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Abstract

A new technique is proposed for determining the response of multi-

degree-of-freedom nonlinear systems with singular parameter matrices sub-

ject to combined stochastic and deterministic excitations. Singular matrices

in the governing equations of motion potentially account for the presence

of constraint equations in the system. Further, they also appear when a re-

dundant coordinates modeling is adopted to derive the equations of motion

of complex multi-body systems. In this regard, considering that the system

is subject to both stochastic and deterministic excitations, its response also

has two components, namely a deterministic and a stochastic one. There-

fore, employing first the harmonic balance method to treat the deterministic

component leads to an overdetermined system of equations, to be solved
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for computing the associated coefficients. Then, the generalized statistical

linearization method for deriving the stochastic response of nonlinear sys-

tems with singular matrices, in conjunction with an averaging treatment, are

utilized to determine the stochastic component of the response. The validity

of the proposed technique is demonstrated by pertinent numerical examples.

1 Introduction

Utilizing the minimum number of independent generalized coordinates constitutes

the commonly followed practice for modeling the equations of motion of multi-

degree-of-freedom (MDOF) dynamical systems (e.g., Roberts and Spanos [2003];

Li and Chen [2009]). Clearly, this is due to the symmetric and positive defi-

nite system parameter matrices appearing in the governing equations of motion.

These facilitate the development of efficient stochastic response determination

techniques, such as these based on the Wiener path integral (e.g., Petromichelakis

and Kougioumtzoglou [2020]), but also on recently developed efficacious sparse

representations of the stochastic system response based on compressive sampling

concepts and tools (e.g., Kougioumtzoglou et al. [2020]). However, also taking

into account the effort involved in the modeling procedure, it can be argued that

modeling based on the minimum number of coordinates can be a rather daunting

task. This especially applies for classes of complex multi-body systems and/or

systems subject to constraints Udwadia and Kalaba [1992, 2001]. In particular, de-

pending on the number of bodies which constitute the system under consideration,

on the topology and nature of their connections (e.g., linear, nonlinear, hysteretic),

as well as on the presence of constraint equations, utilizing the minimum number

of coordinates/degrees-of-freedom (DOFs) can even become impractical. More-

over, it can be argued that following the standard minimum number of DOFs-based

formulation of the equations of motion in multi-body system modeling (instead

of adopting a redundant DOFs one), apart from providing the modeler with lim-

ited flexibility, it also relates to solution frameworks of increased computational

cost; see, indicatively, Udwadia and Phohomsiri [2006]; Critchley and Anderson

[2003]; Featherstone [1984]; Schutte and Udwadia [2011]; de Falco et al. [2005];

Pappalardo and Guida [2018a]; Pappalardo and Guida [2018b]; Udwadia and

Wanichanon [2013]; Pirrotta et al. [2019] for a more detailed discussion. Further,

it is worth noting that the degree of simplicity and the amount of effort required

for deriving the equations of motion are critical for assessing the performance of

an applied solution framework.
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In this regard, an alternative approach has been developed for bypassing some

of the previous limitations, where the formulation of the governing equations of

motion relies on adopting additional dependent coordinates/DOFs (e.g., Udwa-

dia and Kalaba [2001]; Udwadia and Phohomsiri [2006]; Schutte and Udwadia

[2011]). However, due to the dependence among the utilized DOFs, singular

matrices appear in the system equations of motion, rendering all standard sys-

tem analyses inapplicable. Therefore, it is necessary to develop new tools and

techniques for studying the behavior and assessing the reliability of engineering

systems with singular parameter matrices in the governing equations of motion.

The first steps towards this direction have been recently made by resorting to the

theory of generalized matrix inverses. In particular, the Moore-Penrose (M-P)

matrix inverses theory has been invoked to extend standard time- and frequency-

domain approaches of random vibration theory to account for linear and nonlinear

systems with singular matrices (Fragkoulis et al. [2016a]; Fragkoulis et al. [2016b];

Kougioumtzoglou et al. [2017]; Pasparakis et al. [2021]; Pirrotta et al. [2021]); see

also Refs. Fragkoulis et al. [2015]; Pantelous and Pirrotta [2017]; Pirrotta et al.

[2019] for additional applications based on an M-P matrix inverses framework.

The machinery of the M-P matrix inverses-based solution framework is further

enhanced in this paper by introducing a technique for determining the response of

MDOF nonlinear systems with singular parameter matrices subject to combined

stochastic and deterministic excitations. This is a rather substantial extension with

applications, for instance, in the response determination of slender structures (e.g.,

wind turbines, submission towers, etc.), which are often subject to stochastic wind

loading as well as deterministic loading due to vortex-shedding (Davenport [1995];

Tessari et al. [2017]). In such cases, depending on the complexity of the system

under consideration, adopting the herein proposed multi-body system modeling

approach potentially facilitates the derivation of its dynamics, and subsequently,

of the system response determination. Further, the proposed approach can be

used in vibration energy harvesting applications. Specifically, it can be used in

applications related to contemporary vibration energy harvesters (VEHS) designed

to operate in tandem with larger structures, such as bridges vibrating due to wind

loads and harmonic loads caused by vehicles (Cai and Harne [2020]). In particular,

when the problem of combined VEHs is considered for maximizing the energy

production (e.g., Lee et al. [2019]), a redundant DOFs modeling can be employed

to facilitate the derivation of the system dynamics.

The herein proposed technique can be construed as a generalization of a re-

cently developed framework for deriving the response of MDOF nonlinear systems

subject to combined stochastic and deterministic excitations (Spanos et al. [2019])
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to account for systems with singular parameter matrices. In this regard, the har-

monic balance method (e.g., Mickens [2010]; Krack and Gross [2019]) and the

recently derived statistical linearization methodology for systems with singular

matrices (Fragkoulis et al. [2016b]; Kougioumtzoglou et al. [2017]) are invoked

to determine the response of systems exhibiting singular matrices, and subject

to combined stochastic and deterministic excitation. Specifically, considering the

form of the excitation, first, it is assumed that the corresponding system response

is composed of a deterministic and a stochastic part. Next, the harmonic balance

method is employed to treat the deterministic response. However, in contrast to the

standard implementation of the method (i.e., Spanos et al. [2019]), an overdeter-

mined system of equations (e.g., Lindfield and Penny [2018]) is constructed, to be

solved for computing the harmonic coefficients of the method. Therefore, a novel

M-P matrix inverses-based theoretical framework is introduced to solve the sys-

tem, and thus, to determine the associated harmonic coefficients (e.g., Ben-Israel

and Greville [2003]; Campbell and Meyer [2009]). Then, the generalized statis-

tical linearization methodology for systems with singular matrices in conjunction

with an averaging treatment are employed for treating the stochastic component

of the response. It is noted that the combination of the two methods (i.e., of the

harmonic balance and the statistical linearization) leads to a coupled system of

algebraic equations, which is solved iteratively and both the stochastic and the

deterministic response components are derived. Two numerical examples are used

to demonstrate the validity of the proposed technique. Specifically, systems with

mass, damping as well as stiffness nonlinearities of several magnitudes are con-

sidered. The obtained results are compared and found in complete agreement with

corresponding results derived by applying the standard approach in Spanos et al.

