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Abstract The small cell technology is considered as a key technology for 5G
networks. The capacity expansion and coverage extension are both achieved
through this deployment. However, the ultra-dense small cells deployment can
cause a severe interference, a high number of frequent unnecessary handovers
and/or handover failure and hence, high power consumption is expected due
to the signalling overhead. Placing some small cells into idle mode, without
causing degradation to the quality of service, is a good strategy to enhance the
energy efficiency in the network. In this paper, we propose an energy efficient
game theoretical method to reduce the energy consumption in dense small
cells network. The proposed method enables the small cells to adjust their
transmitting power while considering to balance the load among themselves. A
non-cooperative game is formulated among the cells in the network to solve the
cost function which considers both the power mode and its load. The game is
solved using the regret matching-based learning distribution approach in which
each cell chooses its optimal transmit power strategy to reach the equilibrium.
The cell selection for handover is then made using a multiple attribute TOPSIS
technique. Results show that the proposed method significantly reduces the
power consumption and unnecessary handovers, in addition to improving the
average small cell throughput compared to the conventional method.
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1 Introduction

The explosive increase in the quantity of smart user equipment (UE) connec-
ted to the wireless network has resulted in great need for network capacity
expansion and coverage extension. The small cells (SCs) deployment is an ef-
fective solution to deal with data traffic demand [1]. Ultra-dense deployment
of SCs is foreseen in the future fifth generation (5G) networks. This type of
deployment can also help in offloading the traffic from the existing macrocell
(MC) base stations, but new fresh problems are introduced including the in-
terference, unnecessary frequent handover (HO), and hence, higher signalling
overhead which results in higher energy consumption. In addition to capacity
and coverage enhancement resulted from SC deployment, 5G networks also
aims to reduce latency, decrease the power consumption, reduce the computa-
tional complexity and enhance the reliability of the network.

Many researches dealt with the HO problem in the literature. Authors in
[2] utilized received signal strength (RSS) and path loss to perform the HO.
Window function has been applied to the RSS of both the SC and MC to com-
pensate for the uneven transmitting power of both cells. However, the large
variation of the path loss may cause an increase in the number of unnecessary
handovers. Authors in [3], proposed an admission control mechanism to min-
imize the frequent HO in the HetNet. The velocity of the UE, RSS and the
time needed to maintain the minimum RSS for ensuring service continuity are
utilized as HO criteria. Only low speed UEs are permitted to HO to SC. On the
other hand, UEs with medium speed are only allowed to HO to SC when their
traffic type is real time traffic such as ongoing phone call. In [4], we presented
a mechanism to reduce the target SCs for HO and minimize the frequent HOs
in HetNet. A list of SC targets is gained by utilizing the distance between the
SC and the UE in addition to the angle of movement of the UE. Fast moving
UEs are not allowed to HO to SCs. The obtained results reveal an enhanced
performance in terms of SC list minimization, unnecessary HO reduction, and
network throughput. In [5], we presented a mechanism to minimize the HO
failure and the unnecessary HO. A predicted time of stay (ToS) is utilized to
omit SC, which may cause an unnecessary HO or HO failure, from the target
HO SC list. The UE is handed over to the SC, which provides the best sig-
nal to interference plus noise ratio (SINR) and has a sufficient capacity. Time
threshold and the SINR are utilized to obtain a trade-off between the unneces-
sary HO and HO failure. Results show that both of the unnecessary HO and
HO failure have been reduced. A HO mechanism for enhancing the throughput
and load balancing is presented in [6]. The impact of interference and estimated
ToS is combined to perform traffic offloading. An inbound HO margin based
on serving cell load and interference level is derived to achieve the offloading.
It has been shown that this mechanism has minimized the probability of HO
failure and unnecessary HO in addition to improving the throughput for both
the UE and the network. Authors in [7] proposed a traffic-aware spectrum
HO method for two-tier HetNets. Utilizing the concept of reserved channels,
a user can use shared-to-reserved or reserved-to-shared spectrum HO policy.
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To maintain a compromise between complexity and performance, this method
may be implemented in a distributed or central manner. Results show better
performance for this centralized method compared to the distributed method.
In [8], authors proposed a vertical HO strategy for cognitive HetNets which
considers the availability of spectrum in addition to the average received sig-
nal. It has been shown that this method reduced the unnecessary HO and
outage probability while maintaining good QoS for the users. Authors in [9]
proposed a spectrum HO method for cognitive HetNets which uses a reserved
channel-based strategy. A trade-off between the secondary and primary user
in terms of throughput was proved by solving the optimization problem. It
was revealed that different arrival rates of primary users cannot degrade the
network performance owing to the deployment of reserving channel method.
A two-tier HO method is presented in [10] where the traffic metric and signal
strength are used as HO criteria. It was shown that this method reduced the
unnecessary HO and increases the utilization of femtocells by improving their
assignment rate of users.

