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Jordan permutation groups

and limits of D-relations

Asma Ibrahim Almazaydeh and Dugald Macpherson*

Communicated by Benjamin Klopsch

Abstract. We construct via Fraïssé amalgamation an !-categorical structure whose auto-

morphism group is an infinite oligomorphic Jordan primitive permutation group preserv-

ing a “limit of D-relations”. The construction is based on a semilinear order whose ele-

ments are labelled by sets carrying a D-relation, with strong coherence conditions gov-

erning how these D-sets are inter-related.

1 Introduction

A transitive permutation group G on a set X is a Jordan group if there is Y � X

with jY j > 1 such that the pointwise stabiliser G.XnY / is transitive on Y , together

with a non-degeneracy condition which essentially says that this transitivity does

not arise just from the degree of transitivity of G on X . It follows already from

work of Jordan in 1871 that finite primitive Jordan groups are 2-transitive, and this

led to a full classification of such permutation groups by Neumann in [24], with re-

lated work around the same time by Kantor in [19], and by Cherlin, Harrington and

Lachlan in [14]. For infinite permutation groups, the supply of examples of Jordan

groups is much richer – for example, Aut.Q; </ is a primitive but not 2-tran-

sitive Jordan group (any proper non-empty open interval is a Jordan set). Other

examples include the supergroups of Aut.Q; </ in Sym.Q/ – the ones which are

closed in the topology of pointwise convergence on Sym.Q/ were classified by

Cameron in [11]. Many other examples arise as automorphism groups of the “tree-

like” structures explored in [6]. In addition, there are examples, suggested by finite

permutation group theory, consisting of projective and affine groups in their natu-

ral actions. Other examples of this type include automorphism groups of saturated

strongly minimal sets (or more generally regular types) arising in model theory.

There are also Jordan groups which are highly transitive (that is, k-transitive for

all k), but little work has been done on these – the focus has been on Jordan groups

which arise as automorphism groups of non-trivial first-order structures.

A structure theory for infinite primitive Jordan groups has emerged. In 1985,

Neumann [24] classified the primitive Jordan permutation groups with cofinite
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Jordan sets. Primitive Jordan groups with a proper primitive Jordan set (that is, the

pointwise stabiliser of the complement acts primitively on the set) were classified

by Adeleke and Neumann in [5] – here “classified” means that it was shown that

any such group preserves a relational structure of one of a list of types. Finally,

in [3], the following theorem was proved – see Definition 2.6 and other definitions

in Section 2.

Theorem 1.1. Let G be a primitive but not highly transitive Jordan group on an

infinite set X . Then G preserves on X a structure of one of the following kinds:

(i) a Steiner system (possibly with infinite blocks),

(ii) a linear order, circular order, linear betweenness relation, or separation re-

lation,

(iii) a semilinear order, general betweenness relation, C -relation, or D-relation,

(iv) a limit of Steiner systems, general betweenness relations, or D-relations.

The examples of types (i) and (iv) do not have a proper primitive Jordan set

so did not arise in [5], and those of type (i) include projective and affine groups,

and some constructions arising from strongly minimal sets and regular types. The

structures of type (ii) are essentially those classified by Cameron in [11], and those

of type (iii) are described by Adeleke and Neumann in [6] – in particular, the

relational structures are axiomatised and well-understood.

The examples of type (iv) are more mysterious, and are the focus of this pa-

per. We do not give the definition of a limit of Steiner systems, but for a limit of

D-relations (or of general betweenness relations), see Definition 2.6 below and

the remark following it. There is an example of an infinite Jordan group preserv-

ing a limit of Steiner systems given by Adeleke in [1]. This is developed further

by Johnson in [18], who gives for every k � 2 a construction of a k-transitive

but not .k C 1/-transitive example. An example of an infinite primitive Jordan

group preserving a limit of betweenness relations is given by Bhattacharjee and

Macpherson in [8]. The group acts on an !-categorical structure which is built by

a Fraïssé construction. Another example of an infinite Jordan permutation group

preserving a limit of betweenness relations is given by Adeleke in his work [2]

(work which, despite its later publication date, was done much earlier than [8],

in the early 1990s, and which inspired [8] and the present work). Adeleke in [2]

also gives an example of an infinite primitive Jordan permutation group preserving

a limit of D-relations.

Recall that a countably infinite first-order structure is !-categorical if it is deter-

mined up to isomorphism by its cardinality and its first-order theory. By the Ryll-

Nardzewski theorem, this is equivalent to its automorphism group being oligomor-
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phic, that is, having finitely many orbits on k-tuples for all k. The group preserving

a limit of betweenness relations constructed by Adeleke in [2] is not oligomorphic,

but the group constructed in [8] is. It is expected, but not verified, that the group

preserving a limit of D-relations constructed by Adeleke [2] is not oligomorphic.

