretize (5) and use dt to represent dD(t) and the cumulative number of deaths as Dt =
∑t−1

j=0 dt−j .

Note that dt = Dt −Dt−1.

In the empirical models we use ECDC data for daily mortality rates, which express the daily death count

as a constant share of the population. This has the effect of normalizing the data to allow for country size,

which is particularly important in cross-country comparisons such as these conducted in Section 4.5.2 We

use a rolling weekly average of the daily mortality rate instead of the daily series. This has the effect of

smoothing out the erratic day-to-day movements often seen in the raw data as well as the weekend reporting

lag seen in the US and several other countries. Specifically, denote the reported number of daily deaths in

day t by dot . We calculate its moving average dt =
1
7

∑6
j=0 d

o
t−j and use it to find the cumulative value D(t).

Finally, we add a congruent volatility specification:

dt = rDα
t−1 exp (−γDt−1) + σ

[

rDα
t−1 exp (−γDt−1)

]δ
ǫt, (6)

where α, γ, r and σ are parameters to be estimated and ǫt ∼ N(0, 1) is a Gaussian error term. These variables

are measured as a share of the population, per 10 million people. Similarly, the beta model corresponding

to (3) is:

dt = rDα
t−1(1−Dt−1/K)β + σ

[

rDα
t−1(1−Dt−1/K)β

]δ
ǫt. (7)

Setting α, β = 1 simplifies this to the logistic specification:

dt = rDt−1(1−Dt−1/K) + σ [rDt−1(1−Dt−1/K)]
δ
ǫt (8)

We found that δ was close to 0.75 for these models and countries and fixed this parameter at this value in

2We are particularly grateful to a referee for this suggestion. This is a scaling adjustment that does not affect the fit but
removes the effect of the size of the population on the K and γ parameters.

7



the regressions reported here.3

4 Modeling the ECDC death data for the first wave

The previous section identifies three candidate models (logistic, gamma and beta). We estimate these models

using data for the first wave provided by the ECDC. This source provides daily death (and infections) data

from 1st January to 14th December 2020, when the ECDC discontinued the daily series due to the effects

of retrospective corrections, delays in reporting and similar problems.

To select the best model, we consider both the in-sample fit and (apart from China) the post-sample

forecasting performance. To rank the models by fit we use the SIC, which adjusts the likelihood value

appropriately for the number of parameters and observations to guard against over-fitting. To avoid the bias

in estimates caused by an integer data count we start the estimation for each country from the date when

the cumulative number of deaths exceeds 1.5 per 10 million people. The end of sample for each country is

determined by the end of the first wave. Specifically, we end it at the beginning of the two-weekly period

with the minimum death toll, counting from the beginning of the sample. (Please see the tables for more

detail.) We then check that the best fitting model tends to provide the best forecasts. Finally, we report the

full sample parameter estimates as well the estimates from an eight-week data sample, used to represent an

on-going epidemic.

4.1 China

Table 1 shows the regression results obtained for the three rival models using the data for China. This was

of course the first country to be hit by Covid-19 and managed to suppress it effectively by the end of March,

when we end this sample. Figure 2 shows the in-sample fit of the logistic (red line), gamma (green line)

and beta (blue line) regression models. As noted in the introduction, the bell-logistic model represents the

behaviour of this outbreak nicely, although the beta drift model is better in terms of statistical criteria and

with β > α indicates a small positive skew in the data.

4.2 Italy and Spain

We next analyze the daily mortality data for Italy and Spain, which were the first western countries to be

overwhelmed by the virus and where the skew in the mortality figures first became apparent. The top panel

of Figure 3 shows how the models fit the weekly average of the daily death data over the full sample. Table

2 reports the full sample parameter estimates. The beta model performs best for both countries over the full

period. Arguably, a more relevant test is to ask how well these models fit and forecast as the epidemic evolves

3The Matlab code is available on the website: https://sites.google.com/york.ac.uk/adam-golinski/coronametrics.
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in real time, helping to inform the tightness of government policy measures. To assess this, we estimate a

weekly series of regressions with an expanding time window. In the second row panel of Figure 3, we plot

the SIC value for each weekly regression for the three models.

