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Abstract 

Background: Accurate identification of end-diastolic and end-systolic frames in 

echocardiographic cine loops is important, yet challenging, for human experts. Manual 

frame selection is subject to uncertainty, affecting crucial clinical measurements, such 

as myocardial strain. Therefore, the ability to automatically detect frames of interest is 

highly desirable. 

Methods: We have developed deep neural networks, trained and tested on multi-centre 

patient data, for the accurate identification of end-diastolic and end-systolic frames in 

apical four-chamber 2D multibeat cine loop recordings of arbitrary length. Seven 

experienced cardiologist experts independently labelled the frames of interest, thereby 

providing infallible annotations, allowing for observer variability measurements. 

Results: When compared with the ground-truth, our model shows an average frame 

difference of -0.09±1.10 and 0.11±1.29 frames for end-diastolic and end-systolic 

frames, respectively. When applied to patient datasets from a different clinical site, to 



which the model was blind during its development, average frame differences of -

1.34±3.27 and -0.31±3.37 frames were obtained for both frames of interest. All 

detection errors fall within the range of inter-observer variability: [-0.87, -5.51]±[2.29, 

4.26] and [-0.97, -3.46]±[3.67, 4.68] for ED and ES events, respectively.  

Conclusions: The proposed automated model can identify multiple end-systolic and 

end-diastolic frames in echocardiographic videos of arbitrary length with performance 

indistinguishable from that of human experts, but with significantly shorter processing 

time. 

Keywords: Echocardiography, Cardiac imaging, Deep learning, Phase detection 

 

1. Introduction 

Assessment of left ventricular (LV) function is of principal importance during an 

echocardiographic examination and is crucial for accurate patient evaluation. 

Echocardiography continues to be the most common technique in clinical practice for 

the quantification of LV function markers; such as ejection fraction (EF) and global 

longitudinal strain (GLS) [1]. Measurements usually relate to time points, such as end-

diastole (ED) and end-systole (ES). Therefore, accurate detection of the end of the LV 

systole and diastole phases constitutes a critical step in any echocardiographic exam. 

 

1.1. The need for fully automated systems 

The importance of accurate identification of ED and ES frames has crucially been 

demonstrated by Mada et al. [2]. An error of just two to three frames in detecting ES 



elicits an approximate 10% difference in segmental ES strain. Furthermore, the 

sensitivity of frame selection is greater in relation to the left bundle branch block. As 

highlighted by Amundsen [3], the consequence of misidentification of ED and ES 

frames can be extensive; impairing concordance between observers in both research and 

clinical practice. Therefore, automated methods for the resolution of accurate ED and 

ES phase detection could greatly contribute to improving the consistency of 

echocardiographic quantification. 

The process of identifying ED and ES frames in video data is manually performed by 

trained clinicians via on-screen visual selection. ED frames can be determined using 

cues such as mitral valve closure, ECG R-wave and maximum LV volume. Whereas ES 

frames are commonly defined by mitral valve opening, minimal LV volume, aortic 

valve closure, or the end of the ECG T-wave. However, due to subtle frame-on-frame 

spatial differences, and complex temporal relationships virtually invisible to the human 

eye, manual detection presents a significant barrier to consistent diagnosis due to intra- 

and inter-observer variability lacking reproducibility and precision [4].  

We previously identified the medial disagreement between accredited and experienced 

experts as 3 frames [5] when performing manual identification. Therefore, reliable and 

reproducible methods for ED and ES frame detection would allow for the development 

of fully automated techniques. Thus, meeting the objective of accurate quantification of 

LV function, in addition to automated calculation of EF and stroke volume, GLS and 

wall thickening. 

 

 



1.2. Value of independence from ECG 

Often, cardiac timing is determined through analysis of an accompanying ECG signal 

during an echocardiogram exam. Despite providing information enabling the 

computation of some clinically important parameters (such as temporal intervals from 

the R-wave peaks), ECG recordings require the connection of multiple cables which is 

time-consuming and, at times, inconvenient. In an era when highly portable scanners 

can be used to undertake focused studies lasting just a few minutes [6], the capacity of 

detecting cardiac timing events, independent from the ECG signal, has potential to be 

useful in implementing such automated technology on handheld devices. 