[2019].

2 Mathematical formulation

2.1 Nonlinear multi-degree-of-freedom Systems with Singular

Parameter Matrices

The matrix form of the equations of motion of an 𝑙-DOF nonlinear system, where

x denotes an 𝑙-dimensional dependent coordinates vector is given by

Mx¥x + Cx ¤x + Kxx +𝚽x(x, ¤x, ¥x) = Qx(𝑡), (1)
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where Mx,Cx and Kx correspond to the 𝑙 × 𝑙 mass, damping and stiffness matrices

of the system. Further, 𝚽x(x, ¤x, ¥x) denotes the 𝑙-dimensional vector of the system

nonlinearities, which depends on the displacement x and its first and second

derivatives. Finally, Qx(𝑡) represents a zero-mean Gaussian stochastic excitation.

Next, it is considered that the system of Eq. (1) is subject to additional constraints

of the form (Schutte and Udwadia [2011]; Fragkoulis et al. [2016a])

A(x, ¤x, 𝑡) ¥x = b(x, ¤x, 𝑡), (2)

which, for simplicity, are expressed as A¥x + E¤x + Lx = F, with A,E,L and F

denoting, respectively, 𝑚 × 𝑙 matrices and an 𝑙-dimensional vector. Then, Eq. (1)

is recast into

M̄x¥x + C̄x ¤x + K̄xx + 𝚽̄x(x, ¤x, ¥x) = Q̄x(𝑡). (3)

In Eq. (3), M̄x, C̄x and K̄x denote the augmented (𝑙 + 𝑚) × 𝑙 mass, damping and

stiffness matrices of the system, which are given by (Fragkoulis et al. [2016a])

M̄x =

[
(I𝑙 − A+A)Mx

A

]
, C̄x =

[
(I𝑙 − A+A)Cx

E

]
, K̄x =

[
(I𝑙 − A+A)Kx

L

]
, (4)

whereas

𝚽̄x =

[
(I𝑙 − A+A)𝚽x

0

]
, Q̄x(𝑡) =

[
(I𝑙 − A+A)Qx(𝑡)

F

]
(5)

are the augmented (𝑙 + 𝑚)-dimensional vectors of the system nonlinearities and

stochastic excitation, respectively. Finally, I𝑙 corresponds to the 𝑙 × 𝑙 identity

matrix, and “+” denotes the M-P matrix inverse operation (see Appendix I). A

detailed derivation of Eqs. (3)-(5) can be found in Fragkoulis et al. [2016a].

2.2 Generalized Statistical Linearization Methodology for multi-

degree-of-freedom Systems with Singular Parameter Ma-

trices

The statistical linearization methodology for solving approximately and efficiently

nonlinear stochastic differential equations (e.g., Roberts and Spanos [2003]; Socha

[2007]), has been recently extended and generalized to determine the response

statistics of nonlinear dynamical systems with singular parameter matrices (Fragk-

oulis et al. [2016b]; Kougioumtzoglou et al. [2017]). A concise presentation of

the generalized method is included in this section for completeness. The major
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objective of the methodology lies in replacing the originally given nonlinear sys-

tem with an equivalent linear one. This becomes feasible by minimizing, in some

sense, the error that is formed by the difference between the two systems. The

rationale behind this approach stems from that there are readily available closed

form analytical expressions in time and frequency domains for the response char-

acterization of linear systems, which are used to approximate the response of the

original nonlinear system. The method is widely utilized in diverse engineering

applications due to its versatility in addressing a wide range of nonlinear behaviors,

and also due to that it leads to closed-form expressions for determining the param-

eter matrices of the equivalent linear system (e.g., Spanos and Evangelatos [2010];

Spanos and Kougioumtzoglou [2012]; Fragkoulis et al. [2019]; Mitseas and Beer

[2019]; Pasparakis et al. [2021]). The interested reader is directed to Fragkoulis

et al. [2016b] and Kougioumtzoglou et al. [2017] for a detailed presentation of the

method.

For the application of the generalized statistical linearization methodology,

first, an equivalent linear system to the nonlinear system defined in Eq. (3) is

considered as

(M̄x + M̄𝑒) ¥x + (C̄x + C̄𝑒) ¤x + (K̄x + K̄𝑒)x = Q̄x(𝑡), (6)

where M̄𝑒, C̄𝑒 and K̄𝑒 denote the augmented equivalent linear mass, damping and

stiffness

(𝑙 + 𝑚) × 𝑙 matrices. Then, the error

𝜺 = 𝚽̄x(x, ¤x, ¥x) − M̄𝑒 ¥x − C̄𝑒 ¤x − K̄𝑒x (7)

is defined as the difference between the nonlinear and the equivalent linear sys-

tems, and is minimized in the mean square sense. Further, by adopting the standard

Gaussian response assumption (Roberts and Spanos [2003]) a linear set of equa-

tions is derived, whose solution leads to the determination of the elements of the

equivalent linear matrices. Thus, denoting by m𝑒T
𝑖∗ , c

𝑒T
𝑖∗ and k𝑒T

𝑖∗ the 𝑖-th row of

M̄𝑒, C̄𝑒 and K̄𝑒, and utilizing the M-P matrix inverses theory yields (Fragkoulis

et al. [2016b])



k𝑒T
𝑖∗

c𝑒T
𝑖∗

m𝑒T
𝑖∗


= E[x̂x̂T]+E[x̂x̂T]E



𝜕𝚽̄x (𝑖)
𝜕x

𝜕𝚽̄x (𝑖)
𝜕 ¤x

𝜕𝚽̄x (𝑖)
𝜕 ¥x



+ g(y), (8)

for 𝑖 = 1, 2, . . . , 𝑙 + 𝑚, where x̂ is the 3𝑙-dimensional vector x̂T
=

[
x𝑠 ¤x𝑠 ¥x𝑠

]
,

E[·] denotes the expectation operator and “T” represents the matrix transpose
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operation. Further, g(y) is an arbitrary 3𝑙-dimensional vector (see also Appendix

I), which leads to a family of solutions for the determination of the equivalent

linear elements. Nevertheless, based on the adoption of the mean square error

minimization criterion, it has been proved in Fragkoulis et al. [2016b] that the

solution obtained by setting the arbitrary term equal to zero is at least as good, as

any other solution that corresponds to a non-zero value for the arbitrary term.

Next, a frequency domain treatment is applied to derive the response statistics of

the equivalent system in Eq. (6). This is attained by resorting to the standard input-

output relationship of random vibration theory, which connects the power spectrum

of the system response to the corresponding excitation spectra. Specifically, the

recently derived generalized input-output relationship for systems with singular

parameter matrices is employed (Kougioumtzoglou et al. [2017]), i.e.,

Sx(𝜔) = 𝜶x(𝜔)SQ̄x
(𝜔)𝜶T∗

x (𝜔), (9)

where SQ̄x
(𝜔) and Sx(𝜔) denote, respectively, the excitation and response power

spectrum matrices, and 𝜶x(𝜔) represents the frequency response function (FRF)

matrix of the system. Further, “∗” corresponds to the conjugate matrix operation.