This exercise identifies three distinct phases. Initially, the SIC criterion finds difficult to discriminate

between these models. That is likely to be because they only differ in the way that they represent the nega-

tive feedback effects, which are not very powerful initially, making it very difficult to predict the final death

toll.4 However, after another a month, the gamma and beta models begin to outperform the logistic. This

outperformance becomes more pronounced as the peak is passed and the data becomes more informative

about the negative feedback effects. As noted in the introduction, this is because the daily mortality figures

during the first wave were asymmetric: the downswing was more gradual than the initial upswing. Conse-

quently, the logistic model, being symmetric, fits poorly during this phase and systematically under-predicts

the subsequent number of deaths.

The poor forecasting performance of the logistic model is clear from the ‘hedgehog’ forecast charts shown

in the third row panel. To construct this type of chart, we use parameter estimates from the expanding

weekly sample models to make a succession of four-week ahead forecasts. The dots in this chart, which form

the back of the hedgehog, show the cumulative number of deaths observed at the end of each week. The

forecasts are shown as the spines of the hedgehog. After a couple of months, we identify a third and final

phase, in which the beta models begin to outperform the gamma model. This is because the logistic and

beta functions have a well-defined end value (K) for the final death toll, relative to population (which the

gamma does not), terminating the wave decisively.

To illustrate the way that these models represent an on-going epidemic, Table 4 reports a set of parameter

estimates for the eight-week data sample. The gamma and beta models both perform well at this point,

significantly outperforming the logistic. Note in particular the very low K values for the final death toll

implied by the logistic model. The K-values from the beta model provided a much more realistic projection

of the final outcome. The bottom panel of Figure 3 shows how these models fit the four- and eight-week

data samples.

4.3 The US and the UK

We next look at the US and the UK, two of the countries with the highest mortality rates during the first

wave. The top panels of Figure 4 shows how the models track the full sample, the two central panels plot the

SIC values and 4-week forecasts for the weekly regression models and the bottom panels shows the four- and

eight-week fit. The parameter estimates are reported in Tables 2 and 4. Once again, we see an initial phase

4Reflecting this, our preliminary analysis of the data conducted in real time, suggested that the logistic model offered a
useful tool for analyzing the initial spread of the virus, helping to identify the peak and to make tentative short-range forecasts.
However, it proved difficult to predict the final death toll at this stage.
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in which all three models have a similar fit, followed by a steady outperformance of the gamma and beta

models in terms of both the fit and the forecasting performance. In the UK, we identify a third and final

phase after around two months, in which the beta clearly outperforms the gamma model in these respects

and the logistic does as well as the gamma model. The UK resembles the Italian experience in this sense.

However, the US experience was then very different because the weekly death toll never reached the lows

seen in these countries over the late summer months. The beta and gamma models perform equally for the

US until the mortality figures begin to move back up again in September, marking the beginning of the

second wave. It is perhaps worth noting that the curves generated by these two US models overlap and

smooth out the lumpy figures announced around the peak of the epidemic. The erratic nature of these data

make forecasting very difficult and lead to large errors over the following month. However, the subsequent

forecasting performance of the US gamma model is particularly impressive.

4.4 Other countries

We estimate these models for eight other West European countries5: France, Germany, Belgium, Denmark,

Ireland, the Netherlands, Portugal and Sweden. We also estimate models for Canada and Brazil. Performance

is shown graphically in Figures 6-9. The parameter estimates are reported in Tables 2 - 5.

The patterns observed in Italy, Spain, the US and the UK are also apparent in these figures. The

SIC criterion reliably selects the model that provides the best forecasts. With the exception of Brazil

and Portugal, which are similar to the US in progressing directly into a second wave, the beta drift model

fits much better than the other models over the full period. However, over the first two or three months

the gamma drift model invariably fits as well, if not better, and provides more robust forecasts than the

beta. The gamma model fits and forecasts remarkably well for Brazil. In this case, the very low eight-week

estimate of γ stands out, indicating that the negative feedback effects are still very weak at this point, with

the epidemic still in the upswing phase. The logistic model systematically under-forecasts the spread of the

virus in all these countries, unless and until the epidemic ends.

These patterns stand out despite the very different experiences of these countries during the first wave.

Germany successfully combined a lockdown with mass population testing and had a much lower mortality

rate than France (Figure 5) and other countries. Denmark was the second European country after Italy to

go into lockdown, on 11 March, before any fatalities had occurred. Its peak mortality rate was similar to

that seen in Germany and much lower than in its neighbour Sweden, which was exceptional in having relied

upon individual responsibility rather than lockdown to contain the spread of the virus.