In the absence of ECG signal, tissue Doppler data has been used to estimate cardiac 

cycle length [7] or detect ED frames [8]. Machine learning approaches have also been 

applied to automatically detect ED and ES frames from 2D echocardiography images 

(B-mode). This includes manifold learning [9], speckle tracking [10], correlation-based 

frame-to-frame deviation measures [11,12], nonlinear filtering and boundary detection 

techniques [13]. 

More recently, studies have focused on deep learning approaches, such as convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs). Deep residual recurrent 

neural networks were applied to phase detection in apical-4-chamber (A4C) 

echocardiograms [14]. A major limitation of this study is the proposed model only 

accepts videos with a fixed length of frames, containing just one cardiac cycle. 

Presumably, this approach necessitates pre-processing of the input image sequence to 

isolate a single heartbeat.  



The same authors later reported on combining CNN and RNN modules to detect frames 

of interest [15]. Although varying length inputs (22-59 frames) were used, again their 

results indicate the videos contained just one cardiac cycle. It is assumed this variation 

in length was probably due to different frame and heart rates. 

In addition, 3D CNNs have been applied for the extraction of spatial-temporal features 

from A4C and apical-2-chamber (A2C) echocardiographic videos [16]. While the study 

states the model was trained on variable length sequences, the feasibility of the model 

was demonstrated only on a pair of detected ED/ES frames in each video with the QRS-

complex in the accompanying ECG signal being used to detect an additional ED frame 

for the videos starting in systole phase; thereby providing ground-truth for a full cardiac 

cycle (ED-ES-ED). 

A summary of all accuracies from previously reported studies [14-16], compared with 

those of our developed models, is provided in the results section. 

 

1.3. Value of multibeat analysis 

In clinical practice, longer recordings would allow for probing of physiological 

reactions after intervention, where detecting a subtle change in the mean value of a 

clinical maker, amongst much larger background beat-to-beat variability, is essential. 

As stated, recent studies have failed to target the application of automated phase 

detection in arbitrarily long, uninterrupted echocardiogram recordings containing 

several full heartbeats. Clinically, it is necessary to monitor changes in crucial markers, 

such as EF or strain, from one examination to the next. Measurements taken from only 

one heartbeat may result in test-retest variability. Therefore, it would be impossible to 



reliably conclude whether a patient’s condition has deteriorated over time. Such 

variability and inaccuracy can be reduced by averaging measurements over several 

heartbeats, from the same acquisition. However, this is impractical when a proposed 

automated model is incapable of returning more than one single pair of ED/ES frame 

predictions. 

We previously reported on the issue of beat-to-beat variability in echocardiography and 

potential bias due to using a single measurement from a single heartbeat [17-19]. When 

random variability between heartbeats is large, clinicians use "clinical judgement" to 

select which value to report; largely unaware of the devastating consequences for 

subsequent use. The ability to acquire and automatically analyse many heartbeats within 

reasonable time constraints would permit clinical protocols to be developed for multi-

beat measurements, hence reducing undesirable variability between clinical 

assessments. In such measurements, the exact time of ED and ES events for each 

heartbeat is required. 

 

1.4. Clinical deployability 

Without exception, all previously reported studies related to echocardiographic phase 

detection have used ‘single-centre’ clinical datasets with one set of expert annotations 

for model developments and evaluations. Experience shows the performance of models 

trained using a single dataset may reduce considerably when transferred from one 

clinical site to another, and when applied to the images obtained from a different group 

of patients, collected using different equipment, and acquired/annotated following 

different protocols [20]. We have demonstrated this drawback in relation to the 



echocardiographic LV segmentation where a model, designed and claimed to be 

superior by the authors using their own dataset, underperformed compared to the 

standard U-net architecture when applied to our patient data [21].  

This limitation has proved prohibitive to the development of automated models 

becoming an acceptable mainstream methodology in daily clinical practice. Evaluating 

models on multi-centre clinical datasets/annotations naturally results in (i) greater 

patient numbers with a wider range of groups, representing the overall population, 

lower systematic bias in terms of (ii) protocols/guidelines and (iii) imaging equipment, 

and (iv) external validity. This would make the developed models less prone to 

overfitting, thus, resulting in their increased generalisability, in contrast to single-centre 

dataset studies. 

 

1.5. Importance of external validation 

Similarly, all previously reported studies on phase detection have used ‘private’ 

datasets. Therefore, accurate interpretation of the reported results, encompassing a wide 

range of accuracies, is not feasible since a direct comparison of the frame detection 

accuracy would require access to the same patient dataset. This highlights the 

importance of external validation of the automated algorithms and using publicly 

available benchmarks, before they can be incorporated into clinical use. To date, no 

study has used and reported accuracies on a publicly available echocardiography 

dataset. 