The FRF matrix is given by (Kougioumtzoglou et al. [2017])

𝜶x(𝜔) =
(
−𝜔2(M̄x + M̄e) + 𝑖𝜔(C̄x + C̄e) + (K̄x + K̄e)

)+
. (10)

Finally, for the determination of the second order response statistics, Eq. (9) is

used in conjunction with

E[xxT] =

∫ ∞

−∞

Sx(𝜔)𝑑𝜔. (11)

2.3 Combined Harmonic Balance and Statistical Linearization

Methods for MDOF Systems with Singular Parameter Ma-

trices

In this section a new approach is proposed for determining the response of nonlinear

systems with singular matrices subject to stochastic and deterministic excitations.

It consists of a combination of the harmonic balance method, which is used

for deriving the periodic solution of nonlinear differential equations (Krack and

Gross [2019]; Mickens [2010]; Chatterjee [2003]) and the generalized statistical

linearization methodology (Fragkoulis et al. [2016b]; Kougioumtzoglou et al.
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[2017]). The proposed approach can be construed as a generalization of the

methodology developed in Spanos et al. [2019] to account for systems with singular

matrices; see also Kong and Spanos [2021] for an extension to nonlinear systems

with hysteretic behavior. Further applications of systems subject to combined

stochastic and deterministic excitations are found, indicatively, in Anh and Hieu

[2012]; Haiwu et al. [2001]; Chen and Zhu [2011]; Megerle et al. [2013]; Spanos

and Malara [2020].

2.3.1 Generalized harmonic balance solution framework

Following closely the formulation of Eq. (3), the equations of motion for an 𝑙-DOF

nonlinear system subject to constraint equations of the form in Eq. (2), as well as

to combined deterministic and stochastic excitations, are given by

M̄x¥x + C̄x ¤x + K̄xx + 𝚽̄x(x, ¤x, ¥x) = f̄𝑑,x(𝑡) + Q̄x(𝑡), (12)

where M̄x, C̄x, K̄x are defined in Eq. (4) and 𝚽̄x(x, ¤x, ¥x) is given by Eq. (5).

Further, the deterministic component of the excitation is given by the (𝑙 + 𝑚)-

dimensional vector

f̄𝑑,x(𝑡) =

[
(I𝑙 − A+A)f𝑑,x(𝑡)

0𝑚×1

]
, (13)

whereas the stochastic component Q̄x(𝑡) is also given by Eq. (5).

Then, considering the combined excitation of the augmented system in Eq.

(12), it is assumed that the system response is written as

x(𝑡) = x𝑠 (𝑡) + x𝑑 (𝑡), (14)

where x𝑠 (𝑡) and x𝑑 (𝑡) denote its stochastic and deterministic components, which

account for the corresponding components of the excitation. Next, assuming

for simplicity that the stochastic excitation is modeled as a zero-mean Gaussian

process, substituting Eq. (14) into the augmented equations of motion in Eq. (12)

and ensemble averaging leads to

M̄x¥x𝑑 + C̄x ¤x𝑑 + K̄xx𝑑 + E[𝚽̄x(x𝑠 + x𝑑 , ¤x𝑠 + ¤x𝑑 , ¥x𝑠 + ¥x𝑑)] = f̄𝑑,x(𝑡). (15)

Clearly, Eq. (15) consists of a deterministic and an additional stochastic compo-

nent, which are treated separately in the ensuing analysis. Specifically, first, an

extended harmonic balance methodology in conjunction with M-P matrix inverses-

based theoretical concepts are applied to the deterministic component in Eq. (15).
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Then, the application of the generalized statistical linearization methodology to

treat the stochastic component of the system follows.

Next, directing attention to treating the deterministic component of the re-

sponse, it is assumed that the system nonlinearities are of the polynomial kind.

Note that, apart from simplicity, since it facilitates the derivation of closed form

solutions for determining the equivalent linear system, this assumption is directly

related to the application of the harmonic balance method (Mickens [1984]). More-

over, it is commonly adopted in nonlinear engineering system modeling (Roberts

and Spanos [2003]). Further, f̄𝑑,x(𝑡) in Eq. (13) is modeled as a monochromatic

function of period 𝑇 =
2𝜋
𝜔𝑑

, i.e.,

f̄𝑑,x(𝑡) = f̄𝑑1,x cos(𝜔𝑑𝑡) + f̄𝑑2,x sin(𝜔𝑑𝑡), (16)

where f̄𝑑1,x and f̄𝑑2,x are the constant coefficient (𝑙 + 𝑚)-dimensional vectors for

the new coordinates system in the phase plane (Krack and Gross [2019]; Hayashi

[2014]). In this regard, the deterministic response is written as

x𝑑 (𝑡) = x𝑑1
cos(𝜔𝑑𝑡) + x𝑑2

sin(𝜔𝑑𝑡), (17)

where x𝑑1
, x𝑑2

are constant 𝑙-dimensional vectors. Substituting Eqs. (16) and (17)

into Eq. (15) yields

− 𝜔2

𝑑M̄x(x𝑑1
cos(𝜔𝑑𝑡) + x𝑑2

sin(𝜔𝑑𝑡)) + 𝜔𝑑C̄x(−x𝑑1
sin(𝜔𝑑𝑡) + x𝑑2

cos(𝜔𝑑𝑡))

+ K̄x(x𝑑1
cos(𝜔𝑑𝑡) + x𝑑2

sin(𝜔𝑑𝑡))

+ E[𝚽̄x(x𝑠 + x𝑑 , ¤x𝑠 + ¤x𝑑 , ¥x𝑠 + ¥x𝑑)] = f̄𝑑1,x cos(𝜔𝑑𝑡) + f̄𝑑2,x sin(𝜔𝑑𝑡). (18)

Then, applying the harmonic balance method, Eq. (18) leads to a set of 2(𝑙 + 𝑚)

equations with 2𝑙 unknowns. Specifically, these are given by

− 𝜔2

𝑑

𝑙∑︁

𝑗=1

(
M̄x(𝑖, 𝑗)x𝑑1

( 𝑗)
)
+ 𝜔𝑑

𝑙∑︁

𝑗=1

(
C̄x(𝑖, 𝑗)x𝑑2

( 𝑗)
)
+

𝑙∑︁

𝑗=1

(
K̄x(𝑖, 𝑗)x𝑑1

( 𝑗)
)

+
2

𝑇

∫ 𝑇

0

E[𝚽̄x(x𝑠 + x𝑑 , ¤x𝑠 + ¤x𝑑 , ¥x𝑠 + ¥x𝑑)] (𝑖) cos(𝜔𝑑𝑡)𝑑𝑡 = f̄𝑑1
(𝑖) (19)

and

− 𝜔2

𝑑

𝑙∑︁

𝑗=1

(
M̄x(𝑖, 𝑗)x𝑑2

( 𝑗)
)
− 𝜔𝑑

𝑙∑︁

𝑗=1

(
C̄x(𝑖, 𝑗)x𝑑1

( 𝑗)
)
+

𝑙∑︁

𝑗=1

(
K̄x(𝑖, 𝑗)x𝑑2

( 𝑗)
)

+
2

𝑇

∫ 𝑇

0

E[𝚽̄x(x𝑠 + x𝑑 , ¤x𝑠 + ¤x𝑑 , ¥x𝑠 + ¥x𝑑)] (𝑖) sin(𝜔𝑑𝑡)𝑑𝑡 = f̄𝑑2
(𝑖), (20)
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for 𝑖 = 1, 2, . . . , 𝑙 +𝑚, where the indexes (𝑖, 𝑗) and ( 𝑗), (𝑖) denote, respectively, the

elements in position (𝑖, 𝑗), and in positions 𝑗 and 𝑖 of the corresponding (𝑙 + 𝑚) × 𝑙

matrices and 𝑙-dimensional vectors.

