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Modeling the Covid-19 Epidemic using Time Series Econometrics*

Adam Goliniskif and Peter Spencer?

Abstract

The classic ‘logistic’ model has provided a realistic model of the behaviour of Covid-19 in China
and many East Asian countries. Once these countries passed the peak, the daily case count fell back,
mirroring its initial climb in a symmetric way, just as the classic model predicts. However, in Italy and
Spain and most other Western countries, the first wave of the epidemic was very different. The daily
count fell back gradually from the peak but remained stubbornly high. The reason for the divergence
from the classical model remain unclear. We take an empirical stance on this issue and develop a model
framework based upon the statistical characteristics of the time series. With the possible exception of

China, the workhorse logistic model is decisively rejected against more flexible alternatives.

1 Introduction

There are many different ways of analyzing and projecting the progress of an epidemic like Covid-19. Avery,
Bossert, Clark, Ellison, and Ellison (2020) group these approaches into two broad types. On the one hand,
there are the large computer models that analyze the spread of the disease and the effects of public health
interventions in fine detail, like the one used by the UK government and its advisors (Ferguson et al., 2020).
These ‘mechanistic’ models are largely theory-based and in that sense resemble the large theory-based models
constructed by central banks to analyze the effect of their policy interventions on the economy. On the other
hand, many epidemiologists fit curves suggested by the theoretical dynamics to the time series data and use
these to make data-based predictions. An example is the model used by the Institute for Health Metrics and
Evaluation (IHMFE) at the University of Washington to make the forecasts that underpin hospital resource
planning in the US and White House briefings. This fits daily mortality data using the Gaussian bell curve
(Murray, 2020). Avery, Bossert, Clark, Ellison, and Ellison (2020) classify these as ‘phenomenological’
models and note their resemblance to reduced-form econometric models. We also follow this data-based

approach.
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These two approaches complement each other nicely. Large-scale theoretical models are very useful for
analyzing policy interventions and other structural changes but can miss important links, especially when
confronted with ‘black swan’ events such as a financial breakdown or the emergence of a new variant of a
virus like Covid-19. Moreover, it is hard to know what values to attribute to the parameters that govern the
initial spread of a novel virus and the subsequent behavioural response. Small data-based models usually
provide better forecasts. The Bank of England’s Monetary Policy Committee uses both types of model for
informing their decisions and forecasting (Burgess et al., 2013). Reduced form models can also be used to
check the properties of the theoretical models and match them better to the data (Meenagh, Minford, and
Wickens, 2009).

Although epidemiological models may differ in many respects, they are all based on the same underlying
theory and invariably predict that the daily counts for infections and deaths follow a bell-shaped curve. In
other words, once the peak is passed and the daily count begins to fall, it follows a path that mirrors the
upward climb, before coming to an end. In the large mechanistic models, this classic pattern follows from the
dynamics of the epidemic, which naturally slows as the disease runs through the population and immunity
increases. Precautionary behaviour on the part of the public and policymakers are also likely to be important
in slowing the spread of the disease. In the phenomenological models, the daily count follows a bell-shaped
path by assumption and means that the cumulative count follows a sideways S—shaped logistic curve.

These symmetric dynamics have provided a reliable way of modelling outbreaks of influenza and other
epidemics in the past. Indeed, simple regression models based on fitting the bell (or logistic) curve to the
data, also proved accurate in predicting the path of the Covid-19 outbreak in China and many East Asian
countries (Jia, Li, Jiang, Guo, and Zhao, 2020, Batista, 2020). However, the experience of Italy and Spain,
which was followed by the US, the UK and many other countries, has been very different. The daily mortality
figures have fallen back gradually from the peak in these countries, but have remained stubbornly high. This
contrast is apparent in the daily infections series plotted for China and for Italy in Figure 1.

A positive skew in the national time series can appear because they aggregate data for areas that are hit
by the virus at different times. However, data for hospital admissions and fatalities in hard-hit regions and
cities like Lombardy in Italy and New York in the US also exhibit a pronounced skew.! A positive skew in
the infections data may reflect measurement problems, such as improvements in the testing regime. It could
also be due to the non-normality of community transmission. For example, the number of transmissions
per person is known to have a long tail, due to the presence of ‘superspreaders’. It has also been suggested
that delays, such as the infection period, may have a gamma distribution with a long tail (Shen, Taleb, and
Bar-Yam, 2020). Another plausible reason for the skew in mortality data is that the length of time from
infection to death or recovery follows a gamma distribution (Hogg and Craig, 1978, Bird, 2013). Some people

1These data are available at: https://covidtracking.com/data.



recover or regrettably die very quickly, but others take much longer. This distribution is used by the M RC'
Biostatistics Unit to infer the true number of infections and the reproduction number (R) from mortality
figures for the UK regions (Seaman and De Angelis, 2020). There is also a positive skew in the reporting lag
(Bird and Neilsen, 2020, Birrell, Blake, van Leeuwen, and De Angelis, 2020).

Whatever the reason for this asymmetry, it is clear that the classic model has failed us badly this time.
This has been documented by several recent studies. For example, Marchant, Samia, Tanner, and Cripps
(2020) show that IHME forecasts are usually overtaken by the data within a few days. We show that the
classical model also fails in many other countries. Instead of trying to delve deeper into the data to try and
find the reasons for this failure, we take an empirical stance and develop a model that is based upon the
statistical characteristics of the national time-series. We model the daily mortality data for the first wave in
fifteen countries published by the European Centre for Disease Control (ECDC). We use these data rather
than infections because of the acute public and policy interest focus on these data and because they are less
prone to measurement error.

We use the tools developed by econometricians to handle non-standard time-series, representing economic
growth and speculative bubbles in financial markets for example, to analyze the dynamics of an epidemic.
We compare the performance of the classical logistic model with flexible models based on the gamma and
beta functions using an expanding data sample designed to mimic the data available to policymakers as
an epidemic evolves in real time. At each stage, we identify the best fitting model using the Schwartz
Information Criterion (STC) and test forecasting performance using four-week projections.

