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A unified model of molecular and atomistic spin dynamics is presented enabling simulations both in micro-

canonical and canonical ensembles without the necessity of additional phenomenological spin damping. Trans-

fer of energy and angular momentum between the lattice and the spin systems is achieved by a phenomenological

coupling term representing the spin-orbit interaction. The characteristic spectra of the spin and phonon systems

are analyzed for different coupling strength and temperatures. The spin spectral density shows magnon modes

together with the uncorrelated noise induced by the coupling to the lattice. The effective damping parameter

is investigated showing an increase with both coupling strength and temperature. The model paves the way to

understanding magnetic relaxation processes beyond the phenomenological approach of the Gilbert damping

and the dynamics of the energy transfer between lattice and spins.

I. INTRODUCTION

With the emergent field of ultrafast magnetisation
dynamics1 understanding the flow of energy and angular mo-
mentum between electrons, spins and phonons is crucial for
the interpretation of the wide range of observed phenom-
ena2–5. For example, phonons strongly pumped in the THz
regime by laser excitation can modulate the exchange field
and manipulate the magnetisation as shown for the magnetic
insulator YIG 6 or in Gd7. The excitation of THz phonons
leads to a magnetic response with the same frequency in
Gd7, proving the necessity of considering the dynamics of
both lattice and spins. Phonon excitations can modulate both
anisotropy and exchange which can successfully manipulate
8–10 or potentially switch the magnetisation 11,12, ultimately
leading to the development of low-dissipative memories.

Magnetisation relaxation is typically modeled using the
phenomenological description of damping proposed by Lan-
dau and Lifshitz13 and later Gilbert14, where the precessional
equation of motion is augmented by a friction-like term, re-
sulting in the Landau-Lifshitz-Gilbert (LLG) equation. This
represents the coupling of the magnetic modes (given pri-
marily by the localised atomic spin) with the non-magnetic
modes (lattice vibrations and electron orbits). The LLG equa-
tion and its generalisations can be deduced from the quantum-
mechanical approaches assuming an equilibrium phonon bath
and the weak coupling of the spin to the bath degrees of
freedom15–17. Thus the standard approach works on the sup-
position that the time scales between the environmental de-
grees of freedom and the magnetic degrees of freedom are
well separated and reducing the coupling between the mag-
netization and its environment to a single phenomenological
damping parameter18,19. In reality, the lattice and magneti-
sation dynamics have comparable time-scales, where the in-
teraction between the two subsystems represents a source of
damping, hence the necessity of treating spin and lattice dy-
namics in a self-consistent way.

To investigate these phenomena, and aiming at predictive
power for the design of competitive ultrafast magnetic nano-

devices, advanced frameworks beyond conventional micro-
magnetics and atomistic spin dynamics20 are needed21. A
complete description of magnetic systems includes the inter-
action between several degrees of freedom, such as lattice,
spins and electrons, modeled in a self-consistent simulation
framework. The characteristic relaxation timescales of elec-
trons are much smaller (≈ fs) in comparison to spin and lattice
(100fs−ps), hence magnetisation relaxation processes can be
described via coupled spin and lattice dynamics, termed Spin-
Lattice Dynamics (SLD) 22–29. SLD models can be crucial in
disentangling the interplay between these sub-systems. Spin-
lattice coupling has recently been studied via first-principle
methods. Fransson et al.30 demonstrated the possible sym-
metries of magnon-phonon coupling and the challenge of ac-
curately calculating the phonon dispersion in magnetic ma-
terials, as these will be affected by the spin-lattice coupling.
Also, Gennaro et al.31 have combined first principle methods
with atomistic spin dynamics to introduce the effect of the
phonons in the fixed-lattice magnetic simulations by employ-
ing exchange parameters calculated for different relaxation of
the lattice. In this work however, we directly model in a self
consistent way, the dynamics of both phonons and spins and
the spin-lattice coupling is treated phenomenologically sim-
ilarly to22,25–27,29, the coupling being able to efficiently ex-
change energy and angular momentum between the two sub-
systems.

SLD models have so far considered either microcanonical
(NVE - constant particle number, volume and energy)27,28 or
canonical (NVT - constant particle number, volume and tem-
perature) ensembles with two Langevin thermostats connected
to both lattice and spin subsystems23,32. Damping due to spin-
lattice interactions only within the canonical ensemble (NVT)
has not yet been addressed, but is of interest in future mod-
elling of magnetic insulators at finite temperature. Here we
introduce a SLD model capable of describing both ensem-
bles. Specifically, our model (i) takes into account the transfer
of angular momentum from spin to lattice and vice-versa, (ii)
works both in a microcanonical ensemble (constant energy)
and in a canonical ensemble (constant temperature), (iii) al-
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lows a fixed Curie temperature of the system independent of
the spin-lattice coupling strength, (iv) disables uniform trans-
lational motion of the system and additional constant energy
drift, which can be produced by certain spin-lattice coupling
forms. Furthermore, in this work, the characteristics of the in-
duced spin-lattice noise, the magnon-phonon induced damp-
ing and the equilibrium properties of the magnetic system has
been systematically investigated.

Since many SLD models use bcc Fe due to its considerably
large magneto-elastic coupling and for the necessity to include
both lattice and spin degrees of freedom to capture the bcc-
fcc-bcc phase transition at high temperatures33, for the SLD
model developed here we also use the parameters for this ma-
terial. The aim of this work isn’t however to accurately reflect
the structural properties of bcc Fe, but to rather understand
the effect of phonon inclusion onto the spin dynamics. Hence,
Fe potentials were used because of the mere facts that they are
well studied in the literature and thus we could benchmark our
results with others.

The paper is organised as follows. We start by describ-
ing the computational model of Spin-Lattice Dynamics and
the magnetic and mechanical energy terms used in this frame-
work (Section II). We then explore the equilibrium properties
of the system for both microcanonical and canonical simula-
tions, proving that our model is able to efficiently transfer both
energy and angular momentum between the spin and lattice
degrees of freedom. In Section III we compute the equilibrium
magnetisation as function of temperature for both a dynamic
and static lattice and we show that the order parameter is not
dependent on the details of the thermostat used. In Section IV
we analyse the auto-correlation functions and spectral char-
acteristics of magnon, phonons and the coupling term prov-
ing that the pseudo-dipolar coupling efficiently mediates the
transfer of energy from spins to the lattice and vice-versa. We
then calculate the temperature and coupling dependence of the
induced magnon-phonon damping and we conclude that the
values agree well with damping measured in magnetic insula-
tors, where the electronic contributions to the damping can be
neglected ( Section V).