The contributions in this work can be summarised as: we propose an energy
efficient game theoretical method to reduce the energy consumption in dense
SCs HetNet. The proposed method enables the small cells to update their
transmitting power dynamically while considering the load among themselves.
The problem is formulated as a non-cooperative game among the cells in the
network. The game is solved using the regret matching-based learning distri-
bution approach in which each cell learns its optimal transmit power strategy
to reach the equilibrium. The main idea of this work is that each cell learns
the regret of its played strategy at every instant of time targeting to reduce
the average regret over time. The player’s regret is defined as the difference
between its average utility function when taking the same strategy in all previ-
ous rounds of the game and its average utility function gained by changing its
strategies. Using the proposed game theoretical method, the cells will either
reduce their transmission power or switch off dynamically to minimize the
power consumption. Then, the HO happens by using the Technique for Order
Preference by Similarity to an Ideal Solution (TOPSIS) method. Results show
that our method significantly minimizes the power consumption and unneces-
sary handover, in addition to improving the average small cell throughput.
This paper is structured as follows. Section 2 presents the related work. The
system model and problem formulation are given in section 3. The procedures
of the proposed method are given in section 4. The performance and results
analysis are given in section 5. Finally, section 6 concludes the paper.

2 Related Works

Many works in the literature considered the issues associated with small cell
deployment in HetNets. One of the most challenging issues that needs to be ad-
dressed is the energy efficiency. In [11], authors proposed a power consumption
reduction method which considers a compromise between energy efficiency and
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traffic load balancing. This method enhanced the energy efficiency by utilizing
a greedy algorithm to switch the cell between on and off modes. In [12]-[13]
centralized switching methods are presented to put cells into on/off mode and
HO the UEs to the neighbouring cells aiming to reduce the consumption of
energy. In [14], a mechanism that allows a cell to adjust its power according to
the load of the traffic is proposed. The cells can reduce their power instead of
shutting down. We presented a HO method for HetNets in [15] which also takes
into account the UE energy consumption. The Analytical Hierarchy Process
(AHP) is utilized to get the weights of the HO metrics, on the other hand,
the Grey Rational Analysis (GRA) is utilized to choose the best HO target.
Findings reveal a minimization in the frequent HOs and radio link failures
and enhancement in the energy efficiency. In [16], the authors presented an
energy efficiency mechanism for HetNets. The distribution of the cells follows
a Poisson point process distribution. Each cell moves to passive mode when its
load reaches a minimum threshold targeting to improve the energy efficiency.
Authors in [17] presented a work in HetNets to improve the energy efficiency
by power and subchannel allocation. The convex optimization is utilized to
form the resource optimization problem. Results indicate that this technique
has enhanced the energy efficiency compared to the conventional technique.
Authors in [18] presented an adjustable utility function and a bargaining co-
operative game for power coordination in HetNets. It has been shown that this
technique has improved the energy efficiency. The authors in [19] proposed a
mechanism taking into account the power control and UE association. A log-
utility model is utilized to form the joint optimization problem. Results reveal
a reduction in the power consumption. However, the authors in [17], [16], [19]
and [18] disregard to take into account the frequent HO and the SCs density as
cost functions which could cause an elevated number of unnecessary HOs and
an unfair distribution of load in the HetNets. In [20], the authors proposed a
sleeping method for SCs to minimize the energy consumption. At the MC edge,
the SC goes to passive mode and the resulted coverage gap will be covered by
the nearby range expanded SCs. The UEs associated to the passvie SC will be
forced to HO to the MC. It has been shown that this method enhanced the
energy efficiency. However, the unplanned sleeping for SCs at the MC edge
could result in a failure in the link and leads to HO failure. Moreover, obliging
the UEs to HO from the sleeping SCs to the MC could lead to a high increase
in the frequent HOs and causes to underutilize the SCs causing uneven load
distribution.