This exercise identifies three distinct phases. The logistic model systematically under-forecasts over all
three phases, but initially, in the upswing phase of the epidemic, its in-sample fit compares reasonably well
with its rivals. But after a month or so, as the peak is passed and any asymmetries become apparent, the
gamma and beta models fit much better than the logistic. Because they have greater flexibility to handle
the initial stages of the epidemic, this is the case even in countries like Germany and Denmark that do not
exhibit much of a skew. The gamma model is more robust than the beta in the face of data irregularities
during this phase and generates more reliable forecasts. In the final phase, typically after a couple of months,
the end-wave features become apparent. In most countries, mortality rates fall close to zero and the beta
model with its distinct cut-off feature performs better than the gamma in terms of both in-sample fit and
post-sample forecast accuracy. However, in the US, Brazil and Portugal, which move into the second wave
without much of a hiatus, the gamma model still outperforms the beta over the full sample.

The next section of the paper sets out the three theoretical models and Section 3 explains how these
are fitted to the data. The results are presented in Section 4. Section 5 offers some final observations and

suggestions for future research.



2 Modelling an epidemic using time-series econometrics

Econometricians are used to dealing with difficult economic and financial times series. Their data often
violate the classical assumptions adopted in the statistical texts and thus need to be handled using special
techniques. For example, macroeconomic data like GDP exhibit exponential growth and financial prices
can exhibit speculative bubbles that are explosive. They may respond with long and variable lags to policy
interventions and exogenous shocks. These data may be measured with error and subject to structural shifts
as behaviour or government policies change.

As Castle, Doornik, and Hendry (2020) argue, epidemiological data are fraught with similar problems.
These econometricians have used sophisticated linear trend fitting techniques to decompose the cumulative
death counts. They split each series into trend and remainder terms, then project them forward and recom-
bine them to produce a forecast for the following week. As they note, a significant fall in outcomes relative
to extrapolations from such models can be an indication that policy interventions are having the desired
effect. Epidemiologists use similar models to separate the noise from the trend in the time-series and use the
trend to estimate the reproduction number R, the number of people an infected person is likely to infect.

However, deviations from a linear trend can occur for many other reasons. For example, as the death
toll mounts and people begin to worry about the virus and its consequences, they are likely to modify their
behaviour in a way that reduces outcomes relative to a linear extrapolation. Longer term, the trend should
bend as immunity builds up and the population becomes less susceptible to the disease. These endogenous
feedback effects are built into the non-linear dynamics of the epidemiological models, which allow the trend
to change as the epidemic progresses. This should in principle improve forecasts beyond the weekly horizon
and make it more likely that systematic forecast errors are due to government interventions or other external

influences.

2.1 The logistic process

These epidemiological models range from the large-scale computer models built by the Imperial College and
other modelling groups to simple data-based curve-fitting techniques. For example, many epidemiologists fit
a logistic curve to the cumulative number of infections C(¢):

cr 1
K 14 Aet’ (1)

where: A = K/C(0) — 1, K is the final epidemic size and r > 0 the propagation or infection rate (see for
example Batista (2020), equation (2)). However, in view of the well known issues around estimation with
non-stationary data (Sims, 1980), we model the number of new cases. Differentiating (1) and substituting

Ae~" = K/C(t) — 1 shows that the number of new cases at any time is a bell-shaped function of the



accumulated cases:

dC(t) C(t)
== =rC) (1 - K) . 2)

This model provides a simple way of allowing for the non-linear feedback mechanisms, loosely based on
the STR (susceptible, infectious, removed) model (Kermack, McKendrick, and Walker, 1927, Avery, Bossert,
Clark, Ellison, and Ellison, 2020, Dimdore-Miles and Miles, 2020). Initially, with C(0) cases observed when
the outbreak is detected, all of them are ‘infectious’ and they will infect other ‘susceptible’ people at the
rate 7 per unit of time (dt) causing dC(0) = rC(0)dt new cases. Thus initially, the disease will spread
exponentially, at the reproduction rate p = dC(t)/(C(t)dt) = r. However, various negative feedbacks then
arise, which reduce the reproduction rate.

The classic feedback mechanism is provided by herd immunity. If people who have had the disease are
less susceptible to catching it again, then they move into the ‘removed’ class. As they increase as a share
of the population (V) the probability that an infectious person will meet a susceptible one falls from 1 to
(1=C(t)/N)). This results in rC(t)(1 — C(t)/N)dt new cases per unit of time, resulting in (1) with K = N.
However, there is a problem with this interpretation. If this were the only mechanism at work, we would
expect K to be of a similar size to the population N. But it is much smaller than N empirically, suggesting
that C is under-recorded. For example, Dimdore-Miles and Miles (2020) assume that the number of new
cases that are symptomatic and recorded is a fraction 7 of the true number. If C' represents the true number
and C° the recorded number, then substituting C' = C°/7 into (2) gives the model:

dCd"t(t) — (1) <1 - C;r(Kt)> '

Thus the estimator 7K effectively replaces K. However, as they conclude the value of m would need to be
extremely low to fully explain the low value of this estimate.

Precautionary feedbacks can also help to reduce the reproduction rate, as argued in the introduction.
For example, as C' grows, people are likely to modify their behaviour in a way that mimics the effect of
immunity, reducing the reproduction rate p = r(1 — C(t)/K) via the K parameter. This behaviour can
be reinforced by government interventions like lockdown. On a more pessimistic view, if immunity from
exposure to the disease is partial or tends to fall with the time since exposure, or indeed if the precautionary
response depends upon the recent rather than the cumulative number of cases, then there may not be an
upper limit to the cumulative number of cases.

The logistic model is designed to explain the transmission of a virus within a closed community. But
apart from the country where the virus originates, all the initial cases will involve people that have recently
entered the country and the number of new cases n will be related to the number of new arrivals rather than

C'. Thus in the initial stages, before community transmission begins: dC(0) = ndt and not dC'(0) = nC(0)dt



as implied by the logistic model.

However, the main problem with this model is that the bell and logistic curves are symmetric. The bell
curve has a single peak at C' = K/2. Once this is passed, the number of new cases begins to fall, following
a path that mirrors the upward climb, before slowing to a stop as C' approaches K. This was in fact the
experience of China and many East Asian countries, which is why the logistic curve fits their data well.
Unfortunately, the experience in many other countries has been very different. The number of deaths fell

back from the peak, but then remained stubbornly high.