II. COMPUTATIONAL MODEL

In order to model the effects of both lattice and spin dy-
namics in magnetic materials an atomistic system is adopted
with localised atomic magnetic moments at the atomic coor-
dinates. Within this framework we solve 9N coupled equa-
tions corresponding to atomic magnetic moment (or spin), S,
atomic position, r and velocity, v. The system has however 8N
degrees of freedom, due to the constraint of the spin moving
on an unit sphere. The model can be extended to 9N degrees
of freedom by including longitudinal fluctuations34. We note
that for the temperatures used for these simulations the contri-
bution from longitudinal fluctuations is small, especially for
bcc Fe, where the magnitude of the magnetic moments is sim-
ilar between the paramagnetic and ferromagnetic state35. The
lattice and the magnetic system can directly interact with each
other via the position and spin dependent Hamiltonians. The

total Hamiltonian of the system consists of a lattice Hlat and
magnetic Hmag parts:

Htot = Hlat +Hmag. (1)

The lattice Hamiltonian includes the classical kinetic and
pairwise inter-atomic potential energies:

Hlat = ∑
i

miv
2
i

2
+

1

2
∑
i, j

U(ri j). (2)

Our model considers a harmonic potential (HP) defined as:

U(ri j) =

{

V0(ri j − r0
i j)

2/a2
0 ri j < rc

0 ri j > rc.
(3)

where V0 has been parametrised for BCC Fe in27 and a0 = 1Å
is a dimension scale factor. To be more specific we consider
the equilibrium distances r0

i j corresponding to a symmetric

BCC structure. The interaction cut-off is rc = 7.8Å. The pa-
rameters of the potential are given in Table II. The harmonic
potential has been used for simplicity, however it can lead to
rather stiff lattice for a large interaction cutoff.

Another choice of the potential used in our model is an an-
harmonic Morse potential (MP) parameterised in36 for BCC

Fe and defined as:

U(ri j) =

{

D[e−2a(ri j−r0)−2e−a(ri j−r0)] ri j < rc

0 ri j > rc

(4)

The Morse potential approximates well the experimental
phonon dispersion observed experimentally for BCC Fe37 as
shown in38. The phonon spectra for the choices of poten-
tial used in this work are given in Section IV. Other non-
linear choices of potential can be calculated via, for exam-
ple, the embedded atom method39,40. One challenge of the
SLD models is the the development of spin dependent many-
body potentials, which are crucial for studies of the mechani-
cal phase transitions, deformations and defects41. The poten-
tials employed here are simplistic, but can approximate well
the phonon spectra of bcc Fe (both for the case of the Morse
potential and for a better parameterized Harmonic potential).
As we will see in the next sections, the magnon properties,
such as damping, are not strongly influenced by the choice of
potential. Hence we have decided to remain with this simple
pair-wise implementation to investigate the magnetic proper-
ties.

The spin Hamiltonian (Hmag) used in our simulations con-
sists of contributions from the exchange interaction, Zeeman
energy and a spin-lattice coupling Hamiltonian, given by the
pseudo-dipolar coupling term (Hc), which we will describe
later:

Hmag =−
1

2
∑
i, j

J(ri j)(Si ·S j)−∑
i

µiSi ·Happ +Hc, (5)
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where µi is the magnetic moment of atom i, Si is a unit
vector describing its spin direction and Happ is an external ap-
plied magnetic field. The exchange interactions used in our
simulations depend on atomic separation J(ri j). They were
calculated from first principle methods for BCC Fe by Ma et

al.23 and follow the dependence:

J(ri j) = J0

(

1−
ri j

rc

)3

Θ(rc − ri j), (6)

where rc is the cutoff and Θ(rc − ri j) is the Heaviside step
function, which implies no exchange coupling between spins
situated at larger distance than rc.

Several previous SLD models suffered from the fact that
they did not allow angular momentum transfer between lattice
and spin systems28. This happened for magnetisation dynam-
ics in the absence of spin thermostat, governed by symmetric
exchange only, due to total angular momentum conservation.
Beaujouan et al.22 has proposed a spin-pair anisotropy term
in the form of a pseudo-dipolar interaction to couple the mag-
netisation to the lattice dynamics and to enable, for the first
time, the transfer of angular momentum within the spin-lattice
dynamic framework. The spatial dependence in the anisotropy
term also allows the inclusion of magnetoelastic effects. Sim-
ilarly, Perera et al.26 proposed different local anisotropy terms
to mimic the spin-orbit coupling phenomenon due to symme-
try breaking of the local environment. The approach by Perera
et al.26 was successful in thermalising the subsystems, how-
ever, single site anisotropy spin terms with a position depen-
dent coefficients as employed in26 can induce an artificial col-
lective translational motion of the sample while the system is

magnetically saturated, due to the force − ∂Htot
∂ri

proportional

to spin orientation. To avoid large collective motion of the
atoms in the magnetic saturated state, we consider a two-site
coupling term, commonly known as the pseudo-dipolar cou-
pling, described by:

Hc =−∑
i, j

f (ri j)

[

(Si · r̂i j)(S j · r̂i j)−
1

3
Si ·S j

]

. (7)

The origin of this term still lies in the spin-orbit interaction,
appearing from the dynamic crystal field that affects the elec-
tronic orbitals and spin states. This is a phenomenological
term and its form comes naturally to express the coupling
between two spins due to the changes in the lattice. Its bi-
quadratic form and the exchange-like second term are neces-
sary to avoid lattice translation in the saturated state. In real-
ity, the coupling between phonons and magnons is material-
specific and should be derived on a more strict basis. How-
ever, the goal of our paper is not to investigate magneto-elastic
properties of Fe, but to construct a reasonable model of cou-
pled spin and lattice dynamics. Several models from the lit-
erature have been tested and this simplest term was sufficient
to avoid artifacts in the spin or lattice dynamics. The pseudo-
dipolar coupling has been employed previously in SLD sim-
ulations, firstly by Beaujouan et al.22 and followed by more
recent works 25,27. It was initially proposed by Van Vleck42

and Akhiezer43 as an approximation of the more complex

spin-orbit Hamiltonian and has the same structure of a dipo-
lar interaction, however with a distance dependence that falls
off rapidly, hence the name pseudo-dipolar interaction. The
exchange-like term − 1

3
Si ·S j is necessary in order to preserve

the Curie temperature of the system under different coupling
strengths and to ensure no net anisotropy when the atoms form
a symmetric cubic lattice. For the mechanical forces, the ex-
change like term eliminates the anisotropic force that leads
to a non-physical uniform translation of the system when the
magnetic system is saturated. The magnitude of the interac-
tions is assumed to decay as f (ri j) = CJ0(a0/ri j)

4 as pre-

sented in27 with C taken as a constant, for simplicity mea-
sured relative to the exchange interactions and a0 = 1Å is a
dimension scale factor. The constant C can be estimated from
ab-initio calculations26, approximated from magneto-elastic
coefficients27, or can be chosen to match the relaxation times
and damping values, as in this work. In Ref.26 the coupling
constants of 0.1eV has been chosen, to be in the same order of
magnitude as values found by first principles calculations such
as Locally Self Consistent Multiple Scattering (LSMS)44. The
above LSMS calculations with the account of thermal vibra-
tions were reported to give the energy fluctuations in the same
order of magnitude as the mean energy itself, hence the dif-
ficulty to accurately estimate the coupling energy. In Ref.27,
the coefficient C has been obtained by approximating the ra-
tio between the pseudo-dipolar energy and exchange energy
by the ratio between the magneto-elastic energy and thermal
isotropic energy, kBTC.