Most, works in the literature rely on a centralized controller to obtain the
network information that is needed to make the decision of turning on/off
the base station. Unfortunately, this mechanism will incur a huge signalling
overhead in addition to the costs of over-utilizing the backhaul. Thus, it is
important to give an effective solution which enables the base stations to
dynamically adjust their power mode. In case of not activating the base station
in the required time, a failure in the connection will take place resulting in
dissatisfaction at the user side. Additionally, the literature researches failed
to take into account the UE mobility in ultra dense small cell environment.
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When switching the base stations between active and idle mode there will
be a tremendous elevation in the signal overhead because of handing over the
UEs, which were connected with idle mode cell, to a new cell. Thus, this paper
considers a game theoretical solution to dynamically allow the base stations
to switch between active and idle mode depending on load. Each base station
in the game uses the regret matching-based learning game approach to learn
its best strategy by considering a utility function which consists of energy
consumption and cell load. The game is solved using the principle of e-coarse
correlated equilibrium. The HO target cell is then elected using multi-criteria
TOPSIS technique.

3 System Model and Problem Formulation

The system model in this paper consists of two-tier heterogeneous network
(HetNet) which contains a MC and dense number of SCs. The set of all base
stations in the network S = {0,1,2, -, Ns.}. Where 0 represents the MC,
with a 500m radius, and N, is the total deployed number of SCs, where
each one is randomly deployed based on a uniform distribution and covers
a 100m radius as shown in Fig.1. Both MC and SCs tiers utilize the same
frequency band. The constraint of minimum distance is also considered to
ensure the overlapping between SCs. The minimum distance between SC and
MC is adjusted to 75m and the SC to SC distance is adjusted to 40m [1].
The UEs are distributed uniformly and their mobility is defined utilizing two
parameters: UE velocity, Vi, and UE direction, 0. The mobility parameters
are expressed as Gaussian distribution and are updated accordingly following
the given equations [21] below

‘/ue = N(”Tﬂ? vstd)7 (]‘)

O = N (O, 27 — O, tan(

Vue

o) Av), 2)
where v,, is the UE mean velocity, vs:q represents the standard deviation of the
UE velocity, 6,, is the previous direction of the UE, At is the period between
two updates of the mobility model, and A (z,y) is a Gaussian distribution
with mean z and standard deviation .

Let §; be the coverage area of cell i € S such that any UE at k location is
served by cell i if and only if k& € §;.

The downlink reference signal received power (RSRP) of cell ¢ measured
by the UE at location k£ can be written as

Pl =P} - hiy, (3)

where P/, is the downlink RSRP of cell i received by the UE at location k, P}
is the power transmitted by cell ¢ and h; 1, is the channel gain between the UE
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Figure 1 HetNet System Model

and cell ¢ considering the path loss and shadowing effects [22]. The downlink
SINR for cell i received by UE at location k£ can be expressed as

. Py,
ik — ‘. , 2
D ey ik to
B P} - hiy,

ZjeS\{i}P; ~hjr +0?