 

 



1.6. Main contributions 

A validated and clinically deployable solution is a central feature of our research 

approach. The main contributions of this research can be summarised as being the first 

study of its kind to: 

• investigate the feasibility of using a deep learning framework to detect ED and 

ES frames in echocardiographic videos of arbitrary length, containing several 

heartbeats 

• demonstrate the applicability of the developed framework by including several 

patient datasets from various clinical centres, where one dataset was used for 

model development and the others used for testing 

• use annotations (ground-truth) from several cardiologist experts, allowing for 

the examination of inter- and intra-observer variability 

• make our patient dataset and models publicly available, thereby providing a 

benchmark for future studies and allowing for external validation of our 

approach 

• include performance reports on an independent external dataset, made available 

for the LV segmentation challenge, ensuring generalisability by transcontinental 

data inclusion 

 

 

 



2. Methodology 

2.1. Dataset, ethics and expert annotations 

Descriptions of the datasets used in this study is as follows, with a brief summary 

provided in Table 1. 

PACS-dataset 

A large random sample of echocardiographic studies from different patients performed 

between 2010 and 2020 was extracted from Imperial College Healthcare NHS Trust’s 

echocardiogram database. Ethical approval was obtained from the Health Regulatory 

Agency for the anonymised export of large quantities of imaging data. It was not 

necessary to approach patients individually for consent of data originally acquired for 

clinical purposes.  

The images were acquired during examinations performed by experienced 

echocardiographers, according to the standard protocols for using ultrasound equipment 

from GE and Philips manufacturers. Only studies with full patient demographic data, 

and without intravenous contrast administration, were included. Automated 

anonymisation was performed to remove the patient-identifiable information. A detailed 

description, including patient characteristics, can be found in Howard et al. [22]. 

A CNN model, previously developed in our research group to detect different 

echocardiographic views [22], was then used to identify and separate the A4C views. A 

total of 1,000 videos from different patients of varying lengths, containing 1-3 

heartbeats, were randomly selected. 



Two accredited and experienced cardiology experts manually selected ED and ES 

frames, each blinded to the judgment of the other. We developed a custom-made 

program closely replicating the interface of clinical echocardiography hardware. 

Operators visually inspected the cine loops by controlled animation using a trackball, or 

arrow keys. The operators were asked to pick ED and ES frames in the A4C view, as 

they would in preparation for a Biplane Simpson’s measurement in clinical practice. 

Selections were made in one or more sessions at their convenience and the time taken 

was recorded. The annotations were then used to define the reference ground-truth ED 

and ES frames for model developments (both training and testing). 

Finally, the original DICOM-formatted image sequences were down sampled by cubic 

interpolation into a standardised size of 112×112 pixels. 

MultiBeat-dataset 

2D echocardiographic images were collected from 40 patients (18 males), with an age 

range of 27-80 years and a mean age of 59 years, who were referred for 

echocardiographic examination in the Echocardiography Department at St Mary’s 

Hospital, London. There were no selection criteria, and all patients were in sinus 

rhythm. The study was approved by the local ethics committee and written- informed 

consent was obtained from all patients. 

Standard transthoracic echocardiography was performed using a GE Vivid.i (GE 

Healthcare, London, United Kingdom) ultrasound machine equipped with a 1.5-3.6 

MHz transducer (3S-RS). For each subject, an A4C view was obtained in left lateral 

decubitus position as per standard clinical guidelines [23]. The operators performing the 

exam were instructed not to change any machine setting (e.g. sector, gain, depth, etc.) 



and the probe position during the acquisition period to obtain consistent data. The 

acquisition period was 20 seconds to make sure at least 10 cardiac cycles were present 

in all videos. The images were stored digitally for subsequent offline analysis. The ECG 

trace was present on all echocardiographic recordings. 

Using the same platform described for the PACS-dataset and in a similar process, five 

other accredited and experienced cardiology experts manually selected ED and ES 

frames, again each blinded to the judgment of the others. All videos were then renamed 

and provided to one operator in a random order for second analysis, no previous result 

was shown. Thus, the operator was blinded from their own previous frame selections. 

To maintain independence, the operators annotating the MultiBeat-dataset were 

different from those who labelled the PACS-dataset. 