For the solution of the algebraic system defined by Eqs. (19) and (20), and

thus, for the computation of the deterministic response component, Eqs. (19) and

(20) are equivalently written in the form

Pu = v, (21)

where

P =

[
K̄x − 𝜔2

𝑑
M̄x 𝜔𝑑C̄x

−𝜔𝑑C̄x K̄x − 𝜔2

𝑑
M̄x

]
(22)

is a 2(𝑙 + 𝑚) × 2𝑙 matrix whose components are given by Eq. (4). Further, the

2𝑙-dimensional and 2(𝑙 + 𝑚)-dimensional vectors u and v are given by

u =

[
x𝑑1

x𝑑2

]
(23)

and

v =

[
f̄𝑑1

− 2

𝑇

∫ 𝑇

0
E[𝚽̄x] cos(𝜔𝑑𝑡)𝑑𝑡

f̄𝑑2
− 2

𝑇

∫ 𝑇

0
E[𝚽̄x] sin(𝜔𝑑𝑡)𝑑𝑡

]

, (24)

respectively. Clearly, Eqs. (19) and (20) or, equivalently, Eqs. (21)-(24) define an

overdetermined system of equations, whose solution is derived by resorting to the

generalized matrix inverses theory (Campbell and Meyer [2009]; Ben-Israel and

Greville [2003]). In particular, by utilizing the concept of the M-P matrix inverses,

the general solution to Eq. (21) is given by

u = P+v + (I − P+P)y, (25)

where y denotes an arbitrary 2𝑙-dimensional vector (see also Appendix I). It is

readily seen that due to the arbitrary vector y, Eq. (25) corresponds to a family of

solutions for obtaining the deterministic component of the response, instead of a

uniquely defined solution.

However, depending on the rank of the matrix P in Eq. (22), the selection of

a uniquely defined solution is feasible. In particular, if P has full column rank

(Meyer [2000]), the M-P inverse matrix P+ is written in closed-form as (Lindfield

and Penny [2018]; Campbell and Meyer [2009])

P+
= (P∗P)−1P∗. (26)
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Thus, substituting Eq. (26) into Eq. (25), and taking into account that the M-P

inverse of any matrix is uniquely defined (Campbell and Meyer [2009]), Eq. (25)

attains a unique solution

u = P+v. (27)

In passing, it is worth noting that the augmented matrix M̄x in the diagonal entries

of matrix P in Eq. (22) ensures that the columns of the latter are independent

of each other or, equivalently, that P has full column rank. Therefore, Eq. (27)

constitutes the uniquely defined solution of the system in Eq. (21) or, equivalently,

in Eqs. (19) and (20) for determining x𝑑1
and x𝑑2

. Subsequently, this leads to the

derivation of the deterministic response component.

2.3.2 Generalized statistical linearization and averaging treatments

In this section, the recently proposed generalized statistical linearization method-

ology for systems with singular parameter matrices (Fragkoulis et al. [2016b];

Kougioumtzoglou et al. [2017]) is applied to treat the stochastic component x𝑠 (𝑡)

of the system response.

In this regard, forming the difference between the systems in Eqs. (12) and

(15) yields

M̄x¥x𝑠 + C̄x ¤x𝑠 + K̄xx𝑠 + 𝚽̃x = Q̄x(𝑡), (28)

where

𝚽̃x = 𝚽̄x(x𝑠 + x𝑑 , ¤x𝑠 + ¤x𝑑 , ¥x𝑠 + ¥x𝑑) − E[𝚽̄x(x𝑠 + x𝑑 , ¤x𝑠 + ¤x𝑑 , ¥x𝑠 + ¥x𝑑)] (29)

is the zero-mean vector of the system nonlinearities, and x𝑠 is the stochastic

component of the response. Next, following closely the formulation of Eq. (6),

the linear equivalent system to Eq. (28) becomes

(M̄x + M̄𝑒) ¥x𝑠 + (C̄x + C̄𝑒) ¤x𝑠 + (K̄x + K̄𝑒)x𝑠 = Q̄x(𝑡). (30)

Then, the error function which is defined as the difference between Eqs. (28) and

(30) is formed, and minimized by adopting the mean square minimization criterion

(Fragkoulis et al. [2016b]). Further, considering that the arbitrary vector g(y) in

Eq. (8) is the null vector, the elements of the (𝑙 + 𝑚) × 𝑙 matrices M̄𝑒, C̄𝑒 and K̄𝑒

are readily determined by



k𝑒T

𝑖∗

c𝑒T

𝑖∗

m𝑒T

𝑖∗


= E[x̂x̂T]+E[x̂x̂T]E



𝜕𝚽̃x (𝑖)
𝜕x

𝜕𝚽̃x (𝑖)
𝜕 ¤x

𝜕𝚽̃x (𝑖)
𝜕 ¥x



, (31)
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where 𝚽̃x(𝑖), 𝑖 = 1, 2, . . . , 𝑙 + 𝑚, denotes the 𝑖-th component of the nonlinear

vector in Eq. (29).

Clearly, the nonlinear vector 𝚽̃x in Eq. (29) not only depends on the stochastic

response component x𝑠 (𝑡) (and its first and second order derivatives) but also on the

deterministic (harmonic) component of the system response, i.e., x𝑑 (𝑡), and its first

and second order derivatives. Thus, the elements𝑚𝑒
𝑖 𝑗
, 𝑐𝑒

𝑖 𝑗
, 𝑘𝑒

𝑖 𝑗
, for 𝑖 = 1, 2, . . . , 𝑙+𝑚

and 𝑗 = 1, 2, . . . , 𝑚, obtained in Eq. (31) are also time dependent. Nevertheless,

by relying on the harmonic balance method, the slowly varying over a period 𝑇

of oscillation components of matrices M̄𝑒, C̄𝑒 and K̄𝑒 are approximated by their

average over 𝑇 (Spanos et al. [2019]; Hayashi [2014]), i.e.,

M̄𝑎𝑣
𝑒 =

1

𝑇

∫ 𝑇

0

M̄𝑒𝑑𝑡, C̄𝑎𝑣
𝑒 =

1

𝑇

∫ 𝑇

0

C̄𝑒𝑑𝑡, K̄𝑎𝑣
𝑒 =

1

𝑇

∫ 𝑇

0

K̄𝑒𝑑𝑡. (32)