2.2 A long, thin-tailed epidemic

We need a more flexible model to allow for these possible effects. Mathematically, we can achieve this simply
by raising the C' and (1 — C//K) terms in (2) by the powers « and 3. This makes it a beta function, which
is much more flexible:

B
dC(t) o) ) . )

— =re® (1 - =%

Alternatively, suppose that the negative feedback effects mean that the reproduction rate p follows an

exponential rather than a power law as the number of cases mounts: p(t) = re=7“®). Then:

dC'(t

C((t)) = p(t)dt = re 7D dt = dC(t) = rC(t)e " Ddt.
Importantly, in this model, there is no upper limit on the total number of cases as there is in the logistic
and beta models. This makes it easier to fit to data sets in which the number of cases is falling but remains
high, making it difficult to estimate the end-point parameter K. Theoretically, as noted, there could be
situations in which the disease becomes endemic and there is no limit to the cumulative number of cases.

The performance of this exponential feedback model can be improved by changing the power of the C' term

to «a, thus giving the trend a form similar to that of the gamma density function:

dC(t) = rC(t)*e "Wt (4)

This function is used extensively in statistics to describe probability distributions, the well-known x? dis-
tribution being a special case (Mood, Graybill, and Boes, 1973). Its mathematical properties are reviewed
in Appendix 1.

These processes are non-stationary and should be handled using techniques developed for modelling non-
stationary economic data, like growth and inflation. Their dynamics are dictated by stochastic differential
equations with drift (i.e. trend) and volatility terms, like those used to model interest rates (Ait-Sahalia,

1996). We give the volatility term a form that is congruent with the drift.



3 Modelling the daily number of deaths

The logistic model outlined in the previous section was originally developed to explain the number of new
infections. However, in the absence of mass testing, the true numbers of people who are infected and those
that have recovered are likely to be much larger than those recorded, especially if there is a large proportion
of asymptomatic cases. To avoid these measurement problems, we extend the reasoning of the logistic
infections specification to track deaths instead, following Murray (2020) and many others.

Suppose for example that deaths D(t) represent a constant lagged fraction of the ¢rue number of infections

C(t). Substituting this into (4) and suitably reinterpreting the parameters:
dD(t) = g(D(t)) = rD(t)*e~"PWat. (5)

We discretize (5) and use d; to represent dD(t) and the cumulative number of deaths as D; = Z;;}) di—j.
Note that d; = D; — D;_4.

In the empirical models we use ECDC data for daily mortality rates, which express the daily death count
as a constant share of the population. This has the effect of normalizing the data to allow for country size,
which is particularly important in cross-country comparisons such as these conducted in Section 4.5.2 We
use a rolling weekly average of the daily mortality rate instead of the daily series. This has the effect of
smoothing out the erratic day-to-day movements often seen in the raw data as well as the weekend reporting
lag seen in the US and several other countries. Specifically, denote the reported number of daily deaths in
day t by d?. We calculate its moving average d; = % Z?:o dy_; and use it to find the cumulative value D(t).

Finally, we add a congruent volatility specification:
« o 6
dy = rDj_y exp (—yDy—1) + 0 [rD{_y exp (—yDi—1)] e, (6)

where a, 7, r and o are parameters to be estimated and €; ~ N(0, 1) is a Gaussian error term. These variables
are measured as a share of the population, per 10 million people. Similarly, the beta model corresponding
to (3) is:

dy =D (1= Dy 1 /K)? + 0 [rDe (1 Dy _1/K)P)’ . (7)

Setting «, 8 = 1 simplifies this to the logistic specification:
dy =rDy_(1—Dy_1/K)+ 0 [rDy_1(1 — Dy_1/K)]’ & (8)

We found that § was close to 0.75 for these models and countries and fixed this parameter at this value in

2We are particularly grateful to a referee for this suggestion. This is a scaling adjustment that does not affect the fit but
removes the effect of the size of the population on the K and « parameters.



the regressions reported here.3

4 Modeling the ECDC death data for the first wave

The previous section identifies three candidate models (logistic, gamma and beta). We estimate these models
using data for the first wave provided by the ECDC. This source provides daily death (and infections) data
from 1st January to 14th December 2020, when the EC'DC discontinued the daily series due to the effects
of retrospective corrections, delays in reporting and similar problems.

To select the best model, we consider both the in-sample fit and (apart from China) the post-sample
forecasting performance. To rank the models by fit we use the SIC, which adjusts the likelihood value
appropriately for the number of parameters and observations to guard against over-fitting. To avoid the bias
in estimates caused by an integer data count we start the estimation for each country from the date when
the cumulative number of deaths exceeds 1.5 per 10 million people. The end of sample for each country is
determined by the end of the first wave. Specifically, we end it at the beginning of the two-weekly period
with the minimum death toll, counting from the beginning of the sample. (Please see the tables for more
detail.) We then check that the best fitting model tends to provide the best forecasts. Finally, we report the
full sample parameter estimates as well the estimates from an eight-week data sample, used to represent an

on-going epidemic.

4.1 China

Table 1 shows the regression results obtained for the three rival models using the data for China. This was
of course the first country to be hit by Covid-19 and managed to suppress it effectively by the end of March,
when we end this sample. Figure 2 shows the in-sample fit of the logistic (red line), gamma (green line)
and beta (blue line) regression models. As noted in the introduction, the bell-logistic model represents the
behaviour of this outbreak nicely, although the beta drift model is better in terms of statistical criteria and

with 5 > « indicates a small positive skew in the data.

4.2 Italy and Spain

We next analyze the daily mortality data for Italy and Spain, which were the first western countries to be
overwhelmed by the virus and where the skew in the mortality figures first became apparent. The top panel
of Figure 3 shows how the models fit the weekly average of the daily death data over the full sample. Table
2 reports the full sample parameter estimates. The beta model performs best for both countries over the full

period. Arguably, a more relevant test is to ask how well these models fit and forecast as the epidemic evolves

3The Matlab code is available on the website: https://sites.google.com/york.ac.uk/adam-golinski/coronametrics.



in real time, helping to inform the tightness of government policy measures. To assess this, we estimate a
weekly series of regressions with an expanding time window. In the second row panel of Figure 3, we plot
the SIC value for each weekly regression for the three models.