Where an operator judged a beat to be of low quality, they declared it invalid and did 

not make a selection. Therefore, since the operators were blinded to each other and their 

own previous selections, there were heartbeats that were delineated on one or two 

viewings only by each operator. Only the heartbeats which had 6 delineations (540 in 

total) were used for testing the models. The location of the typical frames identified by 

the operators is plotted as red circular markers in Fig.3. DICOM-formatted image 

sequences were again down sampled by cubic interpolation into a standardised size of 

112×112 pixels. 

EchoNet-dataset 

This publicly available dataset [24], originally shared for the task of LV segmentation, 

contains 10,030 A4C echocardiography videos from individuals who underwent 

imaging between 2016 and 2018 as part of routine clinical care at Stanford University 



Hospital. Each video has been cropped and masked to remove text and information 

outside of the scanning sector.  

The image sequences are provided with a dimension of 112×112 pixels. The videos are 

annotated by a registered sonographer. Although some videos may contain a couple of 

heartbeats, only one pair of ED/ES frames is labelled and were used as the reference 

ground-truth for testing the developed models (no training was performed using this 

dataset). A more detailed description of the EchoNet-dataset can be found in [26]. 

Table 1. A summary of the patient datasets used in this study. 

 

Dataset Name PACS-dataset MultiBeat-

dataset 

EchoNet-dataset 

 

Source 

Private 
NHS Trust 
PACS Archives - 
Imperial College 
Healthcare 

Private 
St Mary’s 
Hospital 
Acquired for 
this study 

Publicly available 
Stanford University Hospital 
echonet.github.io/dynamic 

Ultrasound 

machine 

Philips Healthcare 
(iE33 xMATRIX)  

GE Healthcare 
(Vivid.i) and 
Philips 
Healthcare 
(iE33 
xMATRIX) 

Siemens Healthineers (Acuson 
SC2000) and Philips 
Healthcare (iE33, Epiq 5G, 
Epiq 7C) 

Number of 

videos/patients 

1,000 40 10,030 

Length of 

videos 

1-3 heartbeats ≥ 10 heartbeats 1 heartbeat 

Ground-truth 2 annotations by 2 
experts 

6 annotations 
by 5 experts 
(twice by one 
expert) 

1 annotation 

Original size 

(pixels) 

(300-768)×(400-
1024) 

422×636 112×112 

Frame rate 

(fps) 

23-102 52-80 50 

Format DICOM DICOM AVI 
Use Training/Testing Testing Testing 
 



2.2. Ground-truth definition 

The target output, or ground-truth, was generated using reference annotations provided 

by experts and subsequently used to train the deep learning models. As highlighted in 

section 1.2, and in order for the model to be entirely independent from the ECG, we did 

not rely on the ECG-derived information for model developments and testing because: 

(i) not all videos contained the ECG trace, and (ii) even if present, the ECG trace in 

many cases was too noisy or of insufficient quality for any meaningful analysis. 

Treating the definition of ground-truth as a classification task, with three classes for 

frames (ED, ES, trivial), would result in an imbalanced problem since the ‘trivial’ class 

would be greatly over-represented. A recent study put forth the argument of a binary 

classification approach for cardiac phase detection [16]. However, by allocating the 

same label to all frames in the diastole phase (1) and systole phase (0), one risks 

ignoring high-level spatial and temporally related markers, including crucial 

physiological differences throughout the entire cardiac cycle. 

Therefore, the problem was formulated as a regression task. To label individual cardiac 

frames, it was assumed the predictions for a cardiac sequence should decrease during 

the systole phase and increase during the diastole phase. Given two consecutive ground 

truth labels yi and yi-1, we expect yi-1< yi in systole, and vice versa. Assigning the target 

values of 1 and 0 to ED and ES time-points, respectively, and using a linear 

interpolation function, the target outputs for all constituent farmers between the two 

events were defined as: 

 



 

 

Here,  is the ground-truth label for frame  at time-point t, and  and  are the 

frame numbers for ED and ES events, respectively. For a video containing multiple 

heartbeats, the ground-truth will therefore appear as a zigzag profile as illustrated in 

Fig.1. Due to varying video length, some contain a combination of singular or multiple 

events in the image sequence. 

 

2.3. Neural network architecture 

Considering the patient image sequences as visual time-series, we adopted Long-term 

Recurrent Convolutional Networks (CNN+LSTM) for analysing the echocardiographic 

videos. Such architectures are a class of models that is both spatially and temporally 

deep, specifically designed for sequence prediction problems (e.g., order of images) 

with spatial inputs (e.g. 2D structure or pixels in an image) [26]. 