Pt.
jes\{i} 7
summation of the downlink power from the neighbouring cells except cell 4,
i.e. the interferer cells. The throughput at UE location k received from cell ¢

is given by Shannon capacity formula as

where o2 is the noise power and the term (Z hj,k) represents the

17y = BWlogy (1 + 75 1)s (5)

where BW is the bandwidth allocated for user k. Note that we assume the
overall bandwidth is evenly distributed among users in this work. In order to
consider the power consumption due to power transmission and power needed
for a base station in an active mode, we utilized the power formula defined by
[23]. The total power needed for cell ¢ in an active mode to generate an RF
output power is defined as

i Ppa, + Prr + Ppp (6)
active (1_O—DC)(]_—0'M5)(1 _Ucool)7

where Ppp is the power consumed by the base band component, Prp is the
power consumed by the RF component, and metrics opc, oprs and o0 are
respectively the losses fraction of DC power supply, main supply and active
cooling. It is worth noting that the loss fraction of the active cooling supply,
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Ocool, 1S only applicable to MC and not used for SCs, and Pp4, is the power
consumed by the power amplifier which is given as

Pt
n- (1 - Ufeed)7

Ppy, = (7)
where 7 is the power efficiency of transmitting P} and o fecq is the feeder loss
fraction which is set to -3 dB.

On the other hand, the power needed for cell 7 in an idle mode is expressed
as

i Prr+ Pgpp
idle = . (8)
(]- - UDC)(]- - UMS)(]- - Ucool)
In the active mode, the base station will serve all UEs in its vicinity. It is
worth noting that in an idle operation mode, the power consumption of the
base station is not zero so that the base station can discover the incoming UEs
into its coverage area.

It is assumed that the UEs in cell ¢ are homogeneous, i.e., all of the UEs
in cell ¢ have the same quality of service (QoS) requirement in terms of packet
arrival size. Let A\ be the rate of packet arrival for UE at location k € §; and
1/p is the mean size of that packet. The load density of cell 4, denoted as
Ci,k, can be expressed as

_ ik
Vpig - T3y,
Which eventually makes the load of cell i is

Li = Z Gi k- (10)

kEd;

Gi.k 9)

Each cell i € S can minimize its load by increasing the offered data rate
T}, which means to increases its transmission power so that the SINR, will
improve. This can also cause higher power consumption which makes it ne-
cessary to compromise between reducing the load (maximizing throughput)
and reducing the power consumption at the same time. Basically, if the base
station is capable of dynamically adjusting its transmitted power P} according
to its traffic load then the energy efficiency could be enhanced. Hence, the cost
function for cell 7 that captures the power consumption and base station load,

denoted as ©;, can be expressed as

where « and (8 are respectively predefined weighting factors for transmission
power P! and cell load L;.
Therefore, the overall objective function to reduce the cost in (11) can be
written as
mln}g@lze Z O;,
i vies
subject to 0<L;<1,Vie S
0< P! < P™*VieS,

(12)
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where P/"%" is the maximum power that can be transmitted by cell ¢ and
the condition (0 < L; < 1) is used to limit connection failures by delivering
service to all UEs served by cell i and located in the coverage area ;. A
dynamic self-organizing mechanism where each cell in the network can control
its transmission power independently is sufficient of solving the problem in

(12).

4 Energy Efficient Game Theoretic Approach
4.1 Energy Efficient Game Formulation

The proposed energy efficient method is formulated mathematically using
game theoretical approach. A non-cooperative game is defined using the three
components of the game, that is players, strategy (or action) and utility func-

tion, so the game is defined as I' = {S, {A;}ies, {Ui}ies}.

