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Resilient optimal defensive strategy of TSK
fuzzy-model-based micro-grids system via a novel

reinforcement learning approach
Huifeng Zhang, Member, IEEE, Dong Yue, Fellow, IEEE, and Chunxia Dou, Member, IEEE,

Xiangpeng Xie, Member, IEEE, Kang Li, Senior member, IEEE, Gerhardus P. Hancke, Life Fellow, IEEE

Abstract—With consideration of false data injection (FDI)
on demand side, it brings great challenge for optimal defensive
strategy with security issue, voltage stability, power flow
and economic cost indexes. This paper proposes a Takagi-
Sugeuo-Kang (TSK) fuzzy system based reinforcement learning
approach for resilient optimal defensive strategy of inter-
connected micro-grids. Due to FDI uncertainty of system
load, TSK based deep deterministic policy gradient (DDPG)
is proposed to learn actor network and critic network, where
multiple indexes assessment occurs in critic network and
security switching control strategy is made in actor network.
Alternating direction method of multipliers (ADMM) method is
improved for policy gradient with on-line coordination between
actor network and critic network learning, and its convergence
and optimality are proved properly. On the basis of security
switching control strategy, penalty-based boundary intersection
(PBI) based multi-objective optimization method is utilized
to solve economic cost and emission issue simultaneously
with considering voltage stability, rate-of-change of frequency
(RoCoF) limits. According to simulation results, it reveals that
the proposed resilient optimal defensive strategy can be a
viable and promising alternative for tackling uncertain attack
problem on inter-connected micro-grids.

Index Terms—Takagi-Sugeuo-Kang fuzzy system, resilient
optimal defensive, reinforcement learning, micro-grids.

I. INTRODUCTION

THE resilience in power system is generally defined as

the ability of power system to withstand severe distur-

bances without experiencing any large disruption, and further

enabling a quick recovery to the normal operation state [1],

[2], [3]. In spite of increasing situational awareness and

automatic control of power grids, it also brings additional
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vulnerabilities as system scale increases and potential risks

rise, which requires resilience enhancement measurements

for power grids. Hence, resilient operation strategy can be

a good choice for avoiding those risks. Actually, some

researches on resilient operation have been taken in many

existing literatures, where resilient operation strategies were

proposed with considering natural disaster, misbehaving of

power generators, FDI [4], [5], [6], [7], [8], [9], [10], [11].

In literature [4], a resilient distribution network planning

problem was formulated as a two-stage robust optimization

model with spatial and temporal dynamics of uncertain Hur-

ricane disaster. Literature [6] proposed a practical framework

for identifying network investments to offer highest hedge

against risk of earthquake. Literature [9] proposed a three-

stage resilient unit commitment model with considering

typhoon paths and line outages, and optimal solution was

deduced with worst-case scenario of possible typhoon paths.

In literature [11], two-layer optimal augmented controller

with observer to mitigate cyber disruptions, and it also

models an intelligent type of FDI effect on cyber-physical

interconnected micro-grids. However, those strategies lacks

of assessment on the security risk or economic cost, while

those assessment results can further guide measurements for

decreasing those risks to minimization level [12].

Recently, many scholars proposed several kinds of assess-

ment approaches [13], [14], [15], [16], [17], [18]. Literature

[13] proposed a novel assessment approach of required re-

serve capability for meeting forecasting uncertainty dynam-

ics in micro-grid. Literature [14] proposed an efficient and

accurate model of inverter-based micro-grids with reduced-

order, the improved model accounts for the effects of net-

work dynamics as well as similar to quasi-stationary model.

In literature [16], a comprehensive method was proposed to

assess the uncertainty characteristics of overall photo-voltaic

resources with gray-box model, which consists of physical

and data-driven sub-models with currents, voltage informa-

tion of photo-voltaic resources. Literature [18] integrated

impact assessment model and optimal restoration model

of active distribution network together with non-sequential

Monte Carlo Simulation framework. Here, reinforcement

learning (RL) method is utilized to assess security risk and

economic indexes of interconnected micro-grids, as it is

more powerful than other alternatives due to its model-free
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strategy and knowledge-cumulative mechanisms [19], [20].

Literature [21] developed a short-term voltage stability as-

sessment strategy with on-line systematic imbalance learning

machine. In literature [22], a novel deep learning based

feature extraction framework was developed for creating

security rules of electricity system operation. Literature

[23] proposed a multi-stage game between attacker and the

defender with reinforcement learning to identify optimal

attack sequences given certain objectives. Literature [24]

presented deep reinforcement learning models for vulner-

ability assessment of power system topology optimization

with considering data perturbation and cyber-attack. Those

existing learning based assessment method can be efficient

for dealing with deterministic issue, while it can not tackle

with uncertain input problem.