This exercise identifies three distinct phases. Initially, the SIC criterion finds difficult to discriminate
between these models. That is likely to be because they only differ in the way that they represent the nega-
tive feedback effects, which are not very powerful initially, making it very difficult to predict the final death
toll.* However, after another a month, the gamma and beta models begin to outperform the logistic. This
outperformance becomes more pronounced as the peak is passed and the data becomes more informative
about the negative feedback effects. As noted in the introduction, this is because the daily mortality figures
during the first wave were asymmetric: the downswing was more gradual than the initial upswing. Conse-
quently, the logistic model, being symmetric, fits poorly during this phase and systematically under-predicts
the subsequent number of deaths.

The poor forecasting performance of the logistic model is clear from the ‘hedgehog’ forecast charts shown
in the third row panel. To construct this type of chart, we use parameter estimates from the expanding
weekly sample models to make a succession of four-week ahead forecasts. The dots in this chart, which form
the back of the hedgehog, show the cumulative number of deaths observed at the end of each week. The
forecasts are shown as the spines of the hedgehog. After a couple of months, we identify a third and final
phase, in which the beta models begin to outperform the gamma model. This is because the logistic and
beta functions have a well-defined end value (K) for the final death toll, relative to population (which the
gamma does not), terminating the wave decisively.

To illustrate the way that these models represent an on-going epidemic, Table 4 reports a set of parameter
estimates for the eight-week data sample. The gamma and beta models both perform well at this point,
significantly outperforming the logistic. Note in particular the very low K values for the final death toll
implied by the logistic model. The K-values from the beta model provided a much more realistic projection
of the final outcome. The bottom panel of Figure 3 shows how these models fit the four- and eight-week

data samples.

4.3 The US and the UK

We next look at the US and the UK, two of the countries with the highest mortality rates during the first
wave. The top panels of Figure 4 shows how the models track the full sample, the two central panels plot the
SIC values and 4-week forecasts for the weekly regression models and the bottom panels shows the four- and

eight-week fit. The parameter estimates are reported in Tables 2 and 4. Once again, we see an initial phase

4Reflecting this, our preliminary analysis of the data conducted in real time, suggested that the logistic model offered a
useful tool for analyzing the initial spread of the virus, helping to identify the peak and to make tentative short-range forecasts.
However, it proved difficult to predict the final death toll at this stage.



in which all three models have a similar fit, followed by a steady outperformance of the gamma and beta
models in terms of both the fit and the forecasting performance. In the UK, we identify a third and final
phase after around two months, in which the beta clearly outperforms the gamma model in these respects
and the logistic does as well as the gamma model. The UK resembles the Italian experience in this sense.
However, the US experience was then very different because the weekly death toll never reached the lows
seen in these countries over the late summer months. The beta and gamma models perform equally for the
US until the mortality figures begin to move back up again in September, marking the beginning of the
second wave. It is perhaps worth noting that the curves generated by these two US models overlap and
smooth out the lumpy figures announced around the peak of the epidemic. The erratic nature of these data
make forecasting very difficult and lead to large errors over the following month. However, the subsequent

forecasting performance of the US gamma model is particularly impressive.

4.4 Other countries

We estimate these models for eight other West European countries®: France, Germany, Belgium, Denmark,
Ireland, the Netherlands, Portugal and Sweden. We also estimate models for Canada and Brazil. Performance
is shown graphically in Figures 6-9. The parameter estimates are reported in Tables 2 - 5.

The patterns observed in Italy, Spain, the US and the UK are also apparent in these figures. The
SIC criterion reliably selects the model that provides the best forecasts. With the exception of Brazil
and Portugal, which are similar to the US in progressing directly into a second wave, the beta drift model
fits much better than the other models over the full period. However, over the first two or three months
the gamma drift model invariably fits as well, if not better, and provides more robust forecasts than the
beta. The gamma model fits and forecasts remarkably well for Brazil. In this case, the very low eight-week
estimate of v stands out, indicating that the negative feedback effects are still very weak at this point, with
the epidemic still in the upswing phase. The logistic model systematically under-forecasts the spread of the
virus in all these countries, unless and until the epidemic ends.

These patterns stand out despite the very different experiences of these countries during the first wave.
Germany successfully combined a lockdown with mass population testing and had a much lower mortality
rate than France (Figure 5) and other countries. Denmark was the second European country after Italy to
go into lockdown, on 11 March, before any fatalities had occurred. Its peak mortality rate was similar to
that seen in Germany and much lower than in its neighbour Sweden, which was exceptional in having relied

upon individual responsibility rather than lockdown to contain the spread of the virus.

5East European countries remained largely unaffected by the first wave of the epidemic.
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4.5 International comparisons

Time series models are designed to abstract from the noise in the data and provide estimates of the trend in
the series. In the case of an on-going, non-linear process like an epidemic, they can also be used to indicate
the rate at which the trend is increasing or decreasing and whether this rate is accelerating or decelerating.
In this case, the trend in the cumulative death toll is the estimated number of daily deaths, described by the
a drift function like equation (7). These properties can be seen from the shape of the curves in Figures 3 to 9.
However, rather than ‘eyeballing’ charts it is often better to look at the results numerically, using well-known
statistics, particularly when comparing different countries. Table 6 shows some of the basic numbers that
describe the spread of the epidemic in the US, Canada and West European countries at the eight week stage.
We use the gamma drift model to represent this. Its parameters arguably allow a broader assessment of the
characteristics of the virus than comparisons of death tolls in different countries.

These statistics follow from the well-known mathematical properties of gamma-type functions, which
are reviewed in the Appendix. The first three columns show the parameters estimated for each country,
reproduced from Tables 4 and 5. These are first used to determine when the peak in the death toll is likely
to have occurred. This can be difficult to gauge from the data visually, especially in countries like the US
where the data is lumpy around the peak due to measurement problems. The table shows the date that the
peak was reached in each country; the estimated number of daily deaths at the peak (corresponding to the
height of the peak in each figure) and the cumulative number of deaths at that point. We then calculate the
‘skewness’ coefficient for each country, shown in column (vii). This indicates how different the decline from
the peak was compared to the rise from the first few cases to the peak. The rows of this table are ranked in
terms of skewness, starting with Belgium at the top.