5East European countries remained largely unaffected by the first wave of the epidemic.
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4.5 International comparisons

Time series models are designed to abstract from the noise in the data and provide estimates of the trend in

the series. In the case of an on-going, non-linear process like an epidemic, they can also be used to indicate

the rate at which the trend is increasing or decreasing and whether this rate is accelerating or decelerating.

In this case, the trend in the cumulative death toll is the estimated number of daily deaths, described by the

a drift function like equation (7). These properties can be seen from the shape of the curves in Figures 3 to 9.

However, rather than ‘eyeballing’ charts it is often better to look at the results numerically, using well-known

statistics, particularly when comparing different countries. Table 6 shows some of the basic numbers that

describe the spread of the epidemic in the US, Canada and West European countries at the eight week stage.

We use the gamma drift model to represent this. Its parameters arguably allow a broader assessment of the

characteristics of the virus than comparisons of death tolls in different countries.

These statistics follow from the well-known mathematical properties of gamma-type functions, which

are reviewed in the Appendix. The first three columns show the parameters estimated for each country,

reproduced from Tables 4 and 5. These are first used to determine when the peak in the death toll is likely

to have occurred. This can be difficult to gauge from the data visually, especially in countries like the US

where the data is lumpy around the peak due to measurement problems. The table shows the date that the

peak was reached in each country; the estimated number of daily deaths at the peak (corresponding to the

height of the peak in each figure) and the cumulative number of deaths at that point. We then calculate the

‘skewness’ coefficient for each country, shown in column (vii). This indicates how different the decline from

the peak was compared to the rise from the first few cases to the peak. The rows of this table are ranked in

terms of skewness, starting with Belgium at the top.

One of the stand-out features of this table is the strong positive correlation between the skew and the daily

(R2 = 0.94202) and especially the cumulative (R2 = 0.99999) mortality rates at the peak. Countries like

Germany and Denmark that are judged to have dealt with the epidemic effectively compare very favourable

in all of these respects with those like the UK and Belgium that were not. More interesting is the observation

that all three variables are negatively correlated with the parameter γ, which of course acts as an indicator

of the strength of the negative feedback effects. This suggests prima facie that the negative feedback effects

are largely due to the effectiveness of government policy and precautionary behaviour by the public rather

than herd immunity. Indeed, if we take the inverse of the gamma parameter (effectively expressing the

exponent in (5) as D/K, as in the other two functions, rather than γ × D), its correlation with the skew

(R2 = 0.91409), the daily (R2 = 0.99413) and cumulative (R2 = 0.99371) mortality rates is also very high.

Importantly, this does not necessarily follow from the gamma function, since, for example, equation A1 in

the Appendix shows that the skew depends upon both the α and the γ parameters. It only follows in Table

6 because the variation in α is small compared to the variation in γ.
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Although this research project was initially aimed at modelling the features of the stubborn upper tail

seen in Italy and elsewhere, these results also help us to a better understanding of the early, exponential,

phase of this pandemic. In this early, pre-peak phase, attention is focussed on the time that it takes for

the cumulative number of infections to double. One of the striking features of Tables 2 to 3 is that the

estimates of the parameter ρ(1) = r from the bell-logistic model are remarkably close, ranging from 0.07 for

Sweden to 0.11 for Belgium . This parameter is important because it shows the daily growth rate during the

initial phase of the epidemic, before the various negative feedback effects are significant. Thus the logistic

model would suggest that country-specific factors are not significant in explaining the initial spread of the

virus. However, the gamma drift model, which allows more flexibility in tracking the initial phase through

the parameter α, suggests that the logistic model covers up important idiosyncratic effects. Table 6 shows

the values of ρ(0.5) and ρ(1.5) and the respective doubling times during the initial phase. With D = 0.5 the

doubling time ranges widely, from less than a day in Denmark to 3.14 for France, in strong contrast to the

impression given by the logistic model.

5 Conclusion

This paper shows how the econometrician’s toolkit can be used to develop a simple reduced form model of the

time series generated by an epidemic. We illustrate this using daily mortality data generated by the first wave

of Covid-19 for fourteen American and European countries. We use standard model selection techniques to

find the model that best fits in-sample at any stage of the epidemic and show that this reliably generates the

most accurate post-sample forecasts. With the exception of China, the logistic model frequently employed

by epidemiologists to model time series data is decisively rejected against the more flexible gamma and beta

models. These handle the very different wave characteristics seen in these countries remarkably well.