Since smart meter on demand side can be affected by

different factors, such as electricity burglary action, device

fault and cyber attack, these factors can lead the false

injection of consumers’ load information. This FDI attack

can mislead energy management, it can make wrong dispatch

scheme, which will increase economic cost/emission rate,

and even cause security problem. The resilience of inter-

connected micro-grids mainly lies on two parts: robustness

for uncertain input and recovery from FDI. In this paper,

a TSK fuzzy system based learning strategy is improved

to solve the uncertain input problem, and multi-objective

optimal defensive strategy is also proposed to recover power

system into normal operation state. The main contribution

of this paper can be summarized as follows:

1) This paper proposes an optimal recovery model with

frequency-awareness under FDI on demand side. Since FDI

of system load can affect operation scheme of interconnected

micro-grids and even lead to security risks, frequency-

awareness limits with RoCoF have been taken into consid-

eration.

2) This paper improves a TSK fuzzy system based deep

reinforcement learning based strategy for assessment on

multiple indexes of interconnected micro-grids. With con-

sideration of uncertainty nature of FDI on demand side,

TSK fuzzy system is modeled for uncertain input of load

parameters, and accumulation knowledge with actor network

and critic network learning is utilized to guide multiple

indexes assessment with ADMM algorithm, and security

control strategy is also made to reduce security risk with

actor network learning.

3) This paper utilizes a decomposition based multi-

objective differential evolution algorithm for optimal recov-

ery of interconnected micro-grids. On the basis of assess-

ment and security control of interconnected micro-grids,

the interconnected micro-grids require to recover to normal

operation state with low security risk as well as economic

cost, a decomposition based multi-objective differential evo-

lution is utilized to obtain optimal scheme for recovery of

interconnected micro-grids.

The arrangement of paper structure is presented as: Prob-

lem formulation is presented in Section II, the proposed

assessment method is described in Section III, and active

defensive strategy is introduced in Section IV, and the

simulation results and conclusion are shown in Section V

and Section VI.

II. PROBLEM FORMULATION OF ASSESSMENT ANALYSIS

AND OPTIMAL DEFENSIVE MODEL

With consideration of FDI attack, the measurement for

enhancing inter-connected micro-grids consists of two proce-

dures: assessment on multiple indexes and optimal recovery

after FDI. The assessment procedure mainly detects the FDI

effect on multiple indexes of interconnected micro-grids,

and then optimal recovery procedure controls micro-grids

to normal state.

A. Multiple indexes of interconnected micro-grids

Security issue, economic cost and environment protection

can be the most important metrics for interconnected micro-

grids, while power supply voltage and frequency stability

can be the main metric for system security, emission rate

can be an important factor for environment protection, and

power generation cost can be the main metric for economic

cost. The assessment on those indexes can be necessary for

defensive of FDI attack, the indexes are presented as follows:

(1) Power supply security: The power supply index mainly

presents the security level of deviation between power supply

and load demand with considering adjustment ability from

power electronic devices.

F1 = Securitycon =Prob(
∑

n∈NG

αn|PG,n,t + PS,n,t−

Pload,n,t − Ploss,n,t| < ǫt)

(1)

where NG represents the number of interconnected micro-

grids, αn is state parameter of nth micro-grid, ǫt > 0 de-

notes the permitted deviation, Ptot,n,t, Pload,n,t and Ploss,n,t

denote total power output, load demand and transmission

loss respectively. The power transmission Ploss,n,t can lead

power loss among interconnected micro-grids, it can be

described as:

Ploss,n,t =
∑

n1∈Nnode

dn1,nRn1,n

P 2
n1,n

+Q2
n1,n

U2
n1

(2)

where dn1,n and Rn1,n represent the distance and resistance

between n1th micro-grid and nth micro-grid, Un1
is the

rating line voltage, Pn1,n and Qn1,n denote the power flow

from n1th micro-grid to nth micro-grid.

(2) Voltage stability: The voltage index F2 =
1/NG

∑NG

n=1 Un(t) of each micro-grid must be controlled

in security domain as follows:

Un,min ≤ Un(t) ≤ Un,max (3)

where Un,min and Un,max represent the minimum and

maximum voltage at nth micro-grid.
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(3) Frequency stability: Since interconnected micro-grids

have low inertial characteristic, the frequency index F3 =
f(t) can change sharply during an islanding transition [25].

The RoCoF can be taken into consideration as follows:










F4 = RoCoFt = (
∑

n∈NG

△PG,n,t +
∑

n∈NG

△PS,n,t

−D△ f(t)− PM,t)/2Ht

−RoCoFmax ≤ RoCoFt ≤ RoCoFmax

(4)

where △PG,n,t represents power deviation of power gen-

erator, △PS,n,t denotes power deviation of energy stor-

age, D is load damping factor, △f(t) denotes frequency

deviation, and PM,t represents power imbalance, it can

also be described as
∑

n∈NG
PG,n,t +

∑

n∈NG
PS,n,t −

∑

n∈NG
Pload,n,t −

∑

n∈NG
Ploss,n,t, and Ht denotes the

inertial of interconnected micro-grids, and it can be cal-

culated as (
∑

n∈NG
hG,nP

max
G,n +

∑

n∈NG
hS,nP

max
S,n )/f0,

where hG,n and hS,n represent inertial constant of power

generator and energy storage, RoCoFmax represents max-

imum fluctuation limit of RoCoF, Pmax
G,n and Pmax

S,n denote

maximum output of power generator and energy storage, and

f0 is initial frequency, which can be set as 50HZ.