The matrices of Eq. (32) serve, in essence, as the closed form solutions which are

used to approximate the equivalent mass, damping and stiffness matrices of the

linear system in Eq. (30), which becomes

(M̄x + M̄𝑎𝑣
𝑒 ) ¥x𝑠 + (C̄x + C̄𝑎𝑣

𝑒 ) ¤x𝑠 + (K̄x + K̄𝑎𝑣
𝑒 )x𝑠 = Q̄x(𝑡). (33)

Subsequently, a frequency domain approach is invoked to derive the response

statistics of the equivalent system in Eq. (33). In this regard, taking into account

Eqs. (32) and (33), the FRF matrix is derived by Eq. (10), i.e.,

𝜶x(𝜔) =
(
−𝜔2(M̄x + M̄𝑎𝑣

𝑒 ) + 𝑖𝜔(C̄x + C̄𝑎𝑣
𝑒 ) + (K̄x + K̄𝑎𝑣

𝑒 )
)+

, (34)

and thus, the response power spectrum Sx𝑠 (𝜔) is found by Eq. (9). Finally, the

second order response statistics of the equivalent system in Eq. (33), are computed

by Eq. (11), i.e.,

E[x2

𝑠 (𝑖)] =

∫ ∞

−∞

𝑆x𝑠 (𝑖)x𝑠 (𝑖) (𝜔)𝑑𝜔, E[ ¤x2

𝑠 (𝑖)] =

∫ ∞

−∞

𝜔2𝑆x𝑠 (𝑖)x𝑠 (𝑖) (𝜔)𝑑𝜔, (35)

for 𝑖 = 1, 2, . . . , 𝑙. Note, in passing, that the integrals in Eq. (35) are calculated nu-

merically in the ensuing analysis. However, closed-form solutions for calculating

random vibration integrals are also available (Roberts and Spanos [2003]).

Clearly, Eq. (35) in conjunction with the generalized input-output relationship

in Eq. (9), as well as Eq. (27), constitute a coupled nonlinear system of equations

to be solved for determining the system response. The following simple iterative

12



procedure is used to solve the coupled nonlinear system: 𝑖. The scheme is

initialized by setting the nonlinear vector 𝚽̃x in the governing equations of motion

equal to the null vector. Then, the deterministic response x𝑑 is obtained. 𝑖𝑖.

Employing Eq. (9), as well as Eq. (35), the variance of the stochastic response

x𝑠 is derived. 𝑖𝑖𝑖. Using step (𝑖𝑖.), Eq. (27) yields the deterministic response x𝑑 .

Then, the (updated) values of matrices M̄𝑎𝑣
𝑒 , C̄𝑎𝑣

𝑒 and K̄𝑎𝑣
𝑒 are calculated. 𝑖𝑣. Steps

(𝑖𝑖.) and (𝑖𝑖𝑖.) are repeated until satisfactory accuracy for the response variance is

attained.

3 Numerical examples

In this section, two numerical examples are used to validate the herein proposed

approach and assess its versatility. The obtained results are compared with corre-

sponding results which are derived by following the standard solution framework

in Spanos et al. [2019].

3.1 3-DOF Nonlinear System with Singular Matrices

The 3-DOF nonlinear system in Fig. 1(a) is considered, where mass 𝑚1 is con-

nected to the foundation by a linear spring of stiffness 𝑘1, a nonlinear inerter (e.g.,

Smith [2002]; Marian and Giaralis [2014]) and a nonlinear damper. The damping

force is given by 𝑐1 ¤𝑞1(1 + 𝜀2 ¤𝑞
2

1
) and the force due to the nonlinear inerter is given

by 𝑚1 ¥𝑞1(1+𝜀1 ¤𝑞
2

1
), where 𝑞𝑖 (𝑖 = 1, 2, 3) denotes the displacement of the 𝑖-th mass,

and 𝜀1 and 𝜀2 denote the magnitude of the nonlinearity for each case. Further,

mass 𝑚1 is connected to masses 𝑚2 and 𝑚3 by linear springs of stiffness 𝑘2 and

𝑘4, respectively. Finally, mass 𝑚2 is connected to mass 𝑚3 by a linear spring of

stiffness 𝑘3 and a linear damper of damping 𝑐2. A force 𝑄3(𝑡), which is modeled

as a Gaussian white noise stochastic process with constant spectral density 𝑆0, and

a deterministic force given by 𝑓𝑑2,3 sin(𝜔𝑑𝑡) are applied on mass 𝑚3.

Next, the standard solution framework in Spanos et al. [2019] is applied for

deriving the system response variance. In this regard, the parameter values 𝑚1 =

𝑚3 = 2, 𝑚2 = 1, 𝑐1 = 𝑐2 = 0.1, 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 1, in conjunction with

the parameter values 𝜀1 = 𝜀2 = 1 as well as 𝑆0 = 10
−3 for 0 < 𝜔 < 2𝜋, and
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(a)

 

(b)

Fig. 1. (a) A 3-DOF nonlinear system subject to stochastic and deterministic

excitations. (b) The nonlinear system of Fig. 1(a) modeled by employing redundant

coordinates.

𝑓𝑑2,3 = 0.4, 𝜔𝑑 = 𝜋, are considered. The standard approach leads to

𝜎2

𝑞1
= 0.0478, 𝜎2

¤𝑞1
= 0.0103, 𝜎2

¥𝑞1
= 0.0061, (36)

𝜎2

𝑞2
= 0.0051, 𝜎2

¤𝑞2
= 0.0029, 𝜎2

¥𝑞2
= 0.0052, (37)

𝜎2

𝑞3
= 0.0033, 𝜎2

¤𝑞3
= 0.0082, 𝜎2

¥𝑞3
= 0.0438. (38)

Then, considering the redundant coordinates vector xT
=

[
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

]
,

the 3-DOF system in Fig. 1(a) is decomposed into its constituent parts as shown

in Fig. 1(b). Further, taking into account the constraint equations connecting the

subsystems in Fig. 1(b), matrix A in Eq. (2) becomes

A =

[
1 −1 0 0 0

0 1 1 −1 0

]
, (39)

whereas E = L = 02×5 and F = 02×1. Thus, Eq. (12) is formed, where

M̄x =



0.4𝑚1 0.2𝑚2 0.2𝑚2 0.2𝑚3 0.2𝑚3

0.4𝑚1 0.2𝑚2 0.2𝑚2 0.2𝑚3 0.2𝑚3

−0.2𝑚1 0.4𝑚2 0.4𝑚2 0.4𝑚3 0.4𝑚3

0.2𝑚1 0.6𝑚2 0.6𝑚2 0.6𝑚3 0.6𝑚3

0 0 0 𝑚3 𝑚3

1 −1 0 0 0

0 1 1 −1 0



, C̄x =



0.4𝑐1 0 0 0 0

0.4𝑐1 0 0 0 0

−0.2𝑐1 0 0 0 0

0.2𝑐1 0 0 0 0

0 0 0 0 𝑐2

0 0 0 0 0

0 0 0 0 0


(40)
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and

K̄x =



0.4𝑘1 0.2𝑘4 −0.2𝑘2 −0.2𝑘4 −0.2𝑘4

0.4𝑘1 0.2𝑘4 −0.2𝑘2 −0.2𝑘4 −0.2𝑘4

−0.2𝑘1 −0.6𝑘4 0.6𝑘2 0.6𝑘4 0.6𝑘4

0.2𝑘1 −0.4𝑘4 0.4𝑘2 0.4𝑘4 0.4𝑘4

0 −𝑘4 0 𝑘4 𝑘3 + 𝑘4

0 0 0 0 0

0 0 0 0 0



, (41)

and the nonlinear vector in Eq. (5) becomes

𝚽̄
T

x (x, ¤x, ¥x) = (𝜀1𝑚1 ¤𝑥
2

1
¥𝑥1 + 𝜀2𝑐1 ¤𝑥

3

1
)
[
0.4 0.4 −0.2 0.2 0 0 0

]
. (42)