These time series models provide useful statistics that summarize the reproduction, morbidity and mor-

tality rates in different countries. We could use these to look at the effects on these indicators of variations

in containment and testing strategies across a cross-section of countries, while controlling for different de-

mographic and other characteristics. One of the interesting findings that emerges from the present study is

that there is a strong correlation between the parameters like γ and K that represent the strength of the

negative feedback and the skew and peak mortality rates. The epidemic was less severe in countries like

Germany, Denmark (and indeed China) that were generally regarded as being effective in dealing with the

virus than they were in others like Belgium and the UK that were not and it seems likely that these feedback

parameters reflect the efficacy of government policy.

However, such reduced form models have their limitations. Their dynamics are the result of a convolution

of the long and possibly variable lag distributions involved in the data generation process and it is impossible
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to unravel these without embedding them in a large scale structural model. In the present context, despite

the prima facie argument that the negative feedback results from policy and precautionary behaviour rather

than from the build up of immunity, we cannot be sure. Nor can we say whether the skew seen in the

mortality data in many western countries during the first wave was due to the skew in the lag from infection

to reinfection, the lag from infection to death or other effects. The difference between the experiences of

these countries and East Asian countries remains to be explained.

Nevertheless, looking forward, we can potentially use reduced form models to identify structural breaks

and perform similar tasks. Econometricians have a variety of handy tools for conducting this kind of work,

including tests for discrete changes when the break-point is unknown a priori (due to the advent of a new

variant for example) as well as tests for breaks at points when a change is likely to have occurred (due to a

policy intervention for example). The explosive behaviour test proposed in a series of papers by Phillips, Shi

and Yu (Phillips, Shi, and Yu, 2014, Phillips, Shi, and Yu, 2015) also looks potentially useful in this respect.

This was developed for testing bubbles in financial time series, which are analogous to the early phase of a

new virus or variant.
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Appendix: Properties of the gamma drift function

The mathematical properties of gamma-type functions are well known. This function is used to define the

gamma probability distribution Mood, Graybill, and Boes (1973). Health economists are also used to dealing

with skewness and kurtosis. For example Jones, Lomas, and Rice (2015) use generalized gamma and beta

functions to handle the tails in health cost distributions.

The peak in mortality

The value of the drift in (6) at any time gives the expected number of deaths and is obtained by substituting

the cumulative number of deaths at that time. However, analytically, it is often easier to work in continuous

rather than discrete time, using (5) instead of (6). Gamma-type functions have a single peak. This is found

by taking the first derivative of the drift:

∂

∂D
rDαe−γD = rDα−1e−Dγ (α−Dγ)

and equating this to zero by setting D = α/γ. These values are shown in column of the first panel of Table

6 and substituting them back into (5) gives the estimate of the daily death toll at the peak. The peak

corresponds to the mode in the gamma distribution. Similarly, the skewness coefficient shown in column

(vii) follows from that of the gamma distribution (Mood, Graybill, and Boes (1973)):

Skew =
(α+ 1)(α+ 2)(α+ 3)

γ3
. (A1)

Doubling time

Although this paper is focussed on the features of the stubborn upper tail, our results also help us to a

better understanding of the early, exponential, phase of this pandemic. In that phase, attention is focussed

on the time that it takes for the cumulative number of infections to double. This can also be used to

assess the initial behaviour of the mortality rate. But to gauge that we need to have an estimate of the

reproduction rate ρ(D(t)). Table 6 shows three estimates implied by the gamma drift function (7), expressed

as the expected daily change as a decimal fraction of the cumulative. The first is evaluated at the start of

the sample with D = 1.5, suggesting that is in the range of 0.2 − 0.6 for most countries. The second is a

pre-sample extrapolation value for D = 0.5. The third is the value at the peak.

We can then calculate the doubling time by dividing (5) by D to get the percentage or logarithmic change:

d lnD(t) = dD(t)/D(t) = ρ(D(t))dt = rD(t)α−1e−γD(t)dt,
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which we can integrate to get the approximation: lnD(t+ τ)/D(t) = ρ(D(t))τ, where τ is measured in days.

The doubling time is found by setting D(t+ τ)/D(t) = 2 and solving for τ :

τ = ln 2/ρ(D(t)) = 0.693/ρ(D(t)).