Fig.1A. provides an overview of the network architecture. The model comprises (i) 

CNN unit for the encoding of spatial information for each frame of an 

echocardiographic video input, (ii) LSTM units for the decoding of complex temporal 

information, and (iii) a regression unit for the prediction of the frames of interest. 

Spatial feature extraction: First, a CNN unit is used to extract a spatial feature vector 

from every cardiac frame in the image sequence. A series of state-of-the-



art architectures were employed for the CNN unit. These included ResNet50, 

InceptionV3, DenseNet, and InceptionResNetV2, details of which can be found in the 

relevant resources [27 - 30]. 

Temporal feature extraction: The CNN unit above is only capable of handling a 

single image, transforming it from input pixels into an internal matrix or vector 

representation. LSTM units are therefore used to process the image features extracted 

from the entire image sequence by the CNN, i.e. interpreting the features across time 

steps. Stacks of LSTM units (1-layer to 4-layers) were explored, where the output of 

each LSTM unit not in the final layer is treated as input to a unit in the next. 

Regression unit: Finally, the output of the LSTM unit is regressed to predict the 

location of ED and ES frames. The model returns a prediction for each frame in the 

cardiac sequence (timestep). 

 

2.4. Deep learning framework 

For the model to be capable of processing a video input of arbitrary length, thus 

containing any number of heartbeats and events, a sliding window approach was 

adopted. As illustrated in Fig.1B., a sliding window with a fixed stride segments the 

cardiac image sequence into overlapping chunks of fixed length. Each segment is then 

fed into the neural network model, as described above, where a prediction vector  is 

returned. The final target output is computed as: 

 



 

Where  is the prediction for frame t in the  segment, and K is the total number of 

predictions available for each frame, obtained from overlapping segments. A peak 

detection algorithm then searched for the local maxima and minima, representing the 

ED and ES frames, respectively. 

 

 



Fig. 1.  Detailed schematic of the proposed deep learning framework: (A) the network 

architecture combining a CNN unit for spatial feature extraction with RNN (LSTM) 

blocks for temporal analysis; (B) the sliding window method processing fixed, 

overlapped, chunked sequences, generating multiple predictions for each frame with the 

mean calculated for each. 

 

2.5. Implementation details 

The models were implemented using the TensorFlow 2.0 deep learning framework [31] 

and trained using an NVIDIA GeForce ® GTX 1080 Ti GPU. Random, on the fly 

augmentation prevented overfitting, such as rotating between -10 and 10 degrees and 

spatial cropping between 0 and 10 pixels along each axis. The loss function was the 

mean squared error (MSE) with Adam optimiser [32] initialised with a learning rate of 

10-5. Throughout the study, training was conducted over 70 epochs with a batch size of 

2 for all models. 

The PACS-dataset was used to train the models, with a data split of 60%, 20% and 20% 

for training, validation and testing, respectively. Early stopping was employed to avoid 

overfitting meaning training continued until the validation loss plateaued.  

During testing, a sliding window of 30 frames in width with a stride of one was applied, 

allowing up to 30 predictions of differing temporal importance to be calculated for each 

timestep. Toward the end of each video, should a segment be fewer than 30 frames in 

length, it was zero-padded with the added frames removed after completion. 

Experimentation proved a stack of 2 LSTM layers was the optimum configuration 

across all models. 



2.6. Evaluation metrics 

As the primary endpoint for frame detection, evaluation of trained network predictions 

measures the difference between each labelled target , either ED or ES, and the 

timestep prediction  Average Absolute Frame Difference (aaFD) notation is applied, 

where N is the number of events within the test dataset: 

 

 

 

The signed mean (μ) and standard deviation (σ) of the error (i.e. frame differences) were 

also calculated. 

 

3. Results and discussion 

3.1. PACS-dataset 

The average time (mean±SD) taken by the operators to manually annotate ED/ES 

frames was 26±11 seconds, per event. The equivalent time for our automated models, 

executed on the GPU, was less than 1.5 seconds; significantly faster than the human-led 

process. 



 

Fig.2. Examples of model’s frame predictions (ResNet50 + 2x-LSTM) and Operator-1 

annotations for two arbitrary patients from the PACS-dataset test set, when there is full 

agreement between the two (upper row) and conversely, when there is a mismatch 

(lower row). 