(4) Economic cost: Since renewable energy can be consid-

ered with no power generation cost, economic cost can be

made merely by CHP generators. The economic cost can be

described as [26]:

F5 =Ecot =

NG
∑

n=1

Hn,t[αn,1 + αn,2PCHP,n,t + αn,3P
2
CHP,n,t

+ |αn,4sin(αn,5(PCHP,n,min − PCHP,n,t))]
(5)

where Hn,t represents the on/off state of nth micro-grid with

binary variable 0 or 1, αn,1, αn,2, αn,3, αn,4 and αn,5 denote

the coefficients of cost, PCHP,n,min is the minimum limit

of CHP output.

(5) Emission rate: Since power generation of CHP generator

can produce emission pollutant, which can affect social lives.

Hence, emission rate is taken as another index as [26]:

F6 =Emit =

NG
∑

n=1

Hn,t[βn,1 + βn,2PCHP,n,t

+ βn,3P
2
CHP,n,t + βn,4exp(βn,5PCHP,n,t)]

(6)

where βn,1,βn,2,βn,3,βn,4 and βn,5 represent the coefficients

of emission rate.

B. The constraint limits of optimal active defensive model

(1) The power flow constraints: The power flow among

different micro-grids can be described as follows:


























∑

n2∈ΞG,n1,t
[Pn2,n1(t)−Rn2,n1

(Pn2,n1 (t))
2+(Qn2,n1 (t))

2

(Un2
(t))2 ]

= Pn1
(t)

′

+
∑

n
′

2∈Ξ
′

G,n1,t
Pq,n

′

2
(t)

∑

n2∈ΞG,n1,t
[Qn2,n1(t)− Zn2,n1

(Pn2,n1
(t))2+(Qn2,n1

(t))2

(Un2
(t))2 ]

= Qn1
(t)

′

+
∑

n
′

2∈Ξ
′

G,n1,t
Qn1,n

′

2
(t)

(7)

The above formulation mainly represents reactive power

flow balance and active power flow balance with considering

resistance and reactance of transmission line, and the voltage

of micro-grids must satisfy following conditions:

(Un1
(t))2 − (Un2

(t))2 + 2(Rn2,n1
Pn2,n1

(t)

+ Zn2,n1
Qn2,n1

(t))− [(Rn2,n1
)2

+ (Zn2,n1
)2]

(Pn2,n1
(t))2 + (Qn2,n1

(t))2

(Un2
(t))2

= 0

(8)

where Ξn1,t represents the interconnected micro-grids of

power flow to n1th micro-grid, and power flow from n1th

micro-grid to micro-grid set Ξ
′

n1,t
. Rn2,n1 and Zn2,n1 denote

resistance and reactance between micro-grid n2 and micro-

grid n1, Un1
(t) is the voltage of micro-grid n1, and those

following constraint limits should also be satisfied:






Umin
n1

≤ Un1(t) ≤ Umax
n1

Qn1(t) = Pn1(t)tanϕn1

Qmin
n1

≤ Qn1
(t) ≤ Qmax

n1

(9)

where Umin
n1

and Umax
n1

represent the minimum and max-

imum voltage limits, and Qmin
n1

and Qmax
n1

denote the

minimum and maximum reactive power limits, ϕn1
is the

power factor angle.

(2) The output constraint limit: The output at each micro-

grid can be describe as follows:

Pn(t) = PG,n,t + PS,n,t (10)

where PG,n,t can also be described as PCHP,n,t +Pw,n,t +
Pv,n,t, PCHP,n,t represents the output of combined heat

and power generator, Pw,n,t and Pv,n,t denote the output

of wind power and PV generator. The above output must

satisfy following limits:
{

PCHP,n,min ≤ PCHP,n,t ≤ PCHP,n,max

Rampdown,n ≤ PCHP,n,t − PCHP,n,t−1 ≤ Rampup,n
(11)

where PCHP,n,min and PCHP,n,max represent the minimum

and maximum output of CHP generator, Rampdown,n and

Rampup,n denote the ramp down and ramp up of CHP

generator.

(3) The limits of energy storage: The energy storage can

be a reliable energy resource for ensuring interconnected

micro-grids system stability, PS,n,t can be considered as
∑Nn,ESS

r=1 PS,n,r,t, which represents the summation of pro-

vided power of Nn,ESS energy storages in r micro-grid.