As noted in Section 4.5, the values in the table range widely across different countries.
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Tables and figures

Model SIC r K α β γ × 10, 000 σ
China

Bell 7.9117 0.1578
0.0080

3, 305
3

- - - 1.0310
0.0961

Gamma 8.5713 0.1648
0.0561

- 1.1527
0.0684

- 13.650
1.036

1.1969
0.1166

Beta 5.4226 0.7353
0.0635

3, 347
7

0.7904
0.0148

1.1470
0.0323

- 0.2619
0.0226

Table 1: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation period is from 23 January to 31 March 2020.

Model SIC r K α β γ × 10, 000 σ
Italy (01/03/2020 - 02/08/2020)

Logistic 7.9062 0.0826
0.0046

5, 526
1.27

- - - 1.5935
0.1128

Gamma 7.8276 0.1234
0.0296

- 1.1771
0.0440

- 9.7435
0.3990

1.1917
0.0806

Beta 4.7824 1.1271
0.1048

5, 830
6.57

0.6834
0.0142

1.2163
0.0243

- 0.3114
0.0181

Spain (12/03/2020 - 16/07/2020)
Logistic 8.4716 0.1017

0.0068
6, 461
1.15

- - - 1.8673
0.1515

Gamma 8.4090 0.1803
0.0479

- 1.1517
0.0471

- 8.7862
0.3752

1.2378
0.0912

Beta 6.8855 2.8428
0.6945

6, 464
3.52

0.5626
0.0352

0.9622
0.0377

- 0.7590
0.0523

US (18/03/2020 - 08/07/2020)
Logistic 8.6075 0.0766

0.0052
4, 007
19.39

- - - 1.6842
0.1395

Gamma 4.9271 0.4083
0.0302

- 0.8774
0.0134

- 8.8797
0.1404

0.2355
0.0159

Beta 4.9720 0.4101
0.0303

466, 913
91,619

0.8761
0.0134

412.3503
81.1246

- 0.2359
0.0157

UK (17/03/2020 - 01/09/2020)
Logistic 7.9793 0.0790

0.0046
6, 226
1.33

- - - 1.6887
0.1175

Gamma 7.9272 0.1062
0.0267

- 1.2231
0.0458

- 9.8539
0.3996

1.3202
0.0891

Beta 4.5045 1.0576
0.0947

6, 280
5.53

0.7060
0.0134

1.3073
1.0214

- 0.3037
0.0169

Canada (22/03/2020 - 06/09/2020)
Bell 6.1274 0.0695

0.0033
2, 445
1.27

- - - 1.1160
0.0725

Gamma 6.1712 0.0780
0.0170

- 1.2314
0.0470

- 22.4705
0.9927

1.0066
0.0659

Beta 3.7953 0.3642
0.0369

2, 500
6.64

0.8075
0.0183

1.4263
0.0405

- 0.3447
0.0194

Brazil (28/03/2020 - 07/11/2020)
Bell 8.2387 0.0370

0.015
7, 820
33.84

- - - 1.4078
0.0782

Gamma 4.9886 0.3222
0.0188

- 0.7513
0.0095

- 3.1001
0.0532

0.2402
0.0115

Beta 4.7114 0.4958
0.0300

10, 456
435.49

0.6565
0.0103

1.6636
0.1506

- 0.2054
0.0098

Table 2: Full sample estimates of the logistic, gamma and beta models. Standard errors are reported in
small font.
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Model SIC r K α β γ × 10, 000 σ
Belgium (15/03/2020 - 05/07/2020)