Also, Eqs. (5) and (13) yield, respectively,

Q̄T

x = 𝑄3(𝑡)
[
0.2 0.2 0.4 0.6 1 0 0

]
,

f̄T

𝑑,x = 𝑓𝑑2,3 sin(𝜔𝑑𝑡)
[
0.2 0.2 0.4 0.6 1 0 0

]
.

(43)

Next, the herein generalized harmonic balance method for systems with sin-

gular matrices is applied to the system defined by the singular parameter ma-

trices in Eqs. (40) and (41). Thus, taking into account the decomposition of

the system response into a stochastic and a deterministic component, i.e., xT
𝑠 =[

𝑥𝑠,1 𝑥𝑠,2 𝑥𝑠,3 𝑥𝑠,4 𝑥𝑠,5
]

and xT

𝑑
=

[
𝑥𝑑,1 𝑥𝑑,2 𝑥𝑑,3 𝑥𝑑,4 𝑥𝑑,5

]
, Eq. (42) yields

E[𝚽̄x]
T
=

(
𝜀1𝑚1( ¤𝑥

2

𝑑,1 ¥𝑥𝑑,1 + 𝜎2

¤𝑥𝑠,1
¥𝑥𝑑,1) + 𝜀2𝑐1( ¤𝑥

3

𝑑,1 + 3 ¤𝑥𝑑,1𝜎
2

¤𝑥𝑠,1
)
)

×
[
0.4 0.4 −0.2 0.2 0 0 0

]
.

(44)

Further, since the 14 × 10 matrix P in Eq. (22) has full rank, i.e., 𝑟𝑎𝑛𝑘 (P) = 10,

Eq. (27) is used instead of Eq. (25) to derive a unique solution for the periodic re-

sponse vector (see also

Eqs. (19) and (20)). Finally, applying the generalized statistical linearization
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method, in conjunction with the averaging treatment, Eqs. (32) yields

C̄𝑎𝑣
𝑒 = 0.6𝜀2𝑐1𝜎

2

¤𝑥𝑠,1



2𝐻 (6, 6) 2𝐻 (7, 6) 2𝐻 (8, 6) 2𝐻 (9, 6) 2𝐻 (10, 6)

2𝐻 (6, 6) 2𝐻 (7, 6) 2𝐻 (8, 6) 2𝐻 (9, 6) 2𝐻 (10, 6)

−𝐻 (6, 6) −𝐻 (7, 6) −𝐻 (8, 6) −𝐻 (9, 6) −𝐻 (10, 6)

𝐻 (6, 6) 𝐻 (7, 6) 𝐻 (8, 6) 𝐻 (9, 6) 𝐻 (10, 6)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



+

𝜀2𝑐1𝜔
2

𝑑 (𝑥
2

𝑑1,1
+ 𝑥2

𝑑2,1
)



0.6 0 0 0 0

0.6 0 0 0 0

−0.3 0 0 0 0

0.3 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



(45)

and

M̄𝑎𝑣
𝑒 = 0.2𝜀1𝑚1𝜎

2

¤𝑥𝑠,1



2𝐻 (11, 11) 2𝐻 (12, 11) 2𝐻 (13, 11) 2𝐻 (14, 11) 2𝐻 (15, 11)

2𝐻 (11, 11) 2𝐻 (12, 11) 2𝐻 (13, 11) 2𝐻 (14, 11) 2𝐻 (15, 11)

−𝐻 (11, 11) −𝐻 (12, 11) −𝐻 (13, 11) −𝐻 (14, 11) −𝐻 (15, 11)

𝐻 (11, 11) 𝐻 (12, 11) 𝐻 (13, 11) 𝐻 (14, 11) 𝐻 (15, 11)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



+

𝜀1𝑚1𝜔
2

𝑑 (𝑥
2

𝑑1,1
+ 𝑥2

𝑑2,1
)



0.2 0 0 0 0

0.2 0 0 0 0

−0.1 0 0 0 0

0.1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



.

(46)

The terms 𝐻 (𝑖, 𝑗), 𝑖, 𝑗 = 1, 2, . . . , 15, in Eqs. (45) and (46) denote the (𝑖, 𝑗)

element of the 15 × 15 matrix E[x̂x̂T]+E[x̂x̂T] in Eq. (31) (see also Fragkoulis

et al. [2016b]).

Then, the coupled set of algebraic equations formed by Eq. (35), Eq. (9) and

Eq. (27) is solved for determining the stochastic and deterministic components of

the response. This is attained by employing the iterative scheme included in section

“Generalized statistical linearization and averaging treatments”. In this regard,

considering the initial values M̄𝑎𝑣
𝑒 = C̄𝑎𝑣

𝑒 = 0 and 𝑥𝑑1
= 𝑥𝑑2

= 0, the stochastic

component is derived based on the criterion

����
M̄𝑎𝑣

𝑒, 𝑗+1
−M̄𝑎𝑣

𝑒, 𝑗

M̄𝑎𝑣
𝑒, 𝑗

���� < 10
−5 and

����
C̄𝑎𝑣
𝑒, 𝑗+1

−C̄𝑎𝑣
𝑒, 𝑗

C̄𝑎𝑣
𝑒, 𝑗

���� <
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10−5, whereas a similar criterion is used to obtain the deterministic components

𝑥𝑑1
, 𝑥𝑑2

. The iterative scheme stops after 5 iterations, when satisfactory accuracy

for the response velocity variance 𝜎2
¤𝑥𝑠,1

is attained (see Eqs. (45) and (46)).