Each player Q; € S has A; = {aijl, aj2, - ,ai,|Ai|} set of strategies where

a strategy of cell i, i.e., a;, is composed of its own transmit power P! €
[0, P:;w, 2P§M,leaz]. The strategy a; of cell i and the strategies of other
cells a_; describe the power of the network and wu; is the utility of cell i where
u;(a;,a_;) = —6;. The major aim of the game is that each player @), chooses

its best strategy that leads to a best utility function periodically.

1. Players: are the network base stations, (Q1,--- ,Qq, -+ ,Qn) Vi € S.

2. Strategies: A;;Vi € S represent the feasible action space for player QQ; € S.
Each cell in the network, i.e., @;, can transmit a minimum power of 0 and
a maximum power of P/"**. Hence, A; = [0, Piﬂ;w, 2P§M , Pmaz)

3. Utility function: the utility function w;(a;) is the total cost of playing
action a; for player @;. The utility function in this work includes two cost
functions, that is power function and load function.

— Power function: is the cost for player Q); € S of playing the strategy
a;. This function reflects the cost of adjusting the cell transmit power P}
as each cell aims to reduce its transmit power. For each player the aim
is to reduce the transmit power so as to optimize the energy efficiency.

— Load function: The load function represents the cost of the load of cell
i which is taken from equation (10).

Finally, the utility function for each player @; Vi € S, which considers the

transmission power and load, is defined as

In order to solve the game I' = {57 {A; }ies, {Ui}ieS}; we have to prove
the existence of a unique equilibrium in the game, which means that each
player in the game can reach an optimal strategy af = P!* where it has no
gain to change its own action.
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The strategy set A; is finite and discrete, therefore the non-cooperative
game I' permits at least a single equilibrium [24]. Since the outcome of this
non-cooperative game is a suboptimal mixed strategy of Nash equilibrium,
then it is better to deploy another solution for the game that could result in
an optimal expected utility for each player in the game. According to [25], if
the players in a non-cooperative game can correlate their strategies, then the
equilibrium can be obtained better than that of Nash equilibrium (every finite
game has a mixed strategy Nash equilibrium). For example, if transmission
power is generated according to a prior knowledge of the player’s strategy,
then the strategy of the player will lead to a generalized form of Nash equilib-
rium which is called correlated equilibrium (CE). A mixed Nash equilibrium
is a special case of CE. Therefore, the CE are more likely to happen than
mixed Nash equilibrium [26]. A CE is a probability distribution on strategy
profiles, which can be simply explained as the distribution of play instructions
delivered to each player by some device. Indeed, the CE is a beneficial concept
in dense SCs HetNets where some SCs can correlated their transmission power.
In CE, the players are committed to play an action after they receive the re-
commendation. However, in coarse correlated equilibrium (CCE), the players
decide to play the action before they receive the recommendation to play it. In
other words, player @; has to follow the recommendation because other play-
ers also select to commit. If it happens that a single player does not commit
then it may experience a low expected utility [26]. In this work, we consider
the concept of e-coarse correlated equilibrium, where each player @Q; € S has
the best expected utility function for playing a certain strategy before seeing
that strategy itself.

Assuming that 75(t) = [13,1(2), Li2(t), - -+, 7;,4,/(t)] is the probability dis-
tribution in which each player @); € S plays an action from A; at time ¢. In
other word, 7; ;(t) = P(a;(t) = a;;) is the mixed strategy of player Q; € S,
where a;(t) is the action of player Q; played at time instant ¢.

Theorem 1: e-coarse correlated equilibrium is defined as a probability
distribution 7; over strategy vectors such that for every player @); € S and
every strategy a € A; and a; € A; we have:

> (e agrsas) - (w@n) <, (14)

a’ ,€A_, a€cA,;

where 7_;,a_; = Z Y(af,a_;) is the marginal probability distribution of
a;€A;
player Q; and u;(a) is the utility of the player when strategy a is played from
the distribution 75, the strategy is measured using the joint distribution of its
strategy af and the other players’ strategies a_; € A_;, where a_; is an element
of a_;. The distribution of the play in the regret matching-based learning
procedure approaches to the correlated equilibrium distribution as the time
goes to infinity. For a finite time interval, the empirical distribution converges
to e-coarse correlated equilibrium. In order to design a mechanism for the
distribution to solve the game and reach the e-coarse correlated equilibrium,
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in the next section, the regret matching-based learning process is explained so
that a e-coarse correlated equilibrium is achieved and eventually an optimal
utility is ensured for every player in the game so that no player has incentives
to deviate.