Since the total Hamiltonian now depends on the coupled
spin and lattice degrees of freedom (vi, ri, Si), the following
equations of motion (EOM) need to be solved concurrently to
obtain the dynamics of our coupled system:

∂ri

∂ t
= vi, (8)

∂vi

∂ t
=−ηvi +

Fi

mi

, (9)

∂Si

∂ t
=−γSi ×Hi, (10)

Fi =−
∂Htot

∂ri

+Γi, (11)

Hi =−
1

µSµ0

∂Htot

∂Si

, (12)

where Fi and Hi represent the effective force and field, Γi rep-
resents the fluctuation term (thermal force) and η represents
the friction term that controls the dissipation of energy from
the lattice into the external thermal reservoir. The strength of
the fluctuation term can be calculated by converting the dissi-
pation equations into a Fokker-Planck equation and then cal-
culating the stationary solution. The thermal force has the
form of a Gaussian noise:

〈Γiα(t)〉= 0, (13)

〈Γiα(t)Γ jβ (t
′)〉=

2ηkBT

mi

δαβ δi jδ (t − t ′). (14)
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Model Lattice Lattice Spin Intrinsic Spin

thermostat thermostat damping

SLD Dynamic On Off Phonon

induced

ASD Fixed Off On Electronic

mainly

TABLE I. Summary comparison of the SLD model developed here

against other spin dynamics models.

To prove that the complete interacting many-body spin-
lattice framework presented in here is in agreement with the
fluctuation-dissipation theorem45, we have followed the ap-
proach presented by Chubykalo et al.46 based on the Onsager
relations. Linearising the equation of motion for spins, we find
that the kinetic coefficients for the spin system are zero, due
to the fact that the spin and internal field are thermodynamic
conjugate variables. Hence, if the noise applied to the lattice
obeys the fluctuation dissipation theory, the coupled system
will obey it as well, due to the precessional form of the equa-
tion of motion for the spin.

We compare the SLD model presented here with other ex-
isting model that do not take into account the lattice degrees
of freedom (Atomistic Spin Dynamics - ASD). Particularly,
in our case we assume a fixed lattice positions. The summary
of the comparison is presented in Table I. Atomistic spin dy-
namics simulations (ASD)18,20,47,48 have been widely used to
study finite size effects, ultrafast magnetisation dynamics and
numerous other magnetic phenomena. Here the intrinsic spin
damping (the Gilbert damping - αG) is phenomenologically
included. In our case since the lattice is fixed it is assumed
to come from electronic contributions. This phenomenolog-
ical approach is typically used for metals, where the intrin-
sic damping is given by mainly electronic contributions49–51.
Consequently, only 3N (2N degrees of freedom) equations of
motion per atom describing the spin dynamics are used:

∂Si

∂ t
=−

γ

(1+α2
G)

Si × (Hi +αGSi ×Hi) (15)

with an additional field coming from the coupling to the
fixed lattice positions. The temperature effects are introduced
in spin variables by means of a Langevin thermostat. The spin
thermostat is modeled by augmenting the effective fields by a
thermal stochastic field (Hi = ξ i − ∂H /∂Si) and its proper-
ties also follow the fluctuation-dissipation theorem:

〈ξiα(t)〉= 0, (16)

〈ξiα(t)ξ jβ (t
′)〉=

2αGkBT

γµS

δα,β δi jδ (t − t ′). (17)

The characteristics of the above presented models are sum-
marised in Table I.

To integrate the coupled spin and lattice equations of mo-
tion we used a Suzuki-Trotter decomposition (STD) method52

known for its numerical accuracy and stability. The scheme
can integrate non-commuting operators, such as is the case of

Quantity Symbol Value Units

Exchange23 J0 0.904 eV

rc 3.75 Å

Harmonic potential27 V0 0.15 eV

rc 7.8 Å

Morse potential36 D 0.4174 eV

a 1.3885 Å

r0 2.845 Å

rc 7.8 Å

Magnetic moment µs 2.22 µB

Coupling constant C 0.5
Mass m 55.845 u

Lattice constant a 2.87 Å

Lattice damping η 0.6 s−1

TABLE II. Parameters used in the spin-lattice model to simulate BCC

Fe.

spin-lattice models and conserves the energy and space-phase
volume. The conservation of energy is necessary when deal-
ing with microcanonical simulations. Considering the gener-
alized coordinate X = {r,v,S} the equations of motion can be
re-written using the Liouville operators:

∂X

∂ t
= L̂X(t) = (L̂r + L̂v + L̂S)X(t). (18)

The solution for the Liouville equation is X(t + ∆t) =
eL∆t X(t). Hence, following the form of this solution and ap-
plying a Suzuki-Trotter decomposition as in Tsai’s work53,54,
we can write the solution as:

X(t +∆t) = eL̂s
∆t
2 eL̂v

∆t
2 eL̂r∆teL̂v

∆t
2 eL̂s

∆t
2 X(t)+O(∆t3), (19)

where Ls,Lv,Lr are the Liouville operators for the spin, veloc-
ity and position. This update can be abbreviated as (s,v,r,v,s)

update. The velocity and position are updated using a first
order update, however the spin needs to be updated using a
Cayley transform55,56, due to the fact that the norm of each
individual spin needs to be conserved. Thus we have

eL̂v∆tvi = vi +
∆t

mi

Fi, (20)

eL̂r∆tri = ri +∆tvi, (21)

eL̂S∆tSi =
Si +∆tHi ×Si +

∆t2

2

[

(Hi ·Si)Hi −
1
2
H2

i Si

]

1+ 1
4
∆t2H2

i

. (22)

The spin equations of motions depend directly on the neigh-
bouring spin orientations (through the effective field) hence
individual spins do not commute with each other. We need to
further decompose the spin system L̂s = ∑i L̂si

. The following
decomposition will be applied for the spin system:

eL̂s(∆t/2) = eL̂s1
(∆t/4)...eL̂sN

(∆t/2)...eL̂s1
(∆t/4)+O(∆t3) (23)

Tests of the accuracy of the integration have been per-
formed by checking the conservation of energy within the mi-
crocanonical ensemble. To ensure that the spin and lattice
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sub-systems have reached equilibrium, we calculate both the
lattice temperature (from the Equipartition Theorem) and spin
temperature57. These are defined as:

TL =
2

3NkB
∑

i

p2
i

2m
, TS =

∑i(Si ×Hi)
2

2kB ∑i Si ·Hi

. (24)

III. SPIN-LATTICE THERMALISATION

As an initial test of our model we look at the thermalisation
process within micro-canonical (NVE) and canonical (NVT)
simulations for a periodic BCC Fe system of 10×10×10 unit
cells. No thermostat is applied directly to the spin system and
its thermalisation occurs via transfer of energy and angular
momentum from the lattice, i.e. via the magnon-phonon inter-
action. In the case of the NVE simulations, the energy is de-
posited into the lattice by randomly displacing the atoms from
an equilibrium BCC structure positions within a 0.01 Å radius
sphere and by initialising their velocities with a Boltzmann
distribution at T = 1200 K. The spin system is initialised on
the z direction, corresponding to a spin temperature TS = 0K.
In the case of NVT simulations, the lattice is connected to
a thermostat at a temperature of T = 800 K. The parameters
used in the simulations are presented in Table II.