One of the stand-out features of this table is the strong positive correlation between the skew and the daily
(R? = 0.94202) and especially the cumulative (R? = 0.99999) mortality rates at the peak. Countries like
Germany and Denmark that are judged to have dealt with the epidemic effectively compare very favourable
in all of these respects with those like the UK and Belgium that were not. More interesting is the observation
that all three variables are negatively correlated with the parameter «, which of course acts as an indicator
of the strength of the negative feedback effects. This suggests prima facie that the negative feedback effects
are largely due to the effectiveness of government policy and precautionary behaviour by the public rather
than herd immunity. Indeed, if we take the inverse of the gamma parameter (effectively expressing the
exponent in (5) as D/K, as in the other two functions, rather than v x D), its correlation with the skew
(R? = 0.91409), the daily (R? = 0.99413) and cumulative (R? = 0.99371) mortality rates is also very high.
Importantly, this does not necessarily follow from the gamma function, since, for example, equation Al in
the Appendix shows that the skew depends upon both the a and the v parameters. It only follows in Table

6 because the variation in « is small compared to the variation in ~.
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Although this research project was initially aimed at modelling the features of the stubborn upper tail
seen in Italy and elsewhere, these results also help us to a better understanding of the early, exponential,
phase of this pandemic. In this early, pre-peak phase, attention is focussed on the time that it takes for
the cumulative number of infections to double. One of the striking features of Tables 2 to 3 is that the
estimates of the parameter p(1) = r from the bell-logistic model are remarkably close, ranging from 0.07 for
Sweden to 0.11 for Belgium . This parameter is important because it shows the daily growth rate during the
initial phase of the epidemic, before the various negative feedback effects are significant. Thus the logistic
model would suggest that country-specific factors are not significant in explaining the initial spread of the
virus. However, the gamma drift model, which allows more flexibility in tracking the initial phase through
the parameter a, suggests that the logistic model covers up important idiosyncratic effects. Table 6 shows
the values of p(0.5) and p(1.5) and the respective doubling times during the initial phase. With D = 0.5 the
doubling time ranges widely, from less than a day in Denmark to 3.14 for France, in strong contrast to the

impression given by the logistic model.

5 Conclusion

This paper shows how the econometrician’s toolkit can be used to develop a simple reduced form model of the
time series generated by an epidemic. We illustrate this using daily mortality data generated by the first wave
of Covid-19 for fourteen American and European countries. We use standard model selection techniques to
find the model that best fits in-sample at any stage of the epidemic and show that this reliably generates the
most accurate post-sample forecasts. With the exception of China, the logistic model frequently employed
by epidemiologists to model time series data is decisively rejected against the more flexible gamma and beta
models. These handle the very different wave characteristics seen in these countries remarkably well.

These time series models provide useful statistics that summarize the reproduction, morbidity and mor-
tality rates in different countries. We could use these to look at the effects on these indicators of variations
in containment and testing strategies across a cross-section of countries, while controlling for different de-
mographic and other characteristics. One of the interesting findings that emerges from the present study is
that there is a strong correlation between the parameters like v and K that represent the strength of the
negative feedback and the skew and peak mortality rates. The epidemic was less severe in countries like
Germany, Denmark (and indeed China) that were generally regarded as being effective in dealing with the
virus than they were in others like Belgium and the UK that were not and it seems likely that these feedback
parameters reflect the efficacy of government policy.

However, such reduced form models have their limitations. Their dynamics are the result of a convolution

of the long and possibly variable lag distributions involved in the data generation process and it is impossible

12



to unravel these without embedding them in a large scale structural model. In the present context, despite
the prima facie argument that the negative feedback results from policy and precautionary behaviour rather
than from the build up of immunity, we cannot be sure. Nor can we say whether the skew seen in the
mortality data in many western countries during the first wave was due to the skew in the lag from infection
to reinfection, the lag from infection to death or other effects. The difference between the experiences of
these countries and East Asian countries remains to be explained.

Nevertheless, looking forward, we can potentially use reduced form models to identify structural breaks
and perform similar tasks. Econometricians have a variety of handy tools for conducting this kind of work,
including tests for discrete changes when the break-point is unknown a priori (due to the advent of a new
variant for example) as well as tests for breaks at points when a change is likely to have occurred (due to a
policy intervention for example). The explosive behaviour test proposed in a series of papers by Phillips, Shi
and Yu (Phillips, Shi, and Yu, 2014, Phillips, Shi, and Yu, 2015) also looks potentially useful in this respect.
This was developed for testing bubbles in financial time series, which are analogous to the early phase of a

new virus or variant.
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Appendix: Properties of the gamma drift function

The mathematical properties of gamma-type functions are well known. This function is used to define the
gamma probability distribution Mood, Graybill, and Boes (1973). Health economists are also used to dealing
with skewness and kurtosis. For example Jones, Lomas, and Rice (2015) use generalized gamma and beta

functions to handle the tails in health cost distributions.

The peak in mortality

The value of the drift in (6) at any time gives the expected number of deaths and is obtained by substituting
the cumulative number of deaths at that time. However, analytically, it is often easier to work in continuous
rather than discrete time, using (5) instead of (6). Gamma-type functions have a single peak. This is found

by taking the first derivative of the drift:

%rDae_“’D =rD* e P (o — Dr)

and equating this to zero by setting D = a//v. These values are shown in column of the first panel of Table
6 and substituting them back into (5) gives the estimate of the daily death toll at the peak. The peak

corresponds to the mode in the gamma distribution. Similarly, the skewness coefficient shown in column

(vii) follows from that of the gamma distribution (Mood, Graybill, and Boes (1973)):

Shew — (a+1)(a;2)(a+3). (A1)

Doubling time

Although this paper is focussed on the features of the stubborn upper tail, our results also help us to a
better understanding of the early, exponential, phase of this pandemic. In that phase, attention is focussed
on the time that it takes for the cumulative number of infections to double. This can also be used to
assess the initial behaviour of the mortality rate. But to gauge that we need to have an estimate of the
reproduction rate p(D(t)). Table 6 shows three estimates implied by the gamma drift function (7), expressed
as the expected daily change as a decimal fraction of the cumulative. The first is evaluated at the start of
the sample with D = 1.5, suggesting that is in the range of 0.2 — 0.6 for most countries. The second is a
pre-sample extrapolation value for D = 0.5. The third is the value at the peak.

We can then calculate the doubling time by dividing (5) by D to get the percentage or logarithmic change:

dIn D(t) = dD(1)/D(t) = p(D(t))dt = rD(1)*~ e~ POy,
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which we can integrate to get the approximation: In D(t+7)/D(t) = p(D(t))T, where 7 is measured in days.
The doubling time is found by setting D(¢t + 7)/D(t) = 2 and solving for 7 :

7 =In2/p(D(t)) = 0.693/p(D(t)).