4.2 Regret Matching-based Learning Energy Efficient Game Solution:
Equilibrium Learning

In order to have the best possible utility, each player in the game uses the prin-
ciple of the regret matching-based learning approach to evaluate its regret of
not playing a certain action targeting to reduce the regret over time and hence
enhancing the utility by reaching the e-coarse correlated equilibrium. Assume
that player Q; € S repeatedly changes its action following strategy distribu-
tion 7; and monitors its utility u; while the other players playing their actions
following their strategy distribution vector 7_;. Based on the monitored util-
ity, player Q; may regret playing the action a;(¢). In order to evaluate the
regret, it is necessary to have the utility w; and this also needs to know the
actions of the remaining players due to the load L; in equation (13). Because
of the random cell distribution, it is not possible to practically have the re-
quired information. Thus, player @); needs to estimate its utility and regret
for each action played [27]. At each instant of time ¢, player Q; adjusts its
mixed strategy probability distribution 7; according to its estimated regret.
The process of regret matching-based learning can therefore be based on the
estimations procedures which are illustrated as follows:

First, by using the instantaneous utility u;(t — 1), each player Q; estimates
its expected utility function with each of its action as

ugst(t) = u*t(t = 1) + p; (Ui(t — 1) —u(t - 1)>’ (15)

where u¢*!(t) is the new estimated utility for player Q;, u$'(t — 1) is the
previously estimated utility and p; is the learning rate for the utility.
Then, each player estimates the new regret r*t(t) of playing a certain

action by utilizing the estimated utility in (15) as
) = 2 ) b (- ) - ) 1)), (16)

where r¢%(t — 1) is the previously estimated regret and 7; is the regret learning
rate.

Finally, the estimated regret is used to compute the new probability dis-
tribution of the mixed strategies 72%'(¢) as given below

TE() = TN 1) 40 (Gi (i) ~Tette - 1)) .

where 7725 (t — 1) is the previously estimated strategy and 1); is the learning
rate for the mixed strategy probability. The learning rates (p;, 7; and ;) take
the scheme 1/t¢, where e is the learning rate exponent.



Title Suppressed Due to Excessive Length 11

Obviously, the probability distribution of changing to a different strategy
is proportional to its regret relative to the current strategy. Which means that
when the regret is high, then the probability of changing the action is also
high. Boltzmann-Gibbs distribution (BG) [27], denoted as G;, can be utilized
to estimate the mixed strategy probability 1;(t) given in (17). BG distribution
weighs the mixed strategy actions according to their regrets, which means that
the cells with high regret values have the highest probability of adjusting their
played actions. Generally, BG distribution can be expressed as

()
Gi(ri (t)) e (Qirfft(t))’ (18)

Vi*€A;

where (2; is a temperature parameter > 0 represents the interest of player
Q; to select other actions instead of those maximizing the regret, and hence
improving regret estimation. Hence, each cell selects the best action over the
time leading to its mixed strategy 7;(t) approaches to the required e-coarse
correlated equilibrium where no player have the incentive to deviate from its
played action.