Fig. 1 shows the thermalisation process for the two types
of simulation. In both cases the spin system has an initial
temperature of TS = 0 K corresponding to a saturated state in
the z direction. For the NVE simulations, the two subsystems
are seen to equilibrate at a temperature of T = 445 K, this
temperature being dependent on the energy initially deposited
into the system. In the NVT simulations, the lattice is ther-
malised at T = 800 K followed by the relaxation of the spin
towards the same temperature. In both cases we observe that
the relaxation of the spin system happens under 1ns, the re-
laxation timescale being dependent on the initial temperature
of the sub-systems. Since the spin sub-system is initialised
at TS = 0K, the relaxation is slower, and overcomes the typi-
cal 100ps values observed typically for spin-lattice relaxation.
The corresponding change in the magnetisation is emphasized
by the green lines in Fig. 1 showing a transfer of angular mo-
mentum between the spin and lattice degrees of freedom. Fig.
2 shows the variation of the total energy ET , the lattice en-
ergy EL and spin energy ES for both NVE and NVT simula-
tions. The total energy is conserved for the NVE simulation
and it is distributed between the lattice and spin degrees of
freedom. For the NVT simulations, the total energy presents
thermal fluctuations around a constant value, after an initial
relaxation regime. We have also investigated the energy varia-
tion as function of the integration time-step and concluded that
an integration time-step of ts = 0.5 f s is sufficient to conserve
the energy within the numerical precision of the simulations
whilst keeping low computational cost.

To gain a better understanding of properties at thermal equi-
librium within the Spin-Lattice Dynamics model, we have in-
vestigated the temperature dependence of the magnetic order
parameter in different frameworks that either enable or dis-

FIG. 1. NVE (top) and NVT (bottom) simulations for a 10×10×10

unit cell BCC Fe system. The spin system is initialised at TS = 0K

corresponding to a saturated magnetic state in the z direction, while

the lattice velocities are initialised by a Boltzmann distribution at

TL = 1200 K (for NVE) and TL = 600 K (for NVT). In both cases we

obtain equilibration of the two subsystems under 1ns.

able lattice dynamics, specifically: SLD or ASD. Tab. I il-
lustrates the differences between the models. Since reaching
joint thermal equilibrium depends strongly on the randomness
already present in the magnetic system this process is acceler-
ated by starting with a reduced magnetisation of M/MS = 0.9
for T > 300 K.

Fig. 3 shows the comparison of the equilibrium magnetisa-
tion using either the harmonic potential (HP), Morse potential
(MP) or fixed lattice (ASD) simulations. The magnetisation
is calculated by averaging for 200 ps after an initial equilibra-
tion for 800 ps (for SLD type simulations) or 100 ps (for ASD)
simulations. We observe that even without a spin thermostat
(in SLD model) the magnetisation reaches equilibrium via the
thermal fluctuations of the lattice, proving that both energy
and angular momentum can be successfully transferred be-
tween the two sub-systems. Additionally, both the SLD and
ASD methods give the same equilibrium magnetisation over
the temperature range considered. This confirms that the equi-
librium quantities are independent of the details of the thermo-
stat used, in agreement with the fact that both SLD and ASD
models obey the fluctuation-dissipation theorem.

In principle, since the strength of the exchange interaction
depends on the relative separation between the atoms, any
thermal expansion of the lattice could potentially modify the
Curie temperature. However, as highlighted in the inset of
Fig. 3, the same Curie temperature is observed in each model.
We attribute this to fact that the thermal lattice expansion is
small in the temperature range considered due to two reasons:
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FIG. 2. Energies for NVE (top) and NVT (bottom) simulations for

a 10×10×10 unit cell BCC Fe system corresponding to the simula-

tions presented in Fig. 1.

FIG. 3. Magnetisation versus temperature curves for the SLD model

(with different choices of lattice potential: MP-Morse Potential, HP-

Harmonic Potential) and fixed lattice ASD model. The inset zooms

around the ferromagnetic to paramagnetic phase transition tempera-

ture.

i) the Curie temperature of the system is well below the melt-
ing point of Fe (≈ 1800K) and ii) we model a bulk, constant-
volume system with periodic boundary conditions that does
not present strong lattice displacements due to surfaces. We
note that Evans et al.58 found a reduction of TC in nanoparti-
cles due to an expansion of atomic separations at the surface
that consequently reduces the exchange interactions. For sys-
tems with periodic boundary conditions we anticipate fluctua-

tions in the exchange parameter due to changes in interatomic
spacings to be relatively small. Our calculations of effective
exchange constant for a dynamic lattice showed a variation of
about 1% with respect to the static lattice, difference that it
is not reflected in the equilibrium magnetisation curves. By
removing the periodicity of the system, different Curie tem-
peratures can be observed between the static and dynamic lat-
tice case, due to the surface effects that induce a variation of
the effective exchange constant in the order of 10%. Santos et

al.59 have performed a systematic comparison of the finite size
effects of the magnetisation of static and dynamic lattice cal-
culation and their results showed differences between the two
even in the case of periodic systems. This suggests that the
individual parameterisation of the exchange and inter-atomic
potential can largely influence the behaviour of the equilib-
rium magnetisation. Although, for the parametrisation used
in this work we show that the equilibrium properties are not
dependent on the details of the thermostat or the potential, the
magnetisation dynamics could be strongly influenced by these
choices.

The strength of the pseudo-dipolar coupling parameters C

determines the timescale of the thermalisation process. Its
value can be parametrised from magneto-elastic simulations
via calculations of the anisotropy energy as a function of
strain. The magneto-elastic Hamiltonian can be written for a
continuous magnetisation M and elastic strain tensor e as60,61:

Hm−e =
B1

M2
S
∑

i

M2
i eii +

B2

M2
s
∑

i

MiM jei j (25)

where constants B1,B2 can be measured experimentally62.
The pseudo-dipolar term acts as a local anisotropy, however,
for a lattice distorted randomly, this effective anisotropy is av-
eraged out to zero. At the same time under external strain
effects, an effective anisotropy will arise due to the pseudo-
dipolar coupling which is the origin of the magneto-elastic
effects. To calculate the induced magnetic anisotropy energy
(MAE), the BCC lattice is strained along the z direction whilst
fixed in the xy plane. The sample is then uniformly rotated and
the energy barrier is evaluated from the angular dependence
of the energy. Fig. 4 shows MAE for different strain values
and coupling strengths, with the magneto-elastic energy den-
sities constants B1 obtained from the linear fit. The values
of the obtained constants B1 are larger than the typical values
reported for BCC Fe B1 = −3.43 MJ m−3 = −2.14× 10−5

eV A−362 measured at T = 300 K which is similar to the B1

value obtained for small coupling strengths C = 0.018. How-
ever a larger coupling C = 0.5 is necessary in order to ob-
tain damping parameters comparable to the ones known for
magnetic insulators where the main contribution comes from
magnon-phonon scattering. In reality, in BCC Fe there is an
important contribution to the effective damping from elec-
tronic sources, which if considered, can lead to the smaller
coupling strengths, consistent in magnitude with experimen-
tal magneto-elastic parameters. Indeed, as we will show later,
our finding suggests that phonon damping is a very small con-
tribution in metallic systems such as BCC Fe .
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FIG. 4. Magnetic anisotropy energy as function of strain for different

coupling strengths for T=0K.