As noted in Section 4.5, the values in the table range widely across different countries.
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Tables and figures

Model SIC r K «@ I} v x 10,000 o
China

Bell 7.9117 0.1578 3,305 - - - 1.0310
3 0.0961
Gamma 8.5713 0 1648 - 1.1527 - 13.650 1.1969
0.0684 1.036 0.1166
Beta 5.4226 0 7353 3, 347 0.7904 1.1470 - 0.2619
0.0148  0.0323 0.0226

Table 1: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation period is from 23 January to 31 March 2020.

Model SIC r K «@ B v x 10,000 o
Ttaly (01/03/2020 - 02/08/2020)
Logistic 7.9062 0.0826 5,526 - - - 1.5935
0.0046 1.27 0.1128
Gamma 7.8276 0.1234 - 1.1771 - 9.7435 1.1917
0.0296 0.0440 0.3990 0.0806
Beta 4.7824 1.1271 5,830 0.6834 1.2163 - 0.3114
0.1048 6 57 0.0142 0.0243 0.0181
Spain (12/03/2020 - 16/07/2020)
Logistic 8.4716 0.1017 6,461 - - 1.8673
0.0068 1 15 0.1515
Gamma 8.4090 0.1803 - 1.1517 - 8.7862 1.2378
0.0479 0.0471 0.3752 0.0912
Beta 6.8855 2.8428 6,464  0.5626  0.9622 - 0.7590
0.6945 359 0.0352 0.0377 0.0523
US (18/03/2020 08/07/2020)
Logistic  8.6075 0.0766 4,007 - - 1.6842
0.0052 19.39 0.1395
Gamma 4.9271  0.4083 - 0.8774 - 8.8797 0.2355
0.0302 0.0134 0.1404 0.0159
Beta 4.9720 0.4101 466,913 0.8761 412.3503 - 0.2359
0.0303 91.619 0.0134 81.1246 0.0157
UK (17/03/2020 - 01/09/2020)
Logistic  7.9793 0.0790 6,226 - - - 1.6887
0.0046 1.33 0.1175
Gamma 7.9272 0.1062 - 1.2231 - 9.8539 1.3202
0.0267 0.0458 0.3996 0.0891
Beta 4.5045 1 0576 6,280  0.7060 1.3073 - 0.3037
0947 153 0.0134 1.0214 0.0169
Canada (22/03/2020 - 06/09,/2020)
Bell 6.1274 0.0695 2,445 - - - 1.1160
0.0033 17 0.0725
Gamma 6.1712 0.0780 - 1.2314 - 22.4705 1.0066
0.0170 0.0470 0.9927 0.0659
Beta 3.7953 0 3642 2,500 0.8075 1.4263 - 0.3447
0369 6.64 0.0183 0.0405 0.0194
Brazil (28/03,/2020 - 07/11,/2020)
Bell 8.2387 0. 0370 7,820 - - - 1.4078
0.015 33.84 0.0782
Gamma  4.9886  0.3222 - 0.7513 - 3.1001 0.2402
0.0188 0.0095 0.0532 0.0115
Beta 47114  0.4958 10,456  0.6565 1. 6636 - 0.2054
0.0300 43549 0.0103 0.1506 0.0098

Table 2: Full sample estimates of the logistic, gamma and beta models.

small font.
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Table 3: Full sample estimates of the logistic, gamma and beta models.
small font.

Model SIC r K « I6] ~ x 10,000 o
Belgium (15/03/2020 - 05/07/2020)
Logistic  9.2934 0.1106 8,4219 - - - 1.7737
3.13 0.1436
Gamma  9.2518 O 1644 - 1.1559 - 6.5104 1.4130
0.0468 0.3128 0.1111
Beta 5.0843 1 1039 8,539 0.7435 1.3049 - 0.2001
0.17 0.0083 0.0179 0.0135
The Netherlands (14/03/2020 - 18/07/2020)
Logistic 6.9724 0 1041 3,550 - - 1.3729
1 58 0.1277
Gamma  7.5372 0.1334 - 1.1999 - 15.8447 1.2587
0.0563 0.8330 0.0980
Beta 4.3135 1 0951 3,569  0.6867 1.1468 - 0.3154
0.1092 311 0.0163 0.0249 0.0203
France (11/03/2020 - 29/07/2020)
Logistic 7.5175 0. 0959 4,507 - - - 1.4726
0.0055 1.18 0.1084
Gamma 7.4870 0.0667 - 1.3608 - 14.6807 1.2611
0.0158 0.0473 0.6061 0.0932
Beta 4.4665 0.4076 4,630 0.8893 1.6833 - 0.3230
0.0380 11.91 0.0155 0.0401 0.0197
Germany (21/03/2020 - 05/09/2020)
Logistic  5.1518 0.0734 1,122 - - - 1.2248
0.0047 0.4203 0.0887
Gamma 4.6092 0.0885 - 1.4104 - 63.5154 0.9395
0.0213 0.0629 2.8542 0.0668
Beta 1.5931 0. 4767 1,157 0.8043 1.7157 - 0.2367
0.0399 2.91 0.0173 0.0400 0.0132
Denmark (20/03/2020 - 21/08/2020)
Logistic 4.6832 0.0813 1,070 - - - 1.3750
0.0058 0.02 0.1012
Gamma 4.7736  0.1234 - 1.2720 - 60.8744 0.9256
0.0412 0.0680 2.9943 0.0672
Beta 2.8761 0.8059 1,101  0.6937 1. 5538 - 0.4131
0.1260 167 0.0320 0.0662 0.0250
Sweden (13/03/2020 - 28/08/2020)
Logistic  8.0976 0. 0675 5,680 - - - 1.6309
0.0037 2.14 0.1116
Gamma 7.5395 0.2110 - 1.0138 - 8.2822 0.9736
0.0423 0.0353 0.3063 0.0593
Beta 5.7591 1.2272 5,721  0.6216 1.0739 - 0.4605
0.1653 9.32 0.0204 0.0322 0.0260
Ireland (16/03/2020 - 31/08/2020)
Logistic  6.2453 0.0854 3,623 - - 1.4050
0.0045 0.07 0.0854
Gamma 6.9755 0.0466 - 1.4575 - 20.1799 1.4507
0.0127 0.0590 1.9434 0.1116
Beta 4.7667 0.4531 3,6919 0.8477 1.5749 - 0.5644
0.0705 1172 0.0266 0.0610 0.0333
Portugal (22/03/2020 - 23/08,/2020)
Logistic  7.5537  0.0591 1,743 - - - 2.0289
0.0053 2.39 0.1787
Gamma 4.7037 0.5786 - 0.8522 - 26.1216 0.4910
0.0911 0.0328 0.7786 0.0293
Beta 4.3883 1.1209 2,371 0.6395 2.9911 - 0.4167
0.1935 160.87 0.0381 0.4672 0.0246
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Model SIC r K « 153 v x 10,000 o
Ttaly (01/03/2020 - 16/04,/2020)