With consideration of charging or discharging state, PS,n,r,t

can be taken as P dis
S,n,r,t if energy storage is discharging,

else it can be taken as P cha
S,n,r,t, and the charging/discharging

process must satisfy following limits:


























EESS
n,r (t+ 1) = EESS

n,r (t) + ηchan,r P
cha
S,n,r,t − P dis

S,n,r,t/η
dis
n,r

EESS,min
n,r ≤ EESS

n,r (t) ≤ EESS,max
n,r

0 ≤ P dis
S,n,r,t ≤ P dis,max

S,n,r,t

0 ≤ P cha
S,n,r,t ≤ P cha,max

S,n,r,t

EESS
n,r (0) = EESS,initial

n,r

(12)
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where EESS
n,r (t) is the rth energy storage of nth micro-grid,

EESS,min
n,r and EESS,max

n,r are the minimum and maximum

bounds of rth energy storage in nth micro-grid, P dis
S,n,r,t

and P cha
S,n,r,t are the output of rth energy storage in

discharging and charging state, P dis,max
S,n,r,t and P cha,max

S,n,r,t

are the maximum discharging and charging output of rth

energy storage, ηdisn,r and ηchan,r are the efficiency factor

of rth energy storage in discharging and charging state,

EESS,initial
n,r denotes the initial storage of energy storage.

III. THE LEARNING WITH TSK FUZZY APPROACH FOR

SECURITY ASSESSMENT AND SWITCHING CONTROL OF

INTERCONNECTED MICRO-GRIDS

With consideration of FDI on demand side, it can cause

large deviation between actual system load and observed

data, which may cause security issue when observed data is

directly taken for optimal operation of interconnected micro-

grids. For system load Pload,n,t at node n, it can be described

as:
{

Pload,n,t = ¯Pload,n,t + ξn,t ˜Pload,n,t

˜Pload,n,t ∈ [ ˜Pmin
load,n,t,

˜Pmax
load,n,t]

(13)

where ¯Pload,n,t denotes actual system load, ξn,t > 0 and

˜Pload,n,t represent uncertain parameter and uncertain devia-

tion of FDI on system load, ˜Pmin
load,n,t and ˜Pmax

load,n,t are the

minimum and maximum bounds of uncertainty deviation.

Suppose uncertain budget ∆t > 0 can be described as [27]:

Environment
TSK based online

policy network

TSK based online Q

network

TSK based target

policy network

TSK based target Q

network

gradient

updateupdate

Mini-batch

Fig. 1. The TSK model based learning strategy with DDPG approach

NG
∑

n=1

ξn,t ≤ ∆t (14)

Hence, security assessment is required to evaluate the system

safety, the TSK fuzzy model based DDPG learning strategy

is developed to tackle with this problem, its framework is

presented in Fig.1. Some definitions are defined as follows:

State set: The state set can be defined as st =
[ξ1,t, ξ2,t, · · · , ξNG,t], those variables has main effect on

those security and economic indexes.

Action set: The action is mainly implemented to prevent

decreasing of maximization index and increasing of min-

imization index, action set can be defined as the set of

on/off state of power generators, which can be described

as at = [H1,t, H2,t, · · · , HNG,t].
Reward: During the learning process, state and action must

be rewarded or punished according to the effect on those

indexes, and reward function can be defined as r(st, at).
If evaluation index is to be maximized, r(st, at) can be

specifically expressed as Fi, otherwise, it can be described

as −Fi. Specially, if evaluation index is bounded with upper

bound Fmax and lower bound Fmin, it can be described as

minimization index with |Fi − (Fmax + Fmin)/2|.

A. The TSK fuzzy model based network learning with FDI

uncertain input

Here, a deep reinforcement learning approach is devel-

oped to learn the relationship between uncertain parameters

[x1, x2, · · · , xNG
] = [ξ1,t, ξ2,t, · · · , ξNG,t] and each index

Fi. With consideration of input uncertainty, the TSK fuzzy

model can be created to learn the actor network as follows:

Rule i : IF (x1 ∈ Ai1)AND...AND(xNG
∈ AiNG

)

THEN qi = gi(x1, ..., xNG
) i = 1, 2..., NR

(15)

where xj(j = 1, 2..., NG) represents the jth input variable,

Ai1, Ai2, ...AiNG
denote the fuzzy sets, qi is the output of

ith rule consequent, g(·) represents the output function, and

NR is the number of rules. For each fuzzy set Aij , its

membership function can be described as:

Mij(xj) = exp{− (xij −mij)
2

b2ij
} (16)

where mij represents the central value of fuzzy set Aij , bij
denotes the width of fuzzy set. The fuzzy AND operation is

calculated with algebraic product, and the firing strength φi
of ith rule can be deduced as follows:

φi =

NG
∏

j=1

Mij(xj) = exp{−
NG
∑

j=1

(xij −mij)
2

b2ij
} (17)

The output of the fuzzy system can be calculated with

weighted de-fuzzification method as:

q =

∑NG

i=1 φiqi
∑NG

i=1 φi
(18)

The output function g(·) can be approximated with RBF

neural network as follows:

gi(X) =

NG
∑

j=1

wij/
√

‖ X − c1j ‖22 +κ2j (19)

where X represents the input vector, wij denotes the weights

of network, c1j and κj represent the control vector and

parameter of RBF function. With consideration of over-

fitting and generalization issue of each yi, the following L2

regularized loss function is created:

Lλ =
1

2

Nsam
∑

n=1

(q
(n)
i − gi(Xn))

2 +
λ

2

NG
∑

j=1

wij
2 (20)
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where Xn = [xn1 , x
n
2 , ..., x

n
N ], Nsam represents the number

of samples, y
(n)
i denotes the actual value of nth sample,

n denotes the sample index, λ ≥ 0 is the regularization

parameter.