IV. DYNAMIC PROPERTIES AT THERMAL

EQUILIBRIUM

Section III showed that the equilibrium magnetisation does
not depend on the details of the thermostat used and a success-
ful transfer of both energy and angular momentum is achieved
between the spin and lattice sub-systems by the introduction
of a pseudo-dipolar coupling term. In this section, we inves-
tigate the properties of the magnons, phonons and the cou-
pling term that equilibrates the spin and phonon systems in
the absence of a phenomenological spin damping. Two types
of simulations are presented here: i) magnon and phonon
spectra calculated along the high symmetry path of a BCC

lattice and ii) averaged temporal Fourier transform (FT) of
individual atoms datasets (spin, velocity, pseudo-dipolar cou-
pling field). The phonon - Fig. 5 and magnon - Fig. 6 spec-
tra are calculated by initially equilibrating the system for 10
ps with a spin thermostat with αG = 0.01 and a coupling of
C = 0.5, followed by 10 ps of equilibration in the absence
of a spin thermostat. For the method i) the correlations are
computed for a runtime of 20 ps after the above thermalisa-
tion stage. For each point in k-space, the first three maxima
of the auto-correlation function are plotted for better visual-
isation. The auto-correlation function is projected onto the
frequency space and the average intensity is plotted for dif-
ferent frequencies. The phonon spectra are calculated from
the velocity auto-correlation function defined in Fourier space
as38,63:

Ap(k,ω) =
∫ t f

0
〈vp

k (t)v
p
k (t − t ′)〉e−iωtdt (26)

where p = x,y,z, t f is the total time and v
p
k (t) is the spatial

Fourier Transform calculated numerically as a discrete Fourier
Transform:

v
p
k (t) = ∑

i

v
p
i e−ik·ri (27)

The same approach is applied for the magnon spectra, us-
ing the dynamical spin structure factor, which is given by

the space-time Fourier transform of the spin-spin correlation
function defined as Cmn(r − r′, t − t ′) =< Sm(r, t)Sn(r′, t ′) >,
with m,n given by the x,y,z components64:

Smn(k,ω) = ∑
r,r′

eik·(r−r′)
∫ t f

0
Cmn(r− r′, t − t ′)e−iωtdt (28)

The second method (ii)) to investigate the properties of the
system involves calculating temporal Fourier transform of in-
dividual atoms datasets, and averaging the Fourier response
over 1000 atoms of the system. This response represents an
integrated response over the k-space. Hence, the projection of
intensities on the frequency space presented by method i) has
similar features as the spectra presented by method ii). For the
results presented in Fig. 7, a system of 10×10×10 BCC unit
cells has been chosen. The system has been equilibrated for
a total time of 20 ps with the method presented in i) and the
Fast Fourier transform (FFT) is computed for the following
100 ps.

Fig. 5 shows the phonon spectra for a SLD simulations at
T = 300K, C = 0.5 for the Morse Potential - Fig. 5(a) and the
Harmonic Potential - Fig. 5(b) calculated for the high sym-
metry path of a BCC system with respect to both energy and
frequency units. The interaction cutoff for both Morse and
Harmonic potential is rc = 7.8Å. The Morse phonon spec-
trum agrees well with the spectrum observed experimentally37

and with the results from38. The projection of the spectra onto
the frequency domain shows a peak close to 10.5 THz, due
to the overlap of multiple phonon branches at that frequency
and consequently a large spectral density with many k-points
excited at this frequency. Moving now to the harmonic poten-
tial, parameterised as in Ref. 27, we first note that we observe
that some of the phonon branches overlap - Fig.5b). Secondly,
the projection of intensity onto the frequency domain shows a
large peak at 8.6THz, due to a flat region in the phonon spec-
tra producing even larger number of k-points in the spectrum
which contribute to this frequency. Finally, the large cutoff
makes the Harmonic potential stiffer as all interactions are
defined by the same energy, V0, and their equilibrium posi-
tions corresponding to a BCC structure. This is not the case
for the Morse potential which depends exponentially on the
difference between the inter-atomic distance and a constant
equilibrium distance, r0. For a long interaction range, the har-
monic approximation will result in a more stiff lattice than the
Morse parameterisation.

In principle, the harmonic potential with a decreased in-
teraction cutoff and an increased strength could better repro-
duce the full phonon spectra symmetry for BCC Fe. How-
ever, in this work we preferred to use the parameterisation
existing in literature27 and a large interaction cutoff for sta-
bility purposes. Although the full symmetry of the BCC Fe
phonon spectra is not reproduced by this harmonic potential,
the phonon energies/frequencies are comparable to the values
obtained with the Morse potential. Nevertheless, we observed
the same equilibrium magnetisation and damping (discussed
later) for both potentials, hence the simple harmonic potential
represents a suitable approximation, that has the advantage of
being more computationally efficient.
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FIG. 5. Phonon spectra calculated for a 32× 32× 32 unit cell system at T = 300K, C = 0.5 for a) Morse potential, b)Harmonic potential.

The spectra are calculated via method i). Right figure includes the projection of the intensity of the spectra onto the frequency domain. Solid

lines are the experimental data of Minkiewicz et al.37. For the Minkiewicz et al. data there is only 1 datapoint for the N-Γ path for the second

transverse mode which does not show up on the line plots.

Fig. 6 shows the magnon spectrum obtained within the SLD
framework using the Morse potential together with its projec-
tion onto the frequency domain. The results agree very well
with previous calculations of magnon spectra28,65 and with the
experimental magnon dispersion measured by Loong et al.66.
For the comparison against experiments, we have used the
analytical dispersion equation Dq2(1− βq2), where the pa-

rameters D = 307meV, β = 0.32meVÅ
2

have been extracted
from experimental measurements. The inset of Fig. 6 shows
the behavior of the dispersion for low-q values. For the har-
monic potential the magnon spectrum is found to be identical
to that for the Morse potential with only very small changes
regarding the projection of intensity onto the frequency do-
main. This is in line with our discussion in the previous
section where the choice of inter-atomic potential had little
effect on the Curie temperature, which is closely linked to
the magnonic properties. As the harmonic potential is more
computationally efficient than the Morse, we next analyse the
properties of the system for a 10× 10× 10 unit cells system
at T = 300K with the harmonic potential.