Logistic 9.2934 0.1106
0.0068

8, 4219
3.13

- - - 1.7737
0.1436

Gamma 9.2518 0.1644
0.0442

- 1.1559
0.0468

- 6.5104
0.3128

1.4130
0.1111

Beta 5.0843 1.1039
0.0623

8, 539
9.17

0.7435
0.0083

1.3049
0.0179

- 0.2001
0.0135

The Netherlands (14/03/2020 - 18/07/2020)
Logistic 6.9724 0.1041

0.0063
3, 550
1.58

- - - 1.3729
0.1277

Gamma 7.5372 0.1334
0.0371

- 1.1999
0.0563

- 15.8447
0.8330

1.2587
0.0980

Beta 4.3135 1.0951
0.1092

3, 569
3.11

0.6867
0.0163

1.1468
0.0249

- 0.3154
0.0203

France (11/03/2020 - 29/07/2020)
Logistic 7.5175 0.0959

0.0055
4, 507
1.18

- - - 1.4726
0.1084

Gamma 7.4870 0.0667
0.0158

- 1.3608
0.0473

- 14.6807
0.6061

1.2611
0.0932

Beta 4.4665 0.4076
0.0380

4, 630
11.91

0.8893
0.0155

1.6833
0.0401

- 0.3230
0.0197

Germany (21/03/2020 - 05/09/2020)
Logistic 5.1518 0.0734

0.0047
1, 122
0.4203

- - - 1.2248
0.0887

Gamma 4.6092 0.0885
0.0213

- 1.4104
0.0629

- 63.5154
2.8542

0.9395
0.0668

Beta 1.5931 0.4767
0.0399

1, 157
2.91

0.8043
0.0173

1.7157
0.0400

- 0.2367
0.0132

Denmark (20/03/2020 - 21/08/2020)
Logistic 4.6832 0.0813

0.0058
1, 070
0.02

- - - 1.3750
0.1012

Gamma 4.7736 0.1234
0.0412

- 1.2720
0.0680

- 60.8744
2.9943

0.9256
0.0672

Beta 2.8761 0.8059
0.1260

1, 101
4.67

0.6937
0.0320

1.5538
0.0662

- 0.4131
0.0250

Sweden (13/03/2020 - 28/08/2020)
Logistic 8.0976 0.0675

0.0037
5, 680
2.14

- - - 1.6309
0.1116

Gamma 7.5395 0.2110
0.0423

- 1.0138
0.0353

- 8.2822
0.3063

0.9736
0.0593

Beta 5.7591 1.2272
0.1653

5, 721
9.32

0.6216
0.0204

1.0739
0.0322

- 0.4605
0.0260

Ireland (16/03/2020 - 31/08/2020)
Logistic 6.2453 0.0854

0.0045
3, 623
0.07

- - - 1.4050
0.0854

Gamma 6.9755 0.0466
0.0127

- 1.4575
0.0590

- 20.1799
1.9434

1.4507
0.1116

Beta 4.7667 0.4531
0.0705

3, 6919
11.72

0.8477
0.0266

1.5749
0.0610

- 0.5644
0.0333

Portugal (22/03/2020 - 23/08/2020)
Logistic 7.5537 0.0591

0.0053
1, 743
2.39

- - - 2.0289
0.1787

Gamma 4.7037 0.5786
0.0911

- 0.8522
0.0328

- 26.1216
0.7786

0.4910
0.0293

Beta 4.3883 1.1209
0.1935

2, 371
160.87

0.6395
0.0381

2.9911
0.4672

- 0.4167
0.0246

Table 3: Full sample estimates of the logistic, gamma and beta models. Standard errors are reported in
small font.
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Model SIC r K α β γ × 10, 000 σ
Italy (01/03/2020 - 16/04/2020)