B. The actor network and critic network learning with policy

gradient action

With consideration of uncertain income, output function

of above TSK fuzzy model can convert uncertain vector into

deterministic vector, the Pseudo code of network learning is

shown in Algorithm. Since critic network mainly evaluates

current state and action, it can be considered as the function

of state and action vector. As it is known in reinforcement

learning, the state-action value function can be deduced with

Bellman theory as follows:

Qk(s, a) = max
a∈Ω

[τQk−1(s, a) + rk(s, a)] (21)

where Qk(s, a) represents the state-action value function

with state vector s and action vector a at kth step,τ is

discount factor, and rk(s, a) denotes the reward function at

kth step. The optimal action of Qk(s, a) can be trained with

actor network a(s) = gi(s), which represents TSK based

network. The loss function can be described with Lλ1
as:

Lλ1
=

1

2

Nsam
∑

n=1

(a
(n)
i − ai(s))

2 +
λ

2

NG
∑

j=1

wa
ij

2 (22)

where wa
ij denotes the weight of actor network. Here, the

state vector and action vector can be both treated as input

variables, the state-action value function can be approxi-

mated as:

Qk(s, a) =

NG
∑

j=1

wck
jψ

k
j (s) +

Na
∑

l=1

wck
N+lψ

k
N+l(a) (23)

where wck
j represents the weights of network, and ψj(·)

denotes TSK based RBF neural network function, which can

be described as follows:

ψk
j (X) = exp[− 1

2δ2k
‖ X − ck2j ‖2] (24)

where δk and ck2j represent the scaling and altitude control

parameters. Generally, the objective function can be treated

as reward function. Here, each objective function fi can be

evaluated with critic network according to this approach. For

ensuring the learning efficiency, the Lagrangian function can

be created as follows:

Lλ2 =
1

2

Nsam
∑

n=1

NG
∑

j=1

(yn −Q(s(n), a(n)))2 +
λ2
2

NG+Na
∑

j=1

wc
j
k2

(25)

where Rn represents the reward value of nth sample, s(n)

and a(n) are the state and action value of nth sample, λ2
denotes the regularization parameter. Combined with actor

network weight wc∗, it can be taken as the function of state

variable s. Since s and a are trained together with critic

network weight wc, the remaining task is to deduce optimal

wc for minimizing Lλ2
.

C. On-line coordinated policy gradient between actor net-

work and critic network with ADMM approach

Since action vector in critic network is deduced with actor

network learning, coordination between actor network and

critic network can promote optimization efficiency. Here,

the ADMM approach is developed to coordinate above two

models. Suppose χ1(w
a) = µ1Lλ1(w

a) and χ2(w
c, z) =

µ2Lλ2
(wc, z), where wa = [wa

i1, w
a
i2, · · · , wa

iNG
]T , wc =

[wa
i1, w

a
i2, · · · , wa

iNG
]T and z = [zai1, z

a
i2, · · · , zaiNG

]T ,µ1 and

µ2 are two weight parameters. The augmented Lagrangian

problem can be equalized as follows:

minLρ = χ1(w
a)+χ2(w

c, z)+yT (wa−z)+ ρ

2
‖ wa−z ‖2

(26)

where ρ and yT represent the control parameter and control

vector. Suppose u = y/ρ, then the iteration algorithm in

ADMM scaled form can be presented as follows:














wak+1 = argmin
wa

[χ1(w
a) + ρ

2 ‖ wa − zk + uk ‖22]
zk+1 = argmin

z
[χ2(w

ck, z) + ρ
2 ‖ wak+1 − z + uk ‖22]

uk+1 = uk + (wak+1 − zk+1)
(27)

Due to mere existence of wc in χ2(w
c, z), weight wc of critic

network can be deduced with local iteration as follows:

wck+1 = wck + ηwc

∂χ2(w
ck, zk+1)

∂wck
(28)

Combined with above iteration framework, it can be further

rewritten as:










wak+1 = wak + ηwa [▽χ1(w
ak) + ρ(wak − zk + uk)]

zk+1 = zk + ηz[
∂χ2(w

ck,zk)
∂zk − ρ(wak+1 − zk + uk)]

uk+1 = uk + (wak+1 − zk+1)
(29)

where ▽ represents the gradient operator, ηwa and ηz denote

iteration step length parameter. In addition, suppose rk =
wak − zk, the stopping criteria can be presented as follows:

‖ rk ‖2≤ ǫpri (30)

where ǫpri denotes the primal residual, which can be de-

scribed as:

ǫpri =
√

NGǫ
abs + ǫrel max{‖ wa ‖2, ‖ z ‖2} (31)

where ǫabs > 0 denotes the absolute tolerance, and ǫrel > 0
is the relative tolerance, which is generally taken as 10−3 or