The power spectral density (auto-correlation in Fourier
space) of the magnon, phonons and coupling field at 300 K
is shown in Fig. 7 computed using method ii detailed previ-
ously. The amplitude of the FFT spectra of velocities and
coupling field has been scaled by 0.12 and 0.05 respectively to
allow for an easier comparison between these quantities. As
shown in Fig. 7.a) the coupling term presents both magnon
and phonon characteristics; demonstrating an efficient cou-
pling of the two sub-systems. The large peak observed at

a frequency of 8.6 THz appears as a consequence of the flat
phonon spectrum for a Harmonic potential, as observed in the
spectrum and its projection onto the frequency domain in Fig.
5.b). Additionally, Fig. 7.a) can give us an insight into the in-
duced spin noise within the SLD framework. The background
of the FFT of the coupling field is flat for the frequencies plot-
ted here, showing that the noise that acts on the spin is uncor-
related. The inset shows a larger frequency domain where it
is clear that there are no phonon modes for these frequencies,
and only thermal noise decaying with frequency is visible. At
the same time an excitation of spin modes are visible for fre-
quencies up to ca .100 THz.

The characteristics of the coupling field with respect to the
coupling strength for a dynamic (SLD) and fixed lattice simu-
lations (ASD) are presented in Fig. 7(b). The only difference
between the ASD and SLD simulations is given by the pres-
ence of phonons (lattice fluctuations) in the latter. Since the
large peak at 8.6 THz is due to the lattice vibrations, it is not
present in the ASD simulations. The smaller peaks are present
in both models since they are proper magnonic modes. With
increasing coupling the width of the peaks increases suggest-
ing that the magnon-phonon damping has increased. Moving
towards the larger frequency regimes, Fig. 7.b) - (inset), we
observe that large coupling gives rise to a plateau in the spec-
tra at around 150 THz, which is present as well for the fixed-
lattice simulations (ASD). The plateau arises from a weak an-
tiferromagnetic exchange that appears at large distances due to
the competition between the ferromagnetic exchange and the
antiferromagnetic exchange-like term in the pseudo-dipolar
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FIG. 6. Magnon spectrum (x component) calculated for a 32× 32× 32 unit cell system at T = 300K, C = 0.5 for a Morse potential. The

spectrum is calculated via method i). The blue line is given by the dispersion equation Dq2(1−βq2), where the parameters D = 307meV,

β = 0.32meVÅ
2

have been extracted from experimental measurements by Loong et al.66. The inset shows the behavior of the dispersion for

low-q values.

Right figure includes the projection of the intensity of the spectrum onto the frequency domain.

FIG. 7. The power spectral density of the auto-correlation function in the frequency domain for magnons, phonons and coupling field for a

SLD simulations with a Harmonic lattice, calculated by method ii). Panel a) shows the power density of the auto-correlation function of the

x component of the velocity vx, spin Sx and coupling field Hc
x . Panel b) presents the power density of the auto-correlation function for the x

component of the coupling field for either static (ASD) or dynamic (SLD) lattice. The insets show the high-frequency spectra. For Panel a) the

velocity and the coupling field have been multiplied by a factor of 0.12 and 0.05 respectively for easier graphical comparison.

coupling.

We have also analysed the characteristics of the magnon
and phonon spectra for different temperatures- Fig. 8. With
increasing temperature, the peaks corresponding to magnons
shift to smaller frequencies. This is a typical situation known
as a softening of low-frequency magnon modes due to the in-
fluence of thermal population, see e.g.67 - Panel a). The same
effect can be observed by calculating the magnon spectra via
method i for various temperatures. In Panel b), the peak cor-
responding to phonons remains almost at the same frequency
of about 8.6 THz, as the phonon spectra is not largely affected
by temperatures up to T = 600K. The increase of the effec-
tive damping (larger broadening) of each magnon mode with
temperature is clearly observed.

V. MACROSOPIC MAGNETISATION DAMPING

In this section we evaluate the macroscopic damping pa-
rameter experienced by magnetisation due to the magnon-
phonon excitations for a periodic BCC system using our SLD
model. This method for calculating the damping has been

presented in68–70. The system is first thermalised at a non-
zero temperature in an external field of Bext = 50T applied in
the z direction, then the magnetisation is rotated coherently
through an angle of 30◦. The system then relaxes back to
equilibrium allowing the relaxation time to be extracted. The
averaged z component of magnetisation is then fitted to the
function mz(t) = tanh(αγBext(t + t0)/(1+α2)) where α rep-
resents the macrosopic (LLG-like) damping, γ the gyromag-
netic ratio and t0 a constant related to the initial conditions.
The model system consists of 10× 10× 10 unit cells and the
damping value obtained from fitting of mz(t) is averaged over
10 different simulations.

Fig. 9 shows the dependence of the average damping pa-
rameter together with the values obtained from individual
simulations for different temperatures and coupling strengths
for two choices of mechanical potential. In our model, the
spin system is thermalised by the phonon thermostat, hence
no electronic damping is present. With increasing coupling,
the energy and angular momentum transfer is more efficient,
hence the damping is enhanced. Since the observed value of
induced damping is small, calculating the damping at higher
temperature is challenging due to the strong thermal fluctua-
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FIG. 8. The power spectral density of the auto-correlation function in the frequency domain for magnons - Panel a) and phonons - Panel b) for

a SLD simulations with a Harmonic lattice, calculated by method ii), for three distinct temperatures and a coupling constant of C = 0.5.

FIG. 9. Damping parameter extracted from fitting the z component of the magnetisation for two different choices of potential: HP- Harmonic

Potential (green open squares) and MP-Morse Potential (black open circles) as function of temperature Fig. a), b) and as function of the

coupling strength Fig. c), d); Fig a) and b) are calculated for a constant coupling strength of C = 0.3, C = 0.5 respectively. Fig c) and d)

are calculated for temperatures of T = 100K, T = 300K respectively. The black and green lines represents the average damping parameter

obtained from the simulations using the Morse and the Harmonic Potentials, respectively.

tions that affect the accuracy of the results. Despite the low
temperatures simulated here, the obtained damping values (at
T = 50K, α = 4.9× 10−5) are of the same order as reported
for magnetic insulators such as YIG (1×10−4 to 1×10−671,72

) as well as in different SLD simulations (3×10−5,27). Gener-
ally, the induced damping value depends on the phonon char-
acteristics and the coupling term, that allows transfer of both
energy and angular momentum between the two subsystems.

Fig. 9(a) and (b) compare the calculated damping for the
Morse and Harmonic potential for two values of the coupling
strength. We observe that the values are not greatly affected
by the choice of potential. This arises due to the fact that only
the spin modes around Γ point are excited and for this low k-

vectors modes the inter-atomic distances between neighbour-
ing atoms do not vary significantly. The extracted damping
parameter as a function of coupling strength for 100 K and
300 K is presented in Fig. 9(c) and (d) respectively. The func-
tional form of the variation is quadratic, in accordance with
the form of the coupling term. Measurements of damping in
magnetic insulators, such as YIG, show a linear increase in the
damping with temperature,72 which agrees with the relaxation
rates calculated by Kasuya and LeCraw73 and the relaxation
rates calculated in the NVE SLD simulations in Ref. 27. How-
ever, Kasuya and LeCraw suggest that the relaxation rate can
vary as T n, where n= 1−2 with n= 2 corresponding to larger
temperature regimes. Nevertheless, the difference between
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FIG. 10. Temperature variation of the damping parameter for Néel-

like on-site coupling, Hc = −∑i, j f (ri j)((Si · r̂i j)
2 − 1

3 S2
i ). The val-

ues are extracted from mz(t) fittings for 10 realisations;

the quadratic temperature variation of the damping observed
in our simulations and the linear one observed in experiments
for YIG can be attributed to the difference in complexity be-
tween the BCC Fe model and YIG. The difference between
the trends may as well suggest that the spin-orbit coupling in
YIG could be described better by a linear phenomenological
coupling term, such as the one used in Refs. 26 and 29, but
we note that such forms can lead to a uniform force in the di-
rection of the magnetisation and so might need further adap-
tation before being suitable. To test an alternate form of the
coupling we have replaced the pseudo-dipolar coupling to an
on-site form, specifically Hc =−∑i, j f (ri j)((Si · r̂i j)