 

Examples of two random patient videos for which the frame detection error is zero, as 

well as when there is a disagreement between the model’s predictions and expert 

annotations. Table 2 details the error in ED and ES frame detection for all videos in the 

PACS-dataset. The results indicate the level of disagreement between Operator-1 

annotations, considered as the ground-truth, compared with automated predictions and 

those made by Operator-2. 

 

Table 2. Errors in ED and ES frame detection between Operator-1, the reference 

ground-truth, and predictions with Operator-2, for all testing videos in the PACS-

dataset. Detection time is the average time it takes for the model (inference time) or the 



operator (annotation time) to identify an ED/ES event. The best performing architecture, 

in terms of lowest detection error and shortest detection time, is highlighted. 

 

Model/Operator ED ES Detection Time (s) 

aaFD μ ± σ aaFD μ ± σ 
 

ResNet50 + 2x-LSTM 0.66 -0.09±1.10 0.81 0.11±1.29 0.776±0.33 
InceptionV3 + 2x LSTM 1.19 0.48±1.89 1.21 0.66±1.76 0.697±0.30 
DenseNet + 2x LSTM 0.81 0.19±1.30 0.98 -0.01±1.53 1.379±0.59 
InceptionResNetV2 + 2x LSTM 0.77 -0.02±1.38 0.83 0.23±1.29 1.07±0.46 
Operator-2 (inter-observer) 1.55 -1.35±1.31 1.44 -0.90±1.80 26±11 

 

The explored network architectures, which all employ the same type of RNN unit but 

use different state-of-the-art CNN modules, demonstrated comparable performance in 

terms of frame detection accuracy and inference time. In all models, the signed mean 

values are relatively small (-0.09 ≤ μ ≤ 0.66) which indicate unbiased models; i.e. the 

models did not have a tendency to be consistently early or late, relative to the expert 

annotations. Conversely, Operator-2 was predominantly late in identifying both ED and 

ES events; μ = -1.35 and -0.90 for ED and ES events, respectively. 

‘ResNet + 2x-LSTM’ demonstrated a slim advantage, having the smallest discrepancy 

with Operator-1, and being the second fastest in terms of inference time of 0.78s for 

detecting each event. The aaFD was less than one frame in both events, with a mean 

difference of -0.09±1.10 and 0.11±1.29 frames for ED and ES events, respectively.  

The discrepancy between Operator-1 and Operator-2 indicates a level of inter-observer 

variability; with an average absolute (and mean) frame difference of 1.55 (-1.35±1.31) 

and 1.44 (-0.90±1.80) frames for ED and ES events, respectively. Therefore, suggesting 

the discrepancy between automated models and Operator-1 is within the range of 

disagreement observed between two trained human operators. 



Due to its lowest error, the ‘ResNet + 2x-LSTM’ architecture (hereinafter, referred to as 

the model) was selected for further analysis using the additional MultiBeat and EchoNet 

datasets. Table 3 provides a comparison between the performance of the model and 

previously reported deep learning results.  

The model outperforms almost all existing approaches, indicating smaller discrepancies 

with the ground-truth from which it has learnt. However, caution is necessary, as 

different studies have used different private patient datasets, presumably with various 

levels of image quality and experience of human experts for annotations. Therefore, a 

direct comparison between the reported accuracies may not be as informative as desired. 

However, the proposed model’s removal of all pre-processing steps and its capacity to 

identify multiple heartbeats in one long video is, however, an indisputable advantage. 

It is also observed that ES frame detection error is consistently higher in all models than 

that for ED. Potentially owing to minute differences in consecutive frames indicating 

the mitral valve opening as the onset of the diastole phase is less apparent in the images; 

thus, resulting in a more challenging detection task for the model. 

 

Table 3. Comparison of the proposed model with previously reported deep learning 

architectures regarding aaFD in ED and ES event detection. 

 

Model aaFD ED aaFD ES 

ResNet50 + 2x-LSTM 0.66 0.81 
ResNet + 2x-LSTM [14] 3.7 4.1 
3D CNN + LSTM [16] 1.6 1.7 
DenseNet + 2x-Bi-GRU [15] 0.20 1.43 

 



3.2 Multibeat-dataset 

An ECG signal was recorded simultaneously alongside image acquisition for the 

MultiBeat-dataset and appears as a transverse trace on the echo image sequence. The 

ECG was extracted using a combination of constraints where the trace was assumed to 

be (i) continuous, (ii) have a consistent colour profile, and (iii) distinct from the 

background. The extracted signal for a random patient is used in Fig.3. to plot the 

identified frames by the human operators (6 annotations) and the automated model. 