Logistic  8.4873 0.1520 4, 3830 - - - 1.1210
0.0089 57.63 0.1140
Gamma 4.8970 0.4998 - 0.8707 - 5.5416 0.1513
0.0250 0.0092 0.1004 0.0143
Beta 5.1327 0.5371 19,127  0.8506 9.1594 - 0.1642
0.0336 7,434.60 0.0130 4.1333 0.0158

Spain (12/03/2020 - 7/05,/2020)
Logistic  9.7410 0.1596 5,528 - - - 1.5203
0.0111 37.93 0.1610
Gamma 6.4511 0.5670 - 0.9063 - 5.7420 0.2440
0.0440 0.0136 0.1137 0.0231
Beta 6.0448 0.7220 11,707 0.8444  4.7457 - 0.1908
0.0660 2,309.90 0.0194 1.3590 0.0195

US (18/03/2020 - 13/05/2020)
Logistic  7.1653 O 1482 2,550 - - 0.8704
0079 37 79 0.0872
Gamma 4.6268 0 3964 - 0.8858 - 9.0802 0.2034
0.0285 0.0147 0.2766 0.0193
Beta 4.7256  0.4216 229,161 0.8703 199.1241 - 0.2054
0.0292 88, 439 62 0.0136 73.6595 0.0194

UK (17,/03/2020 - 12/05/2020)
Logistic  8.7651 0.1537 4,794 - - - 1.1210
0.0086 50.04 0.1135
Gamma 4.9953 0.4682 - 0.8929 - 5.4596 0.1402
0.0213 0.0082 0.0815 0.0133
Beta 5.1558 0 5722 9,446  0.8397  3.5651 - 0.1461
0304 867.75 0.0103 0.4871 0.0147

Canada (22/03/2020 - 17/05,/2020)

Bell 5.5679 0.1376 1,612 - - - 0.5583
0.0057 32.32 0.0543
Gamma 3.6031 0.3184 - 0.8642 - 10.5394 0.1793
0.0219 0.0156 0.4900 0.0170
Beta 3.9660 0.3643 2,456 0.8182 1.6071 - 0.2071
0.0301 380 46 0.0191 0.04235 0.0208

Brazil (28/03/2020 - 23/05/2020)
Bell 4.7548 0.1136 1,248 - - 0.5176
0.0053 73 79 0.0507
Gamma 2.2857 0.3844 - 0.7027 - 0.1000 0.1303
0.0211 0.0139 0.7289 0.0123
Beta 4.2741  0.7484 20,531 0.5798  0.0050 - 0.3675
0.0665 2,078.31 0.0162 0.0748 0.0165

Table 4: Estimates of the logistic, gamma and beta models at the 8-week stage. Standard errors are reported
in small font.
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Model SIC r K « 153 v x 10,000 o
Belgium (15/03/2020 - 10/05/2020)

Logistic  9.9357  0.1635 7,466 - - - 1.4080
0.0100 49.18 0.1450
Gamma 8.0598 0.5382 - 0.9029 - 3.9301 0.4594
0.0702 0.0220 0.1469 0.0439
Beta 6.9573 0.7156 12,638 0.8356 3.1893 - 0.2524
652.71 0.0155
The Netherans (14/03/2020 9/05/2020)
Logistic  8.3878  0.1510 3,094 - - 1.2187
0.0100 32 17 0.1272
Gamma 5.1897 0.5964 - 0.8461 - 8.3912 0.2022
0.0432 0.0140 0.2060 0.0192
Beta 5.2603 0.6035 72,270  0.8425  59.1401 - 0.2022
0.0435 23,219 0.0139 19.4683 0.0190
France (11/03/2020 6/05/2020)
Logistic  7.5114  0.1720 3,806 - - 0.7774
0.0072 23 03 0.0761
Gamma 6.4715 0.2281 - 1.0469 - 8.5744 0.4054
0.0268 0.0226 0.3037 0.0388
Beta 5.5733  0.3423 4,920  0.9337  2.1520 - 0.2541
0.0286 256 19 0.0167 0.2508 0.0233
Germany (21/03/2020 - 16/05/2020)
Logistic  6.0344 0.1442 947 - - 0.7651
0.0081 7.57 0.0775
Gamma 3.6587 0.4031 - 0.8859 - 28.8674 0.2016
0.0337 0.0206 0.9494 0.0191
Beta 2.3962 0.5726 1,200  0.7573  1.6599 - 0.1021
0.0286 246.36 0.0130 0.1525 0.0097
Denmark (20/03/2020 - 15/05/2020)
Logistic  6.8360 0.1399 923 - - - 1.0642
0.0105 7.17 0.1147
Gamma 3.8710 0.6464 - 0.7997 - 29.8669 0.2109
0.0612 0.0228 1.0056 0.0200
Beta 3.8216 0.7180 3,062  0.7589  7.3850 - 0.1985
0.0571 911 35 0.0150 2.7276 0.0180
Sweden (13,/03/2020 - 8/05/2020)
Logistic  8.0904 0.1434 3,399 - - 1.0399
0.0085 63 97 0.1058
Gamma 6.4488 0.4625 - 0.8439 - 5.8766 0.3869
0.0549 0.0228 0.3452 0.0369
Beta 6.5188 0.4635 252,661 0.8432 147.3981 - 0.3869
0.0550 223,953 0.0228 131.2944 0.0369
Treland (16,/03/2020 - 11,/05/2020)
Logistic  7.3545  0.1635 2,986 - - - 0.9201
0.0088 34.26 0.0924
Gamma 6.5280 0.3314 - 0.9429 - 8.6326 0.5168
0.0568 0.0347 0.5825 0.0506
Beta 6.4445 0.4701 3,920 0.8459  1.7610 - 0.4677
0.0847 643.46 0.0386 0.0684 0.0458
Portugal (22/03/2020 - 17/05/2020)
Logistic = 7.4439 0. 1451 1,161 - - - 1.2484
0.012 8.72 0.1382
Gamma 5.2371 0.8438 - 0.7410 - 21.2559 0.3571
0.1213 0.0335 1.2594 0.0341
Beta 4.4049 1.3262 1,271 0.5900  1.0063 - 0.2262
0.1318 38.21 0.0223 0.1155 0.0214