2 − 1
3
S2

i )
i.e a Néel-like anisotropy term. This is a test to understand
the effect of the coupling term on the damping. The form of
this coupling term leads to much smaller damping as shown in
Fig. 10 (T = 300 K, α = 5.32×10−5, averaged over 10 reali-
sations) making it difficult to accurately calculate the temper-
ature dependence of the damping, especially for large temper-
atures. The magnon-phonon damping can clearly have com-
plex behavior depending on the properties of the system, es-
pecially the coupling term, hence no universal behaviour of
damping as function of temperature can be deduced for spin-
lattice models.

Neglecting the lattice contribution, the temperature depen-
dence of the macrosopic damping can be mapped onto the
Landau-Lifshitz-Bloch formalism (LLB)68 and theory17 and
ASD simulations74 have shown it to vary inversely with the
equilibrium magnetisation. The LLB theory shows that the
macrosopic damping is enhanced for large temperatures due
to thermal spin fluctuations. Using the equilibrium magneti-
sation it is possible to approximate the variation of damping
with temperature produced due to thermal fluctuations within
the LLB model. From 100K to 400K the damping calculated
via the LLB model increases within the order of 10−5, which
is considerably smaller than the results obtained via the SLD
model. This shows that within the SLD model the temperature
increase of the damping parameter is predominantly due to

magnon-phonon interaction, and not due to thermal magnon
scattering, as this process is predominant at larger tempera-
tures.

VI. CONCLUSIONS AND OUTLOOK

To summarise, we have developed a SLD model that is able
to transfer energy and angular momentum efficiently from
the spin to lattice sub-systems and vice-versa via a pseudo-
dipolar coupling term. Our approached takes the best fea-
tures from several previously suggested models and general-
ize them which allows modelling in both canonical and mi-
crocanonical ensembles. With only the lattice coupled to
a thermal reservoir and not the spin system, we reproduce
the temperature dependence of the equilibrium magnetisation,
which agrees with the fact that the spin-lattice model obeys
the fluctuation-dissipation theorem. We are able to study the
dynamic properties such as phonon and spin spectrum and
macrosopic damping, showing that the magnetic damping is
not greatly influenced by the choice of potential, however it
is influenced by the form of the coupling term. This enables
the possibility of tailoring the form of the coupling term so it
can reproduce experimental dependencies of damping for dif-
ferent materials. We also find that the experimental magneto-
elastic coupling B1 can be reproduced by selecting the correct
pseudo-dipolar coupling strength. In future, the addition of
quantum statistics for Spin Lattice Dynamics models75,76 may
also yield better agreement with experimental data.

The SLD model developed here opens the possibility of
the investigation of ultrafast dynamics experiments and the-
oretically studies of the mechanism through which angular
momentum can be transferred from spin to the lattice at ul-
trafast timescales. As we have demonstrated that the model
works well in the absence of an phenomenological Gilbert
damping, which consists mainly of electronic contributions,
the SLD model can be employed to study magnetic insula-
tors, such as YIG, where the principal contribution to damp-
ing is via magnon-phonon interactions. Future application
of this model includes controlling the magnetisation via THz
phonons 7 which can lead to non-dissipative switching of the
magnetisation 11,12. With the increased volume of data stored,
field-free, heat-free switching of magnetic bits could repre-
sent the future of energy efficient recording media applica-
tions. Another possible application is more advanced model-
ing of the ultrafast Einstein-de-Haas effect 2 or phonon-spin
transport 77.
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lation of structural phase transitions in magnetic iron,” Phys. Rev.

B 96, 094418 (2017).
34 Pui-Wai Ma and S. L. Dudarev, “Longitudinal magnetic fluctua-

tions in langevin spin dynamics,” Phys. Rev. B 86, 054416 (2012).
35 A. V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson,

“Temperature-induced longitudinal spin fluctuations in fe and ni,”

Phys. Rev. B 75, 054402 (2007).
36 Louis A Girifalco and Victor G Weizer, “Application of the Morse

potential function to cubic metals,” Phys. Rev. 114, 687 (1959).
37 VJ Minkiewicz, G Shirane, and R Nathans, “Phonon dispersion

relation for iron,” Phys. Rev. 162, 528 (1967).
38 Matthew Ellis, Simulations of magnetic reversal properties in

granular recording media, Ph.D. thesis, University of York

(2015).
39 SL Dudarev and PM Derlet, “A ‘magnetic’interatomic potential

for molecular dynamics simulations,” J. Phys. Condens. Matter

17, 7097 (2005).
40 Peter M Derlet and SL Dudarev, “Million-atom molecular dynam-

ics simulations of magnetic iron,” Prog. Mater. Sci. 52, 299–318

(2007).
41 Pui-Wai Ma and S. L. Dudarev, “Atomistic spin-lattice dynam-

ics,” in Handbook of Materials Modeling: Methods: Theory and

Modeling, edited by Wanda Andreoni and Sidney Yip (Springer

International Publishing, Cham, 2020) pp. 1017–1035.
42 J. H. Van Vleck, “On the anisotropy of cubic ferromagnetic crys-

tals,” Phys. Rev. 52, 1178–1198 (1937).
43 Aleksandr I Akhiezer, SV Peletminskii, and Victor G Baryakhtar,

“Spin waves,” (1968).
44 Markus Eisenbach, Donald M Nicholson, Aurelian Rusanu, and

Greg Brown, “First principles calculation of finite temperature

magnetism in fe and fe3c,” Journal of Applied Physics 109,

07E138 (2011).
45 Rep Kubo, “The fluctuation-dissipation theorem,” Reports on

progress in physics 29, 255 (1966).
46 Oksana Chubykalo, Roman Smirnov-Rueda, JM Gonzalez,

MA Wongsam, Roy W Chantrell, and Ulrich Nowak, “Brownian

dynamics approach to interacting magnetic moments,” J. Magn.

Magn. Mater 266, 28–35 (2003).
47 Olle Eriksson, Anders Bergman, Lars Bergqvist, and Johan

Hellsvik, Atomistic spin dynamics: Foundations and applications

(Oxford university press, 2017).
48 G. P. Muller, Markus Hoffmann, Constantin Disselkamp, Daniel

Schurhoff, Stefanos Mavros, Moritz Sallermann, N. S. Kise-

lev, Hannes Jonsson, and Stefan Blugel, “Spirit: Multifunc-

tional framework for atomistic spin simulations,” Phys. Rev. B

99, 224414 (2019).
49 F. Kormann, B. Grabowski, B. Dutta, T. Hickel, L. Mauger,

B. Fultz, and J. Neugebauer, “Temperature dependent magnon-

phonon coupling in bcc fe from theory and experiment,” Phys.