10−4. With above algorithm, optimal action can be deduced

with current state by training actor network weight wa and

critic network weight wa. In addition, the weights of target

actor network and target critic network can be updated as

follows:
{

wa
′

= µwa + (1− µ)wa
′

wc
′

= µwc + (1− µ)wc
′ (32)

where µ ∈ [0, 1] denotes update parameter, wa
′

and wc
′

represent weight of target actor network and target critic

network.
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Algorithm Assessment and security control with FDI

1: procedure TSK fuzzy system based DDPG algorithm

2: Initialization: Initialize critic network wc and actor

network wa, and their copied target networks wc
′

and

wa
′

, ReplayBuffer = φ, episode = 1;

3: Collect input parameter [ξ1,t, ξ2,t, · · · , ξNG,t];
4: while episode < maxcount1 do

5: Store transition information (s, a, s′, r) in

ReplayBuffer;

6: while count < maxcount2 do

7: Update weights wak in actor network with

fuzzy system input;

8: Update weights wck in critic network with

fuzzy system input;

9: Update parameter uk and zk;

10: k = k + 1;

11: end while

12: Update weights wc
′

and wa
′

of target networks;

13: episode = episode+ 1;

14: end while

15: end procedure

D. The analysis on convergence and optimality of proposed

algorithm

Before the convergence and optimality analysis, some

remarks are required as:

Remark 1: The functions χ1(w
a) and χ2(w

c, z) are both

closed, proper and convex, which can be described as

χ1(w
a) = {(wa,Ω) ∈ Rn × R|χ1(w

a) ≤ Ω} and

χ2(w
c, z) = {(z,Ω) ∈ Rn ×R|χ2(w

c, z) ≤ Ω}
Remark 2: The Lagrangian function L0 exists at least

one saddle point, suppose L0(w
a, wc, z, y) = χ1(w

a) +
χ2(w

c, z) + yT (wa − z) and Θ = [wa, wc, z], it can be

described as:

L0(Θ
∗, y) ≤ L0(Θ

∗, y∗) ≤ L0(Θ, y
∗) (33)

As it is illustrated in literature [28], the following Lyapunov

function V k → 0:

V k = (1/ρ) ‖ yk − y∗ ‖22 +ρ ‖ zk − z∗ ‖22 (34)

It also means that rk → 0, wak → zk and zk → z∗ when

k → +∞, the convergence and optimality of wa, z and u
hold. However, the proposed coordinated algorithm has extra

variable wc, here the convergence and optimality are proved

in the following section.

(1) The optimality proof

Proof: Since Remark 1 holds, χ2(w
c, z) is closed, proper

and convex, so it is Lρ. For simplicity, suppose pk =
χ1(w

a) + χ2(w
ck, z) and p∗ = χ1(w

a∗) + χ2(w
c∗, z∗). As

wck minimizes Lρ, it satisfies the necessary and sufficient

condition:

0 ∈ ∂Lρ(w
a, wck, z) = ∂χ2(w

ck, z) (35)

It can also mean that:

pk = χ1(w
a) + χ2(w

ck, z) ≤ χ1(w
a) + χ2(w

c∗, z) (36)

Specially, if wa = wa∗ and z = z∗, it has pk ≤ p∗.

Simultaneously, as Remark 2 holds, wa∗ = z∗ and wa → z,

it obtains:

L0(w
a∗, wc∗, z∗, y∗) ≤ L0(w

a, wck, z, y∗) (37)

It can be described as:

p∗ = χ1(w
a∗) + χ2(w

c∗, z∗) ≤ χ1(w
a) + χ2(w

ck, z) = pk

(38)

Combined with formula(36) and formula(38), it has pk →
p∗, the optimality holds. �

(2) The convergence proof

Proof: The convergence can also hold with satisfying fol-

lowing condition:

ηc ≤
1√
M

· 1

K
(39)

where K > 0 is a large enough number, constant

M > 0 can be described as max{ΨTΨ}, Ψ =
[ψ1(s), · · · , ψNG

(s), ψNG+1(a), · · · , ψNG+Na
(a)]T .

‖ χ2(w
ck, z)− χ2(w

c∗, z) ‖22 ≤ ηc2ΨTΨ ‖ wck − wc∗ ‖22
≤ δ2c/(K

2) ≤ ǫc
(40)

where ǫc > 0 denotes the accuracy parameter, δc = max{‖
wck−wc∗ ‖2}, and K can take ⌈ δc√

ǫc
⌉, then the convergence

holds. �

IV. THE OPTIMAL ACTIVE DEFENSIVE STRATEGY OF

INTERCONNECTED MICRO-GRIDS

A. The active defensive model with multiple objectives

With above assessment on multiple indexes, the security

on/off switching strategy can also be made to avoid potential

risk of interconnected micro-grids. However, the switching

strategy can merely tackle with one security or economic

issue, further defensive strategy must be made for ensuring

system security as well as minimizing economic cost. The

supply security index can be considered as equality con-

straint, and voltage stability and frequency stability indexes

can be treated as inequality constraint limits. Hence, the

active defensive model can be created as follows:














































min {∑T
t=1Ecot,

∑T
t=1Emit}

s.t.
∑

n∈NG
PG,n,t +

∑

n∈NG
PS,n,t −

∑

n∈NG

Ploss,n,t =
∑

n∈NG
Pload,n,t

Vn,min ≤ Vn,t ≤ Vn,max

−RoCoFmax ≤ RoCoFt ≤ RoCoFmax

Power flow constraints;
Output constraints;
The limits of energy storage.