Logistic 8.4873 0.1520
0.0089

4, 3830
57.63

- - - 1.1210
0.1140

Gamma 4.8970 0.4998
0.0250

- 0.8707
0.0092

- 5.5416
0.1004

0.1513
0.0143

Beta 5.1327 0.5371
0.0336

19, 127
7,434.60

0.8506
0.0130

9.1594
4.1333

- 0.1642
0.0158

Spain (12/03/2020 - 7/05/2020)
Logistic 9.7410 0.1596

0.0111
5, 528
37.93

- - - 1.5203
0.1610

Gamma 6.4511 0.5670
0.0440

- 0.9063
0.0136

- 5.7420
0.1137

0.2440
0.0231

Beta 6.0448 0.7220
0.0660

11, 707
2,309.90

0.8444
0.0194

4.7457
1.3590

- 0.1908
0.0195

US (18/03/2020 - 13/05/2020)
Logistic 7.1653 0.1482

0.0079
2, 550
37.79

- - - 0.8704
0.0872

Gamma 4.6268 0.3964
0.0285

- 0.8858
0.0147

- 9.0802
0.2766

0.2034
0.0193

Beta 4.7256 0.4216
0.0292

229, 161
88,439.62

0.8703
0.0136

199.1241
73.6595

- 0.2054
0.0194

UK (17/03/2020 - 12/05/2020)
Logistic 8.7651 0.1537

0.0086
4, 794
50.04

- - - 1.1210
0.1135

Gamma 4.9953 0.4682
0.0213

- 0.8929
0.0082

- 5.4596
0.0815

0.1402
0.0133

Beta 5.1558 0.5722
0.0304

9, 446
867.75

0.8397
0.0103

3.5651
0.4871

- 0.1461
0.0147

Canada (22/03/2020 - 17/05/2020)
Bell 5.5679 0.1376

0.0057
1, 612
32.32

- - - 0.5583
0.0543

Gamma 3.6031 0.3184
0.0219

- 0.8642
0.0156

- 10.5394
0.4900

0.1793
0.0170

Beta 3.9660 0.3643
0.0301

2, 456
380.46

0.8182
0.0191

1.6071
0.04235

- 0.2071
0.0208

Brazil (28/03/2020 - 23/05/2020)
Bell 4.7548 0.1136

0.0053
1, 248
73.79

- - - 0.5176
0.0507

Gamma 2.2857 0.3844
0.0211

- 0.7027
0.0139

- 0.1000
0.7289

0.1303
0.0123

Beta 4.2741 0.7484
0.0665

20, 531
2,078.31

0.5798
0.0162

0.0050
0.0748

- 0.3675
0.0165

Table 4: Estimates of the logistic, gamma and beta models at the 8-week stage. Standard errors are reported
in small font.
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Model SIC r K α β γ × 10, 000 σ
Belgium (15/03/2020 - 10/05/2020)