 

 

Fig. 3. Extracted ECG trace spanning 4 heartbeats for a random patient, delineated 

showing the 6 annotations from 5 operators (red circles) and automatically identified 

(blue squares) ED and ES frames. 

 

Table 4 details detection errors between Operator-1 and detections made by the model 

and other operators. The model disagrees with Operator-1, as do Operators 2-5. Indeed, 

Operator-1 disagreed with themselves on their second annotation attempt (denoted as 

Operator-1b). The smallest error was the discrepancy between the two annotations on 



separate occasions by the same operator (i.e. intra-observer variability), with a mean 

difference -0.22±2.76 and 0.25±3.75 for ED and ES events, respectively.  

The range of mean difference between two different operators (i.e. inter-observer 

variability) was [-0.87, -5.51]±[2.29, 4.26] and [-0.97, -3.46]±[3.67, 4.68] for ED and 

ES events, respectively. The model discrepancy falls within the range of inter-observer 

variability. Clearly demonstrating the reliability of the model in frame detection, 

compared with the experienced human experts.  

Significantly, both intra- and inter-observer variability measures suggest the experts’ 

disagreement is greater when identifying ES frames. This is consistent with the model’s 

performance, for which higher errors are observed when detecting ES frames. 

 

Table 4. Errors in ED and ES frame detection between Operator-1a (considered as 

ground-truth) and predictions made by the other operators and the model for all testing 

videos in the MultiBeat-dataset. Operator-1b denotes the second set of annotations by 

the first human operator, indicating intra-observer variability. 

 

Model/Operator ED ES 

aaFD μ ± σ aaFD μ ± σ 
Operator-1a  vs   Operator-1b 1.96 -0.22 ± 2.76 1.90 0.25 ± 3.75 
Operator-1a  vs   Operator-2 2.65 -1.22 ± 4.26 3.67 -2.25 ± 4.68 
Operator-1a  vs   Operator-3 5.82 -5.51 ± 3.77 4.80 -4.46 ± 3.77 
Operator-1a  vs   Operator-4 1.72 -0.87 ± 2.29 2.01 -0.97 ± 3.48 
Operator-1a  vs   Operator-5 3.27 -2.96 ± 2.57 4.11 -3.64 ± 3.67 
Operator-1a  vs   model 2.62 -1.34 ± 3.27 1.86 -0.31 ± 3.37 

 

 



To ensure fair comparison between model performance and operators, Fig. 4. plots 

detection errors. Each human operator is compared with other 5, their consensus (mean) 

is considered as the reference annotation (red boxplots). The model is also compared 

with the consensus of the same 5 human annotations (blue boxplots). All 12 panels 

suggest performance of the model is similar, if not better, to that of an individual 

operator when using the other operators as a reference standard. 

 

 

Fig.4. Errors in ED and ES frame identification by each operator, expressed relative to 

the consensus (mean) of all other 5 human annotations (red boxplots). In each case, 

alongside these errors, are those identified by the model expressed relative to the 

consensus of the same 5 annotations (blue boxplots). In the box-and-whisker plots, the 



thick line represents the median, the box represents the quartiles, and the whiskers 

represent the 2.5% and 97.5% percentiles. 

 

Because different human experts make different judgments, it is not possible for any 

automated model to agree with all expert annotations all the time. However, it is 

desirable for automated models to have fewer discrepancies when compared with the 

performance of human judgment. Given the model was never exposed to this dataset 

(image sequences, and any of the corresponding annotations), its predictions in ED and 

ES frame detection can be treated as one of the independent assessors.  

Hence, for each heartbeat, there were 7 assessments of the desired frame; 6 human and 

one automated. Therefore, for each assessor, 6 frame differences were calculated when 

compared to other human or automated assessors. The pool of these differences across 

all heartbeats and image sequences indicates the overall performance for each assessor 

and is shown as boxplots in Fig.5. 

Operator-4 demonstrates the smallest range of discrepancies in identification of ED 

frames (standard deviation of 3.47), but was consistently late, with a bias of -1.50 

frames when compared to the consensus of other assessments.  

The model had a relatively acceptable discrepancy from the consensus of the human 

operators, with a mean difference of 0.39±3.97 and 1.54±3.80 frames in ED and ES 

events, respectively. Indicating the model can be used to detect the frames of interest 

and that it is as reliable as the experienced human experts. 