(41)

Since economic cost and emission rate can be contradict with

each other. Hence, the optimal active defensive model can

be treated as a multi-objective optimization problem, and an

efficient multi-objective optimization algorithm is required

to optimize this model.
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B. Decomposition based multi-objective optimization ap-

proach for optimal recovery of micro-grid

Here, the penalty-based boundary intersection (PBI) ap-

proach with gradient decent based differential evolution is

developed to solve this problem combined with several

constraint handling techniques. Without loss of generality,

the active defensive model can be described as follows:














minF (x) = (f1(x), f2(x), ..., fm(x))T

s.t. hj11 (x) < 0, j1 = 1, 2, ..., J1;

hj22 (x) = 0, j2 = 1, 2, ..., J2;
x ∈ Rn

(42)

where h1(·) and h2(·) represent the inequality and equality

constraint function, m is the number of objectives, J1 and

J2 denote the number of inequality and equality constraint

limits. The main idea of PBI is to search optimal solutions

with guidance of utopian point z∗ = (z∗1 , z
∗
2 , ..., z

∗
m)T , the

above problem can be equalized as follows:














min gpbi(x|λi, z∗) = di1 + βdi2
s.t. di1 =‖ (F (x)− z∗)Tλi ‖ / ‖ λi ‖

di2 =‖ F (x)− z∗ − di1λ
i ‖

x ∈ Ω

(43)

where di1 represent the distance between z∗ and projection

of F (x) on the ith subproblem, di2 denotes the distance

between F (x) and direction line of ith subproblem, β is

the preset penalty parameter, Ω denotes the feasible domain,

which is determined by equality and inequality constraint

limits. λi represents the direction vector, its component λij
satisfies

∑m
j=1 λ

i
j = 1 (λij ≥ 0).

Obviously, the optimal model can be converted into above

version, which optimizes several single-objective subprob-

lems with alternating weights. To properly solve each sub-

problem, gradient decent based differential evolution is uti-

lized to enhance the search ability. Here, differential evolu-

tion procedure is taken with mutation operator of improved

DE/rand/1/bin strategy, which can be described as follows:

{

Xj
G+1 = Xj

r,G + βj
1(Xr1,G −Xr2,G) + βj

2(Xr3,G −Xr4,G)

r 6= r1 6= r2 6= r3 6= r4
(44)

where Xr,G, Xr1,G, Xr2,G, Xr3,G and Xr4,G are randomly

selected individuals from non-dominated solutions, Xj
G+1

is the generated individual for G + 1 generation, βj
1 and

βj
2 represent the control parameters. With consideration of

convergence ability, βj
1 and βj

2 can be updated as follows:























βj
1 = − ΥGκ1sgn(f1(Xr1,G)−f1(Xr2,G))

(Xr1,G−Xr2,G)2
√

∑

j∈n
1

(Xr1,G−Xr2,G)2

βj
2 = − ΥGκ2sgn(f2(Xr3,G)−f2(Xr4,G))

(Xr3,G−Xr4,G)2
√

∑

j∈n
1

(Xr3,G−Xr4,G)2

ΥG = Υ0[(Gmax −G+ 1)/Gmax]
p

(45)

where ΥG, p, κ1 and κ2 are control parameters, Gmax

denotes the maximum generation number, sgn(·) represents

the sign function.

V. CASE STUDY

In the case study, a six micro-grid system is utilized to

verify the efficiency of proposed approach, each micro-grid

consists of four CHP generators, three energy storages, one

wind farm and system load. Those micro-grids are inter-

connected, and related data can be found in literature [32],

[33]. The analysis can be classified into two parts: multiple

indexes assessment and optimal recovery, assessment results

mainly show the evaluation of each index, and also consists

of security control scheme, optimal recovery results mainly

present optimal Pareto fronts and optimal scheme of each

micro-grid.

A. Multiple indexes assessment and security control of in-

terconnected micro-grids

Since FDI from system load can destroy some indexes of

micro-grid systems, the assessment on those indexes must

be evaluated before defensive action, assessment results of

economic cost, frequency, RoCoF, security level, voltage

stability and emission rate are shown in Fig.2, where voltage

is obtained with the average value of interconnected micro-

grids, and the transmission loss of each micro-grid at tth time

period does not exceed 8% of total output. In Fig.2, each

index can converge well under different FDI effects with

alternating uncertainty budget ∆, it can also be seen that

large uncertainty of FDI has more damage on index value.