4.3 Cell Ranking and Handover Decision

After optimizing the cell transmission power, the HO takes place by utilizing
multiple criteria including SINR, velocity of UE and cell load. The SINR is
directly influenced by the power optimization in the game part, therefore, it is
taken as a measure metric in HO decision. We adopt the TOPSIS technique [28]
[29], to choose the best target base station for HO by ranking the neighbouring
candidates. The three HO metrics (SINR, UE velocity and cell load) for all
cells are all weighted according to the standard deviation weighting technique
[30] so as to assess their influence. The standard deviation (SD) weighting
technique computes the weights of every criterion in terms of the standard
deviation and assigns less weight for a criterion if the value of this criterion is
identical for all cells. This means that metrics with small standard deviation
are given smaller weights and vice versa. After HO metrics weighting, the
best available cells are ranked based on TOPSIS and the cell with the highest
rank is selected as the new HO target. The procedures of TOPSIS with SD
weighting technique can be illustrated as:

Step 1: A decision matrix, D, is obtained by mapping the alternatives against

attributes
T11 12 Tin
21 X22 X2n
D= T31 X32 I3n (19)

ITml Tm2 Tmn
where n = 1,---,3, m = 0,1,2,--- , Ny, z;; represents the value of the j*
attribute (HO metric) for the i'? alternative (cell).



12 Mohanad Alhabo et al.

Step 2: A normalized, utilizing a Square root normalization, is applied to the
decision matrix

= —Y y e [07 ”a (20)

17 o 3 17

dim @i

where 277" is the 4" normalized attribute of the i** alternative.
Step 3: The normalized matrix is weighted in this step. Thus, the weighted
normalized decision matrix is expressed as

di1 di2 di3
d21 d22 das
DoW — d31 dz2 d33 (21)

dn.ﬂ dr;12 d'r;zS
subject to ij =1, (22)
JEN
where d;; is the j'" weighted normalized attribute of the i'" alternative i.e.,
di1 = 2™ - wy, dig = 275" - wy and so on. The SD weighting technique

[30] computes the weights of each attribute in terms of standard deviation as
follows

sd 0j
S (23)
! > k=1 0k
1 m
O'j = E Z(x?jorm — /,(,j)z, (24)
=1
1 — norm
Hi = inj ) (25)
=1

where o; and p; are respectively the standard deviation and the mean value
of the j** normalized attribute.

Step 4: The weighted normalized decision matrix is utilized to obtain the ideal
positive solution, denoted as z) and the ideal negative solution, denoted as
z~) by

7 = {(max D}j" | j € ), (min D" | j €j7) |
em em (26)
— {df,d;,dg},
- . n,w . ot n,w . o —
z —{(grelngij |7 €§7), (max D™ [ j € )}

(27)
= {d;,d;,d;},

where j* is the set with the attributes having positive impact (i.e., the higher

value the better), and j~ is the set with the attributes having negative impact
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(i-e., the lower value the better).
Step 5: Compute the Euclidean distance between each alternative and both
the positive and negative ideal solutions as shown below

n
distt = | (DY —df)?, Vi=1,---,m (28)
j=1

dist™ = (D5 —d;)?, Vi=1,---,m (29)

-

~
Il
-

Step 6: A Ranking vector, Rn, is acquired to compute the relative closeness
of each candidate alternative to the ideal solution, that is
dist™ dist™
Rn = — , Vi=1,---,m. 30
" max(dist—)  min(distt) ! " (30)

Step 7: A descending ranking is applied to Rn and the best alternative is
selected as a target for HO.

HOxarget = arg max Rn(7). (31)

5 Performance and Results Analysis

The proposed method is implemented, evaluated and compared against the
conventional method, in which the cells are not able to transfer their power
mode from active to idle mode, in terms of power consumption, unnecessary
HO probability and throughput. Each cell in the network dynamically adjusts
its transmission power according to the solution of the game which is described
in 4.2. The proposed method has two parts, the first part is power optimization
using game approach, then the second part is cell selection using TOPSIS. In
each time instance the two parts are repeated periodically because the load of
each cell will change. Simulation parameters are given in table 1.