The range of human operator judgments for each heartbeat (i.e. difference between the 

earliest and latest manually identified frames) may be assumed as the uncertainty of the 



reference method and, therefore, the highest accuracy obtainable. The mean frame 

intervals among all heartbeats was 8.10±3.84 and 7.01±4.28 frames for ED and ES 

events, respectively. 

 

Fig.5. Errors in ED and ES frame identification by each of the assessors across all 

heartbeats and all patients. For each heartbeat there were 7 assessments (6 human and 

one automated). Errors are expressed as the pooled data from frame differences between 

each individual assessor and the 6 others. In the box-and-whisker plots, the thick line 

represents the median, the box represents the quartiles, and the whiskers represent the 

2.5% and 97.5% percentiles. 

 

 



3.3. EchoNet-dataset 

In section 3.1, the proposed model was compared against previously reported 

approaches. However, each study used a different private dataset, making a direct 

comparison extremely difficult. Here, we applied our model to the publicly available 

EchoNet-dataset, allowing for future studies to be benchmarked against ours. Like the 

MultiBeat-dataset, no further training was carried out, and the dataset was used in its 

entirety for testing. 

From the total number of videos (10,000), 810 were excluded owing to one of the ED or 

ES events occurring in the penultimate or final frame in the video, hence being 

unsuitable.  EchoNet was made available for a challenge focused on segmentation of the 

left ventricular. Therefore, it was acceptable to have ED or ES events occurring in first 

or last frames. The retained 9,190 videos were fed into the model, when no resampling 

of the images was required as the dataset is provided with a resolution of 112×112 

pixels; identical to the input size of our model. 

An aaFD of 2.30 and 3.49 frames was obtained for ES and ES events, respectively and 

the mean frame difference was 0.16±3.56 and 2.64±3.59 for ED and ES; well within the 

range of inter-observer variability observed in section 3.2. 

 

4. Conclusion 

This study sought to investigate the feasibility of fully automated identification of ED 

and ES frames derived from 2D echocardiographic images and independent from an 

accompanying ECG signal using deep neural networks. The performance of the 

proposed method was examined by comparisons to gold standard reference data, 



obtained from multiple cardiologist experts. It has been demonstrated that the 

performance of the proposed model is like that of human experts, with its detection 

error falling within the range of inter-observer variability and can therefore be used to 

reliably identify multiple ED and ES frames from videos of arbitrary length. 

The performance of the automated model, measured as the processing time, is superior 

to that of human operators, where an improvement of >20 times was observed. 

The proposed framework was tested on A4C views; however, it is the authors’ belief 

that the utilised deep learning approaches could be applied to other echocardiographic 

views (no view-specific assumptions were made during the model developments). This 

will be the subject of future studies. As in previous studies, ours investigates 2D 

echocardiography as the clinically relevant modality. Currently, 3D echocardiography 

suffers from a considerable reduction in frame rate and image quality, hindering its 

adoption into routine practice [33]. When such issues are resolved, automatic frame 

detection in 3D images could be explored. Meanwhile, 2D echocardiography remains 

unrivalled, particularly when high frame rates are required. 

Interpreting the results of our proposed model alongside other published architectures 

from the literature was not feasible. A direct comparison of detection accuracy would 

require access to the same patient dataset. At present, no echocardiography dataset, and 

corresponding annotations specifically prepared for cardiac phase detection, is publicly 

available. Additionally, representative multi-centre patient data, essential for ensuring 

any developed model would scale up well to other sites and environments, is currently 

scarce. 



To address such broadly acknowledged shortcomings in the application of deep learning 

to echocardiography, we are developing Unity, a UK collaborative of cardiologists, 

physiologists and computer scientists under the aegis of the British Society of 

Echocardiography.  

An image analysis interface has been developed in the form of a web-based, interactive, 

real-time platform to capture carefully curated expert annotations from numerous echo 

specialists with patient data provided from over twelve sites across the UK. Thus, 

ensuring coverage of multiple vendors, systems and environments. The Unity patient 

datasets, including the ones used in this study, are available for download at 

intsav.github.io. Additionally, all developed models designed using this annotation 

biobank and Unity datasets, are made available under open-source agreements at 

github.com/intsav, open to anyone to inspect, modify and improve upon them. This 

access to both datasets and models would allow an external validation of our findings. 
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