After assessment, action strategy can also be made to reduce

the security risk with on/off state of four CHP generators

in each micro-grid, which are presented in Table.I, it can

be seen that the on /off state of each CHP generator is

presented (1 means on state and 0 means off). The security

level after action strategy is shown in Fig.3, where security

valve is set as 0.8. It can be seen that security index at

some periods is lower than 0.8 after FDI, and security

level is significantly improved after implementation of action

strategy with proposed reinforcement learning method in

comparison to RO.

B. Multi-objective Optimal recovery strategy

On the basis of above security control scheme, the re-

maining task is to recover other indexes such as economic

cost, emission rate, frequency, RoCoF and voltage stability.

The time step of base case scheduling is set as one hour,

frequency dynamics and RoCoF is mainly taken into con-

sideration within 1min at sharp time of hourly scheduling.

Here, PBI based multi-objective algorithm is implemented

to optimize these indexes simultaneously, and the obtained

Pareto-optimal fronts are shown in Fig.4, where the results of

proposed method and Chebyshev method [34] are presented

with different uncertainty budgets. It can be seen that PBI

based method can have better optimal results as well as have

better diversity distribution. Here, scheme (10) of Pareto

solutions with ∆ = 1.5 is taken for further analysis on

optimal scheme, the uncertain parameters under ∆ = 1.5
is evenly taken for treating each micro-grid equally. In this
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Fig. 2. The index evaluation with improved deep reinforcement learning
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Fig. 3. The caused security risk and control by FDI

optimal scheme, the voltage distribution of each micro-grid

is presented in Fig.5, where it can be seen that the voltage

at each period is controlled in [0.95, 1.05], which means

that voltage security can be properly satisfied. The output

process of CHPs in each micro-grid is shown in Fig.6, where

it can be seen that 00:00-05:00 and 22:00-24:00 can be

two output valleys, 10:00-13:00 and 19:00-20:00 are two

peaks. Besides, the charging/discharging process of energy

storages is also shown in Fig.7, where those periods with

0 charging/discharging state mean that this energy storage

is out of work. It can be seen that charging state mainly

occurs at 00:00-05:00, and discharging state occurs when

load peak comes. The comparison of obtained results are

presented in Table.II, where voltage stability is calculated

with average value of voltage at each micro-grid. It can be

seen that the proposed method can have better economic

cost and emission rate with satisfying security level, voltage

stability, frequency and RoCoF requirements in comparison

to other existing alternatives.

VI. CONCLUSION

With consideration of resilience of interconnected micro-

grids after FDI on system load, this paper proposes a TSK

fuzzy system based deep reinforcement learning approach

for assessment and security control on the interconnected

micro-grids, and active defensive strategy is also made

to recover interconnected micro-grids to normal operation

state with improved decomposition based multi-objective

differential evolution algorithm. According to those obtained

simulation results, it can be verified that the proposed TSK

based learning assessment strategy can be valid for uncertain

input, it can also make correct security control scheme for

improving security levels, and the optimal defensive strategy

can recover interconnected micro-grids to normal state with

low security risk and economic cost.
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TABLE I
THE ON/OFF STATE OF CHPS IN EACH MICRO-GRID

Period Microgrid #1 Microgrid #2 Microgrid #3 Microgrid #4 Microgrid #5 Microgrid #6
1 {1,0,1,0} {1,0,1,1} {1,0,0,1} {1,0,1,0} {1,0,0,1} {1,0,0,1}
2 {1,0,1,0} {1,0,1,0} {1,0,0,1} {1,0,1,0} {1,0,0,1} {1,0,0,1}
3 {1,0,0,0} {1,0,1,0} {1,0,0,1} {1,0,0,0} {1,0,0,1} {1,0,0,1}
4 {1,0,0,0} {1,0,1,1} {1,0,0,1} {1,0,0,0} {1,0,0,1} {1,0,0,1}
5 {1,0,0,0} {1,0,1,1} {1,0,0,1} {1,0,0,0} {1,0,0,1} {1,0,0,1}
6 {1,0,1,0} {1,0,1,1} {1,0,1,1} {1,0,1,0} {1,0,0,1} {1,0,1,1}
7 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
8 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
9 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
10 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
11 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
12 {1,1,1,1} {1,1,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
13 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
14 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
15 {1,0,1,0} {1,0,1,1} {1,0,1,1} {1,0,1,0} {1,0,1,1} {1,0,1,1}
16 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,0} {1,0,1,1} {1,0,1,1}
17 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,0} {1,0,1,1} {1,0,1,1}
18 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
19 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
20 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
21 {1,0,1,1} {1,1,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}
22 {1,0,1,1} {1,1,1,1} {1,0,1,1} {1,0,1,1} {1,0,0,1} {1,0,1,1}
23 {1,0,0,0} {1,0,1,1} {1,0,0,1} {1,0,1,0} {1,0,0,1} {1,0,0,1}
24 {1,0,0,0} {1,0,1,1} {1,0,0,1} {1,0,1,0} {1,0,0,1} {1,0,0,1}
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Fig. 4. The Pareto fronts with different FDI uncertainty budgets

TABLE II
THE COMPARISON OF OBTAINED RESULTS WITH OTHER ALTERNATIVES

Index Ref. [29] Ref. [30] Ref. [31] This method
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