5.1 Power Consumption

The average SC power consumption with respect to the number of the UEs is
shown in Fig.2. The power consumption evaluation takes into account three
samples of UE velocities, that is 30, 50 and 90 km /h. Generally, for all velocities
the power consumption rises with the number of UEs and the conventional
method has the highest power consumption because the transmit power of the
cells are not optimised. With the increase of the number of UEs in the network,
the load in the network increases and this needs most of the base stations on
active mode and hence cause proportional increase of the power consumption.
With high velocity, e.g. 90 km /h, the proposed method has the lowest level
of power consumption because most of the UEs are kept associated with the
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Table 1 Simulation Parameters

Parameter Value

MC radius 500 meters
SC radius 100 meters
Number of SCs 40
Bandwidth 20 MHz

MC maximum transmission power 46 dBm

SC maximum transmission power 30 dBm

UE velocity {0, 10, 20, 40,

Packet arrival rate

60, 80, 100} km/h
1 kbps

ik
Mean offered traffic (I/Hi,k) 180 kbps
Boltzmann temperature 2; 10
(o, B) (0.5, 0.5)
Learning rate exponents e for p;, 7;,%; (0.6, 0.7, 0.8)

o
~
oy

T T T T T T T
—i— Conventional, user velocity = 30 km/h

—@— Proposed, user veloc 90 km/h
e Proposed, user velo 50 km/h
—@— Proposed, user velocity = 30 km/h
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Figure 2 Average SC power consumption

macrocell leaving the small cells at idle mode. For low velocity, i.e., 30 km /h,
the power consumption is higher because low speed UEs are kept connected to
the small cells, and hence the small cells switch to the power active mode. On
the other hand, at all velocities, when the number of the UEs increases more
small cells switch to active mode to deliver services to the UEs, therefore, the
power consumption increases noticeably.

5.2 Unnecessary Handover

In this work, the unnecessary HO is defined when the UE begins a HO process
to cell 7 and leaves the cell after one second. The unnecessary HO probability
with regard to the number of UEs for different velocities is depicted in Fig.3.
In general, the proposed method outperformed the conventional method at
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all UE velocities by producing the lowest unnecessary HO probability. For
example, when the UE velocity is 30 km/h and the number of the UEs is 20,
the proposed method shows 32.8% reduction in the probability of unnecessary
HO compared to the conventional method. For the proposed method, for all
velocities, the highest the number of UEs the highest the unnecessary HO
probability.

5.3 Throughput

For different UE velocities, the average small cell throughput with regard to
the number of the UEs is presented in Fig.4. It is obvious that our method
has outperformed the conventional one at all UE densities. For example, when
the velocity of the UE is 30 km/h and the number of UEs is 20, the proposed
method has 54.7% enhancement the small cell throughput compared to the
conventional method. Generally, the average small cell throughput decreases
with the increase in the UE velocity because the high speed UEs are connected
to the macrocell. On the other hand, at lower UE speeds, e.g., 30 km /h, the
throughput is improved due to the increased number of UEs connected to the
small cell. Fig.5 shows the average small cell throughput with different UE
velocities and number. Similarly to the findings in Fig.4, the throughput in
Fig.5 reduces with the increase in the velocity. However, the higher the number
of UEs in the network gives the higher small cell throughput.

6 Conclusion
In this work, we propose an energy efficient HO method for HetNets. The pro-

posed method exploits the principle of regret matching-based learning game
theoretical approach where each base station tries to reduce its transmit power
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so as to reach the required e-coarse correlated equilibrium. This is done by re-
gretting to play the previous strategy and playing a new strategy that gives
the best expected utility for each player. The cell selection is then applied
using the TOPSIS technique. The obtained results reveal that our method has
enhanced the power efficiency in the network by reducing the power consump-
tion due to putting the light loaded small cell into idle mode. Moreover, the
proposed method reduced the probability of unnecessary HO for different UE
densities and speeds and improved the average small cell throughput.
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