Finally, substituting Eq. (17) into Eq. (14), and successively ensemble and

temporal averaging to treat, respectively, the stochastic and deterministic compo-

nents of the response, yields

〈
E[𝑥2

𝑖 ]
〉
= 𝜎2

𝑥𝑠,1
+
𝑥2
𝑑1,𝑖

+ 𝑥2
𝑑2,𝑖

2
,

〈
E[ ¤𝑥2

𝑖 ]
〉
= 𝜎2

¤𝑥𝑠,1
+
𝜔2
𝑑
(𝑥2

𝑑1,𝑖
+ 𝑥2

𝑑2,𝑖
)

2
(47)

and
〈
E[ ¥𝑥2

𝑖 ]
〉
= 𝜎2

¥𝑥𝑠,1
+
𝜔4
𝑑

2
(𝑥2

𝑑1,𝑖
+ 𝑥2

𝑑2,𝑖
), (48)

for 𝑖 = 1, 2, . . . , 5, where 〈·〉 denotes the temporal averaging operation. Eqs. (47)

and (48), in conjunction with the results of the iterative scheme above yield

𝜎2
𝑥1
= 0.0478, 𝜎2

¤𝑥1
= 0.0103, 𝜎2

¥𝑥1
= 0.0061, (49)

𝜎2
𝑥3
= 0.0051, 𝜎2

¤𝑥3
= 0.0029, 𝜎2

¥𝑥3
= 0.0052, (50)

𝜎2
𝑥5
= 0.0033, 𝜎2

¤𝑥5
= 0.0082, 𝜎2

¥𝑥5
= 0.0438. (51)

Comparing Eqs. (49)-(51) with Eqs. (36)-(38), it is readily seen that the herein

proposed framework is in total agreement with the standard approach in Spanos

et al. [2019].

3.2 2-DOF Nonlinear Structural System with Singular Param-

eter Matrices

In this example, the application of the herein proposed framework to a wider

magnitude range of system nonlinearities is demonstrated. In this regard, the

2-DOF system of rigid masses 𝑚1 and 𝑚2 in Fig. 2(a) is considered. Mass

𝑚1 is connected to the foundation by a nonlinear inerter and a nonlinear spring,

whose forces are 𝑚1 ¥𝑞1(1 + 𝜀1 ¤𝑞
2
1
) and 𝑘1𝑞1(1 + 𝜀2𝑞

2
1
), respectively, where 𝑞𝑖

(𝑖 = 1, 2) denotes the displacement of the 𝑖-th mass, and 𝜀1, 𝜀2 the magnitude of

the nonlinearities. Further, mass 𝑚1 is connected to mass 𝑚2 by a linear spring of

stiffness 𝑘2 and a linear damper of damping 𝑐2. The system is excited by combined

stochastic and deterministic forces applied on mass 𝑚1. In particular, 𝑄1(𝑡) is

modeled as a Gaussian white noise stochastic process with constant spectral density

𝑆0 and the deterministic force has the form 𝑓𝑑2,1 sin(𝜔𝑑𝑡). Further, considering
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(a)

 

(b)

Fig. 2. (a) A 2-DOF nonlinear system subject to stochastic and deterministic

excitations. (b) The nonlinear system of Fig. 2(a) modeled by employing an

additional redundant coordinate.

the parameter values 𝑚1 = 𝑚2 = 1, 𝑐1 = 𝑐2 = 0.2, 𝑘1 = 𝑘2 = 1, 𝑆0 = 10−2

(0 < 𝜔 < 2𝜋) and 𝑓𝑑2,1 = 0.4, 𝜔𝑑 = 𝜋, the system response variance is determined

by applying the standard approach in Spanos et al. [2019]. In addition, the

magnitude 𝜀 of nonlinearities, where 𝜀1 = 𝜀2 = 𝜀, is taking values in the interval

[0, 5]. The results are depicted by the solid line in Fig. 3.

Next, considering the redundant coordinates vector x =

[
𝑥1 𝑥2 𝑥3

]
, the 2-

DOF system of Fig. 2(a) is decomposed into its partial subsystems, as shown in

Fig. 2(b). In this regard, Eq. (2) is formed, where

A =

[
1 −1 0

]
, (52)

E = L = 01×3 and the vector F degenerates to F = 0. Thus, the parameter matrices

in Eq. (12) are given by

M̄x =



0.5𝑚1 0.5𝑚2 0.5𝑚2

0.5𝑚1 0.5𝑚2 0.5𝑚2

0 𝑚2 𝑚2

1 −1 0



, C̄x =



0.5𝑐1 0 0

0.5𝑐1 0 0

0 0 𝑐2

0 0 0



, K̄x =



0.5𝑘1 0 0

0.5𝑘1 0 0

0 0 𝑘2

0 0 0



,(53)

whereas Eqs. (5) and (13), respectively, yield

𝚽̄
T
x (x, ¤x, ¥x) = (𝑚1𝜀1 ¤𝑥

2
1 ¥𝑥1+𝑘1𝜀2𝑥

3
1)

[
0.5 0.5 0 0

]
, Q̄T

x = 𝑄1(𝑡)
[
0.5 0.5 0 0

]

(54)
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and

f̄T
𝑑,x = 𝑓𝑑2,1 sin(𝜔𝑑𝑡)

[
0.5 0.5 0 0

]
. (55)

For the application of the harmonic balance method, the system response is

decomposed into its stochastic xT
𝑠 =

[
𝑥𝑠,1 𝑥𝑠,2 𝑥𝑠,3

]
and deterministic xT

𝑑
=[

𝑥𝑑,1 𝑥𝑑,2 𝑥𝑑,3
]

components, and thus, substituting Eq. (17) into Eq. (54) and

ensemble averaging yields

E[𝚽̄x]
T
=

(
𝑚1𝜀1( ¤𝑥

2
𝑑,1 ¥𝑥𝑑,1 + 𝜎2

¤𝑥𝑠,1
¥𝑥𝑑,1) + 𝑘1𝜀2(𝑥

3
𝑑,1 + 3𝑥𝑑,1𝜎

2
𝑥𝑠,1

)
) [

0.5 0.5 0 0
]
.

(56)

Then, the overdetermined system of equations defined by Eq. (21) (or, equivalently,

by

Eqs. (19) and (20)) is solved. To this end, it is noted that the 8 × 6 matrix P

in Eq. (22) has full rank. Hence, Eq. (27) leads to a uniquely defined peri-

odic response component. Subsequently, the generalized statistical linearization

method is used in conjunction with the averaging treatment to treat the stochastic

component of the response. In this regard, Eq. (32) implies

K̄𝑎𝑣
𝑒 = 1.5𝑘1𝜀2𝜎

2
𝑥𝑠,1



𝐻 (1, 1) 𝐻 (2, 1) 𝐻 (3, 1)

𝐻 (1, 1) 𝐻 (2, 1) 𝐻 (3, 1)

0 0 0

0 0 0



+ 3𝑘1𝜀2



(𝑥2
𝑑1 ,1

+𝑥2
𝑑2 ,1

)

2
0 0

(𝑥2
𝑑1 ,1

+𝑥2
𝑑2 ,1

)

2
0 0

0 0 0

0 0 0



(57)

and

M̄𝑎𝑣
𝑒 = 0.5𝑚1𝜀1𝜎

2
¤𝑥𝑠,1



𝐻 (7, 7) 𝐻 (8, 7) 𝐻 (9, 7)

𝐻 (7, 7) 𝐻 (8, 7) 𝐻 (9, 7)

0 0 0

0 0 0



+ 𝑚1𝜀1



𝜔2
𝑑
(𝑥2

𝑑1 ,1
+𝑥2

𝑑2 ,1
)

2
0 0

𝜔2
𝑑
(𝑥2

𝑑1 ,1
+𝑥2

𝑑2 ,1
)

2
0 0

0 0 0

0 0 0



,(58)

where𝐻 (𝑖, 𝑗), 𝑖, 𝑗 = 1, 2, . . . , 9, denote the (𝑖, 𝑗) element of matrixE[x̂x̂T]+E[x̂x̂T]

in Eq. (31).