Logistic 9.9357 0.1635
0.0100

7, 466
49.18

- - - 1.4080
0.1450

Gamma 8.0598 0.5382
0.0702

- 0.9029
0.0220

- 3.9301
0.1469

0.4594
0.0439

Beta 6.9573 0.7156
0.0480

12, 638
652.71

0.8356
0.0100

3.1893
0.2633

- 0.2524
0.0155

The Netherlands (14/03/2020 - 9/05/2020)
Logistic 8.3878 0.1510

0.0100
3, 094
32.17

- - - 1.2187
0.1272

Gamma 5.1897 0.5964
0.0432

- 0.8461
0.0140

- 8.3912
0.2060

0.2022
0.0192

Beta 5.2603 0.6035
0.0435

72, 270
23,219

0.8425
0.0139

59.1401
19.4683

- 0.2022
0.0190

France (11/03/2020 - 6/05/2020)
Logistic 7.5114 0.1720

0.0072
3, 806
23.03

- - - 0.7774
0.0761

Gamma 6.4715 0.2281
0.0268

- 1.0469
0.0226

- 8.5744
0.3037

0.4054
0.0388

Beta 5.5733 0.3423
0.0286

4, 920
256.19

0.9337
0.0167

2.1520
0.2508

- 0.2541
0.0233

Germany (21/03/2020 - 16/05/2020)
Logistic 6.0344 0.1442

0.0081
947
7.57

- - - 0.7651
0.0775

Gamma 3.6587 0.4031
0.0337

- 0.8859
0.0206

- 28.8674
0.9494

0.2016
0.0191

Beta 2.3962 0.5726
0.0286

1, 200
246.36

0.7573
0.0130

1.6599
0.1525

- 0.1021
0.0097

Denmark (20/03/2020 - 15/05/2020)
Logistic 6.8360 0.1399

0.0105
923
7.17

- - - 1.0642
0.1147

Gamma 3.8710 0.6464
0.0612

- 0.7997
0.0228

- 29.8669
1.0056

0.2109
0.0200

Beta 3.8216 0.7180
0.0571

3, 062
911.35

0.7589
0.0150

7.3850
2.7276

- 0.1985
0.0180

Sweden (13/03/2020 - 8/05/2020)
Logistic 8.0904 0.1434

0.0085
3, 399
63.97

- - - 1.0399
0.1058

Gamma 6.4488 0.4625
0.0549

- 0.8439
0.0228

- 5.8766
0.3452

0.3869
0.0369

Beta 6.5188 0.4635
0.0550

252, 661
223,953

0.8432
0.0228

147.3981
131.2944

- 0.3869
0.0369

Ireland (16/03/2020 - 11/05/2020)
Logistic 7.3545 0.1635

0.0088
2, 986
34.26

- - - 0.9201
0.0924

Gamma 6.5280 0.3314
0.0568

- 0.9429
0.0347

- 8.6326
0.5825

0.5168
0.0506

Beta 6.4445 0.4701
0.0847

3, 920
643.46

0.8459
0.0386

1.7610
0.0684

- 0.4677
0.0458

Portugal (22/03/2020 - 17/05/2020)
Logistic 7.4439 0.1451

0.0120
1, 161
8.72

- - - 1.2484
0.1382

Gamma 5.2371 0.8438
0.1213

- 0.7410
0.0335

- 21.2559
1.2594

0.3571
0.0341

Beta 4.4049 1.3262
0.1318

1, 271
38.21

0.5900
0.0223

1.0063
0.1155

- 0.2262
0.0214

Table 5: Estimates of the logistic, gamma and beta models at the 8-week stage. Standard errors are reported
in small font.
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Parameters Peak mortality rate Skew Reproduction rates Doubling time
Date Daily Cumulative ρ0 ρ1 ρ(peak)

r α γ × 10000 D = 0.5 D = 1.5 D = 0.5 D = 1.5
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii)

Belgium 0.5382 0.9029 3.9311 7 April 236 2,296 5.484 0.575 0.517 0.102 1.204 1.340
UK 0.4682 0.8929 5.4960 8 April 141 1,624 3.878 0.504 0.447 0.087 1.374 1.547
Spain 0.5669 0.9062 5.7420 30 March 181 1,578 3.769 0.605 0.545 0.114 1.145 1.270
Italy 0.4998 0.8707 5.5415 30 March 126 1,571 3.751 0.546 0.473 0.08 1.268 1.462
Sweden 0.4625 0.8438 5.8765 14 April 91 1,436 3.430 0.515 0.433 0.064 1.345 1.597
France 0.2281 1.0468 8.5744 5 April 136 1,220 2.943 0.221 0.232 0.111 3.139 2.984
Ireland 0.3313 0.9428 8.6326 14 April 94 1,092 2.611 0.344 0.323 0.086 2.010 2.142
Netherlands 0.5964 0.8460 8.3911 7 April 89 1,008 2.408 0.663 0.559 0.088 1.044 1.238
US 0.3963 0.8858 9.0801 14 April 72 975 2.329 0.429 0.377 0.074 1.615 1.833
Canada 0.3184 0.8641 10.5390 26 April 44 819 1.957 0.349 0.301 0.053 1.982 2.303
Portugal 0.5786 0.8522 26.1210 21 April 34 326 0.779 0.640 0.543 0.105 1.083 1.277
Germany 0.4031 0.8859 28.8674 7 April 26 306 0.732 0.435 0.383 0.086 1.590 1.808
Denmark 0.6463 0.7996 29.8669 1 April 25 267 0.641 0.741 0.593 0.095 0.934 1.168

Table 6: Summary statistics for gamma drift models.
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Figure 1: Covid-19 infections in China and Italy.

Figure 2: In sample fit of daily deaths for China. The dots show data for the daily death tolls. The red line
shows the regression fits for the logistic model, the green line for the gamma model and the blue line for the
beta model.

23



(a) Italy (b) Spain

Figure 3: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated on
an expanding window (second and third central rows, respectively) and dynamic fit (bottom row) for Italy
(left) and Spain (right).
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(a) US (b) UK

Figure 4: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated
on an expanding window (second and third central rows, respectively) and dynamic fit (bottom row) for the
US (left) and the UK (right).
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(a) France (b) Germany

Figure 5: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated on
an expanding window (second and third central rows, respectively) and dynamic fit (bottom row) for France
(left) and Germany (right).
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(a) Belgium (b) The Netherlands

Figure 6: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated
on an expanding window (second and third central rows, respectively) and dynamic fit (bottom row) for
Belgium (left) and the Netherlands (right).
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(a) Denmark (b) Sweden

Figure 7: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated
on an expanding window (second and third central rows, respectively) and dynamic fit (bottom row) for
Denmark (left) and Sweden (right).
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(a) Ireland (b) Portugal

Figure 8: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated on
an expanding window (second and third central rows, respectively) and dynamic fit (bottom row) for Ireland
(left) and Portugal (right).
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(a) Canada (b) Brazil

Figure 9: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated
on an expanding window (second and third central rows, respectively) and dynamic fit (bottom row) for
Canada (left) and Brazil (right).
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