Table 5: Estimates of the logistic, gamma and beta models at the 8-week stage. Standard errors are reported
in small font.
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Parameters Peak mortality rate Skew Reproduction rates Doubling time
Date Daily | Cumulative 0o p1 p(peak)

r @ ~ % 10000 D=05|D=15 D=05|D=15
(i) (i) (iil) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii)
Belgium 0.5382 | 0.9029 3.9311 7 April 236 2,296 5.484 0.575 0.517 0.102 1.204 1.340
UK 0.4682 | 0.8929 5.4960 8 April 141 1,624 3.878 0.504 0.447 0.087 1.374 1.547
Spain 0.5669 | 0.9062 5.7420 30 March | 181 1,578 3.769 0.605 0.545 0.114 1.145 1.270
Italy 0.4998 | 0.8707 5.5415 30 March | 126 1,571 3.751 0.546 0.473 0.08 1.268 1.462
Sweden 0.4625 | 0.8438 5.8765 14 April 91 1,436 3.430 0.515 0.433 0.064 1.345 1.597
France 0.2281 | 1.0468 8.5744 5 April 136 1,220 2.943 0.221 0.232 0.111 3.139 2.984
Ireland 0.3313 | 0.9428 8.6326 14 April 94 1,092 2.611 0.344 0.323 0.086 2.010 2.142
Netherlands | 0.5964 | 0.8460 8.3911 7 April 89 1,008 2.408 0.663 0.559 0.088 1.044 1.238
US 0.3963 | 0.8858 9.0801 14 April 72 975 2.329 0.429 0.377 0.074 1.615 1.833
Canada 0.3184 | 0.8641 10.5390 26 April 44 819 1.957 | 0.349 0.301 0.053 1.982 2.303
Portugal 0.5786 | 0.8522 | 26.1210 21 April 34 326 0.779 0.640 0.543 0.105 1.083 1.277
Germany 0.4031 | 0.8859 | 28.8674 7 April 26 306 0.732 0.435 0.383 0.086 1.590 1.808
Denmark 0.6463 | 0.7996 | 29.8669 1 April 25 267 0.641 0.741 0.593 0.095 0.934 1.168
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Table 6: Summary statistics for gamma drift models.
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Figure 1: Covid-19 infections in China and Italy.
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Figure 2: In sample fit of daily deaths for China. The dots show data for the daily death tolls. The red line
shows the regression fits for the logistic model, the green line for the gamma model and the blue line for the
beta model.
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Figure 3: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated on
an expanding window (second and third central Towsy respectively) and dynamic fit (bottom row) for Italy
(left) and Spain (right).
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Figure 4: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated
on an expanding window (second and third central 1?02ng7 respectively) and dynamic fit (bottom row) for the

US (left) and the UK (right).
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Figure 5: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated on
2%espectively) and dynamic fit (bottom row) for France

an expanding window (second and third central rows

(left) and Germany (right).



Daily deaths (per 10 mln)

. 10 mln) Chuonmlative deaths (per 10 mln)

300

200

100

BE, SIC 2020
10 : —
3 L
E -
at =—fl— L ogistic
s Gamma
Beta
2 [l 1 1 1 1 1 I I 1
) 2 Wl © a3 b i A )
et @@‘q’ pst P‘Q{% @@‘H .@@‘i% 50“% 3\)‘:‘% :\0\%
BE, cimnlative deaths [orecasis 2020
8000
6000 |

4000 |

20001

O Data
Logistic
—— Gamma
Bota

Daily deaths (per 10 mln)

4

s hh@lkh E\I@{fﬁj

Q b B
g 3‘)\“ :‘d\'\

Aogh @ o
Pﬂ"k P@‘% @@ﬁﬁmq’ oo e

2020

NL, enmmlative deaths forecasis

4000 T

30001

2000 F

1000

O Data
Logistic
——— Gamma
Bota

Chormlative deaths (per 10 ml

[ W i I 1 1 1 [ O I 1 1 I 1 1 1
AD B W 6 a0 b A A & N T Y 9h o gD gh AD
N @@‘{L poft w‘q' e @@‘iq’ o 30“1 S we' @@‘1 pet wm @@"I“L @caﬂq' ot 5\3“1 WYy
BE, daily deaths - dynamic model fit 2000  — NL, daily deaths - dynamic model it 2020
ago| © Dam | B 205 Dam
e | oistic, 4 = e | oistic, 4
————— Gamma, 4w ™ {50 | e Gamma, dw 1
S 300 |meme= Bot, 4w E === Bota, 40
o] = = = | ogistic, B s} = = = | ogistic, B T |
':_'f. 200 |= = = Gamma, Bw '_'f. 160 | = Gamma, B | A ¥ -
= = = w=Bota B = = = m=Bota B 7 b | ~
Z 3 s 2 -
i i e ~
E E D 1 1 1 1 1 1 1
T B AU S SRS B LCT S R U SR SN R -
Wt et e gt e Wt et e gt e
(a) Belgium 2020 (b) The Netherlands 2020

Figure 6: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated
on an expanding window (second and third central 2r?vvs, respectively) and dynamic fit (bottom row) for
Belgium (left) and the Netherlands (right).
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Figure 7: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated

on an expanding window (second and third central
Denmark (left) and Sweden (right).

JOWS, respectively) and dynamic fit (bottom row) for
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Figure 8: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated on
an expanding window (second and third central rows,

(left) and Portugal (right).

Bespectlvely) and dynamic fit (bottom row) for Ireland
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Figure 9: In-sample fit (top row), SIC and rolling out-of-sample forecasts of cumulative deaths calculated

on an expanding window (second and third central

Canada (left) and Brazil (right).

JOWS, respectively) and dynamic fit (bottom row) for