Then, the iterative scheme in section “Generalized statistical linearization and

averaging treatments” is employed to solve the coupled set of algebraic equa-

tions formed by Eqs. (35), Eq. (9) and Eq. (27), and thus, to derive the variance

of the stochastic response. Considering the dependence between the stochas-

tic and deterministic components (see Eqs. (56)-(58)), the scheme is initialized
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by using M̄𝑎𝑣
𝑒 = 0, K̄𝑎𝑣

𝑒 = 0 and 𝑥𝑑1
= 𝑥𝑑2

= 0. Then, the stochastic and deter-

ministic components are derived based on the criterion

����
M̄𝑎𝑣

𝑒, 𝑗+1
−M̄𝑎𝑣

𝑒, 𝑗

M̄𝑎𝑣
𝑒, 𝑗

���� < 10−5 and
����
K̄𝑎𝑣

𝑒, 𝑗+1
−K̄𝑎𝑣

𝑒, 𝑗

K̄𝑎𝑣
𝑒, 𝑗

���� < 10−5, as well as a similar criterion for 𝑥𝑑1
, 𝑥𝑑2

. The iterative scheme

continues until reaching satisfactory accuracy for the response displacement and

velocity variance 𝜎2
𝑥𝑠,1

and 𝜎2
¤𝑥𝑠,1

.

Finally, the system response variance is determined by utilizing Eqs. (47)

and (48). The obtained results for different values of 𝜀1 = 𝜀2 = 𝜀 ∈ [0, 5]

are represented by dots in Fig. 3. They are in complete agreement with the

corresponding results obtained by applying the standard approach in Spanos et al.

[2019] (solid line). Thus, the herein developed combination of the M-P matrix

inverses-based statistical linearization and harmonic balance scheme constitutes a

generalization of the formulation in Spanos et al. [2019] to account for systems

with singular parameter matrices. Note, in passing, that a normalization with

respect to the analytical results for the linear case, i.e., 𝜀1 = 𝜀2 = 0, is considered

for both solution frameworks to show the considerable nonlinearity effect on the

system response.

4 Conclusions

In this paper, a generalized inverse matrix-based approach has been developed to

determine the response of multi-degree-of-freedom (MDOF) nonlinear systems

with singular parameter matrices subject to combined stochastic and determin-

istic excitations. Singular matrices appear, indicatively, due to the presence of

constraint equations, or due to deriving the equations of motion by adopting a

redundant (dependent) coordinates framework. The latter can be very advanta-

geous, especially for classes of complex multi-body systems, where depending on

the complexity of the system under consideration, adopting additional (dependent)

coordinates facilitates the derivation of the equations of motion, and in general

leads to solution frameworks of reduced computational cost. However, it also

limits the modeler since it yields singular parameter matrices in the equations of

motion, and thus, the standard solution frameworks and techniques of random

vibration whose implementation rely on invertible matrices, become inapplicable.

In this regard, considering that the system excitation is modeled as a combination

of both stochastic and deterministic forces, the Moore-Penrose (M-P) matrix in-

verses theory has been utilized to circumvent the limitations due to the presence
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Normalized response variance of the nonlinear structural system in

Figs. 2(a)-2(b) vs. nonlinearity magnitude. Comparison between the standard

and the proposed techniques. (a) 1st DOF response displacement variance; (b)

2nd DOF response displacement variance; (c) 1st DOF response velocity vari-

ance; (d) 2nd DOF response velocity variance; (e) 1st DOF response acceleration

variance; (f) 2nd DOF response acceleration variance
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of singular matrices in the equations of motion. Further, considering that the

system response consists of a stochastic and a deterministic part, a combination

of the statistical linearization and harmonic balance methods has been employed

for its determination. Specifically, first, the harmonic balance method has been

extended for treating the deterministic component of the response. Its application

has resulted in an overdetermined system of equations to be solved for comput-

ing the coefficients of the method. Then, a unique solution has been selected by

adopting an M-P matrix inverses theory-based solution framework. Subsequently,

the generalized statistical linearization methodology for systems with singular ma-

trices has been used, and an averaging treatment has also been applied to derive

the stochastic component of the response. Overall, the herein proposed method-

ology can be construed as a generalization of a recently proposed framework for

deriving the response of systems subject to combined stochastic and deterministic

excitations (Spanos et al. [2019]), to the case of systems with singular parame-

ter matrices. Potential applications of the method can be found, indicatively, in

modeling the dynamics of slender structures as well as in the field of vibration

energy harvesting. The validity of the proposed approach has been demonstrated

by pertinent numerical examples. Specifically, a 3-DOF and a 2-DOF nonlinear

systems with nonlinearities of different kind and magnitudes have been considered.

The obtained results have been compared and found in complete agreement with

corresponding results derived by applying the standard approach in Spanos et al.

[2019].
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7 APPENDIX I. Elements of the theory of Moore-

Penrose matrix inverses

In this appendix, a concise presentation of the fundamental results of the Moore-

Penrose (M-P) generalized matrix inverses theory is presented for completeness.

The interested reader is directed to Campbell and Meyer [2009] and Ben-Israel

and Greville [2003] for a detailed presentation.

The mathematical problem that gave rise to the generalized matrix inverses

theory is related to the solution of the algebraic system of equations

Ax = b. (59)

In the general case, A in Eq. (59) denotes a rectangular 𝑚 × 𝑛 matrix and x, b

correspond, respectively, to 𝑛- and 𝑚-dimensional vectors. However, it is noted

that the ensuing results also hold for the case of square, but singular matrix A.

Taking into account that the general solution to the problem in Eq. (59) is not

possible due to the nature of matrix A, and also considering that such problems

are often encountered in theoretical as well as in applied science, the concept of a

“partial inverse” of matrix A was introduced (Campbell and Meyer [2009]).

Definition 1. Given a matrix A ∈ C𝑚×𝑛, there is a uniquely defined matrix

A+ ∈ C𝑛×𝑚 such that:

(𝑖) AA+A = A, (𝑖𝑖) A+AA+
= A+, (𝑖𝑖𝑖) (AA+)∗ = AA+, (𝑖𝑣) (A+A)∗ = A+A.

Matrix A+ in Definition 1 is the so-called M-P inverse of A. In general, when A

is invertible, A+ coincides with the regular inverse A−1. Considering the solution

of the algebraic system in Eq. (59), the M-P inverse holds an exceptional place

among the family of generalized inverses, since it leads to the family of solutions

x = A+b + (I𝑛 − A+A)y, (60)

where I𝑛 is the identity 𝑛× 𝑛 matrix and y accounts for an arbitrary 𝑛-dimensional

vector (Campbell and Meyer [2009]; Ben-Israel and Greville [2003]).
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