Rev. Lett. 113, 165503 (2014).
50 Biswanath Dutta, Fritz Kormann, Subhradip Ghosh, Biplab

Sanyal, Jörg Neugebauer, and Tilmann Hickel, “Phonons in mag-

netically disordered materials: Magnetic versus phononic time

scales,” Phys. Rev. B 101, 094201 (2020).
51 Matthew Heine, Olle Hellman, and David Broido, “Effect of ther-

mal lattice and magnetic disorder on phonons in bcc fe: A first-

principles study,” Phys. Rev. B 100, 104304 (2019).
52 Masuo Suzuki, “Generalized Trotter’s formula and systematic ap-

proximants of exponential operators and inner derivations with

applications to many-body problems,” Commun. Math. Phys. 51,

183–190 (1976).

53 Shan-Ho Tsai, H. K. Lee, and D. P. Landau, “Molecular and spin

dynamics simulations using modern integration methods,” A. J.

Phys. 73, 615–624 (2005).
54 Shan-Ho Tsai, M. Krech, and D.P. Landau, “Symplectic integra-

tion methods in molecular and spin dynamics simulations,” Braz.

J. Phys. 34, 384–391 (2004).
55 I.P. Omelyan, I.M. Mryglod, and R Folk, “Algorithm for molecu-

lar dynamics simulations of spin liquids,” Phys. Rev. Lett. 86, 898

(2001).
56 Debra Lewis and Nilima Nigam, “Geometric integration on

spheres and some interesting applications,” J. Comput. Appl.

Math. 151, 141–170 (2003).
57 Pui-Wai Ma, S. L. Dudarev, A. A. Semenov, and C. H. Woo,

“Temperature for a dynamic spin ensemble,” Phys. Rev. E 82,

031111 (2010).
58 Richard Evans, Ulrich Nowak, Florian Dorfbauer, T Shrefl, Oleg

Mryasov, Roy W Chantrell, and Gregory Grochola, “The influ-

ence of shape and structure on the Curie temperature of Fe and

Co nanoparticles,” J. Appl. Phys. 99, 08G703 (2006).
59 G. Dos Santos, R. Aparicio, D. Linares, E. N. Miranda,

J. Tranchida, G. M. Pastor, and E. M. Bringa, “Size-

and temperature-dependent magnetization of iron nanoclusters,”

Phys. Rev. B 102, 184426 (2020).
60 Charles Kittel, “Physical theory of ferromagnetic domains,” Re-

views of modern Physics 21, 541 (1949).
61 Akashdeep Kamra, Hedyeh Keshtgar, Peng Yan, and Gerrit EW

Bauer, “Coherent elastic excitation of spin waves,” Phys. Rev. B

91, 104409 (2015).
62 D. Sander, “The correlation between mechanical stress and mag-

netic anisotropy in ultrathin films,” Rep. Prog. Phys. 62, 809–858

(1999).
63 NI Papanicolaou, IE Lagaris, and GA Evangelakis, “Modifica-

tion of phonon spectral densities of the (001) copper surface due

to copper adatoms by molecular dynamics simulation,” Surf. Sci.

337, L819–L824 (1995).
64 M Krech, Alex Bunker, and DP Landau, “Fast spin dynamics

algorithms for classical spin systems,” Comput. Phys. Commun.

111, 1–13 (1998).
65 Dilina Perera, D. M. Nicholson, M. Eisenbach, G. M. Stocks, and

David P Landau, “Collective dynamics in atomistic models with

coupled translational and spin degrees of freedom,” Phys. Rev. B

95, 014431 (2017).
66 C-K Loong, JM Carpenter, JW Lynn, RA Robinson, and

HA Mook, “Neutron scattering study of the magnetic excitations

in ferromagnetic iron at high energy transfers,” Journal of applied

physics 55, 1895–1897 (1984).
67 U. Atxitia, D. Hinzke, O. Chubykalo-Fesenko, U. Nowak,

H. Kachkachi, O. N. Mryasov, R. F. Evans, and R. W. Chantrell,

“Multiscale modeling of magnetic materials: Temperature depen-

dence of the exchange stiffness,” Phys. Rev. B 82, 134440 (2010).
68 O. Chubykalo-Fesenko, U. Nowak, R.W. Chantrell, and

D. Garanin, “Dynamic approach for micromagnetics close to the

curie temperature,” Phys. Rev. B 74, 094436 (2006).
69 M.O.A. Ellis, T.A. Ostler, and R. W. Chantrell, “Classical spin

model of the relaxation dynamics of rare-earth doped permalloy,”

Phys. Rev. B 86, 174418 (2012).
70 Mara Strungaru, Sergiu Ruta, Richard F.L. Evans, and Roy W.

Chantrell, “Model of magnetic damping and anisotropy at ele-

vated temperatures: Application to granular fept films,” Phys.

Rev. Applied 14, 014077 (2020).
71 C.L. Jermain, S.V. Aradhya, N.D. Reynolds, R.A. Buhrman, J.T.

Brangham, M.R. Page, P.C. Hammel, F.Y. Yang, and D.C. Ralph,

“Increased low-temperature damping in yttrium iron garnet thin

films,” Phys. Rev. B 95, 174411 (2017).



14

72 H. Maier-Flaig, S. Klingler, C. Dubs, O. Surzhenko, R. Gross,

M. Weiler, H. Huebl, and S. T. B. Goennenwein, “Temperature-

dependent magnetic damping of yttrium iron garnet spheres,”

Phys. Rev. B 95, 214423 (2017).
73 T Kasuya and RC LeCraw, “Relaxation mechanisms in ferromag-

netic resonance,” Phys. Rev. Lett. 6, 223 (1961).
74 Matthew O A Ellis, Mario Galante, and Stefano Sanvito, “Role of

longitudinal fluctuations in L10 FePt,” Phys. Rev. B 100, 214434

(2019).
75 R. F. L. Evans, U. Atxitia, and R. W. Chantrell, “Quantitative sim-

ulation of temperature-dependent magnetization dynamics and

equilibrium properties of elemental ferromagnets,” Phys. Rev. B

91, 144425 (2015).
76 Joseph Barker and G. E. W. Bauer, “Semiquantum thermody-

namics of complex ferrimagnets,” Phys. Rev. B 100, 140401(R)

(2019).
77 A Ruckriegel and R.A. Duine, “Long-range phonon spin trans-

port in ferromagnet–nonmagnetic insulator heterostructures,”

Phys.Rev.Lett. 124, 117201 (2020).


	Spin-lattice dynamics model with angular momentum transfer for canonical and microcanonical ensembles
	Abstract
	Introduction
	Computational model
	Spin-lattice thermalisation
	Dynamic Properties at Thermal Equilibrium
	Macrosopic magnetisation damping
	Conclusions and outlook
	Acknowledgements
	References