Adeleke and Macpherson, in the end of their paper [3], posed the problem of ex-

plicitly classifying oligomorphic primitive Jordan permutation groups, and also

asked whether it is possible for an infinite primitive oligomorphic Jordan permuta-

tion group to preserve a limit of betweenness relations or D-relations. With The-

orem 1.2 below, together with that in [8], a positive answer has now been found

in both cases. Furthermore, in the Adeleke paper [2], the Jordan group is built as

a direct limit of an increasing chain of permutation groups, but no invariant rela-

tional structure is made explicit. In our construction here, the Jordan group is the

automorphism group of a relational structure which can reasonably be claimed to

be a “new” treelike structure, essentially distinct from those occurring in Theo-

rem 1.1 (iii) or described in [6].

Our main theorem is the following. The overall strategy of the proof of Theo-

rem 1.2 is analogous to that in [8], but there are significant differences.

Theorem 1.2. There is an !-categorical structure M whose automorphism group

is a primitive Jordan group which preserves a limit of D-relations but does not

preserve a structure of types (i), (ii), or (iii) of Theorem 1.1.

Some introductory background is given in Section 2. In Section 3, we build

a class of finite structures, each of which is essentially a finite lower semilinear

order with vertices labelled by finite graph-theoretic unrooted trees, with coher-

ence conditions. These are viewed as structures in a relational language with rela-

tions L;L0; S; S 0;Q;R. We describe possible one-point extensions of such struc-

tures, prove an amalgamation theorem, and thereby obtain by Fraïssé’s theorem

a countably infinite !-categorical structure M (the “Fraïssé limit”). In Section 4,

we describe in detail the structure M and its automorphism group. On M , the

relations L0; S 0;Q;R (whose role is to ensure that an appropriate form of the

amalgamation property holds) can be defined without parameters in terms of the

ternary relationL and quaternary relation S . We show that there is inM an associ-

ated interpretable dense lower semilinear order (a meet semilattice), with vertices

labelled by dense “D-sets” (in place of graph-theoretic trees), again with coher-

ence conditions. Adapting an iterated wreath product construction described by

Cameron in [12] which is based on Hall’s wreath power, we show in Section 5 that

Aut.M/ is a Jordan group with a “pre-direction” as a Jordan set. Using this, we

find many other Jordan sets. Finally, we prove that the Jordan group G D Aut.M/

preserves a limit of D-relations, our main result.
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We believe that our construction, and its companion in [8], opens the possibility

to give a much more enlightening description of type (iv) in Theorem 1.1 by re-

quiring that there is an invariant combinatorial structure satisfying certain explicit

axioms. The constructions may also have interest for other test questions on homo-

geneous and !-categorical structures, and may be open for further generalisation.

This is explored briefly in Section 6.

We conclude with some remarks concerning the wider context and motiva-

tion. Structural results on Jordan groups have had a number of applications. First,

Cherlin, Harrington and Lachlan in [14] used structural results on finite Jordan

groups in model theory to classify !-categorical strictly minimal sets, and thereby

to develop a powerful structure theory for !-categorical !-stable structures – this

paper was fundamental to the development of geometric stability theory in model

theory. Neumann [24] used essentially the same result to describe primitive per-

mutation groups on a countably infinite set which have no countable orbits on the

set of infinite co-infinite subsets. The paper [4] uses results on primitive Jordan

groups with primitive proper Jordan sets to obtain structural results on primitive

groups on an uncountable set which contain a non-identity element of “small”

support. This is analogous to the result of Wielandt that an infinite primitive per-

mutation group with a non-identity element of finite support contains the finite

alternating group, and Macpherson and Praeger in [21] used the full structure the-

ory for primitive Jordan groups to show that a primitive permutation group real-

ising a certain cycle type (a single infinite cycle, finitely many and at least one

non-trivial finite cycles, and infinitely many fixed points) must be highly transi-

tive. Several authors have used Jordan groups to show that certain automorphism

groups are “maximal-closed” in the symmetric group: Kaplan and Simon [20]

showed that AGLn.Q/ (for n � 2) and PGLn.Q/ (for n � 3) are maximal closed;

Bradley-Williams in [10] described the closed supergroups of the automorphism

group of certain semilinear orders, and Bodirsky and Macpherson [9] exhibited

an uncountable non-oligomorphic maximal-closed permutation group acting on

a countable set.

Semilinear orders, C -relations, general betweenness relations, and D-relations

can naturally be viewed as “treelike”. The classification in [5] of infinite primitive

Jordan groups with primitive proper Jordan sets suggests that these are the only

treelike structures. However, we would argue that the highly symmetric structure

M constructed in Theorem 1.2 (and its cousin in [8]) involves all the above struc-

tures, but its automorphism group does not preserve any of the above structures,

and thus it can claim to be a new treelike structure. This makes it potentially inter-

esting in other ways – see for example Problem 6.7 below.

The methods in the paper are mainly combinatorial and permutation group-

theoretic. We assume familiarity with some basic concepts from model theory such
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as relational structures, amalgamation and Fraïssé limits, and !-categoricity, but

give some explanation – see e.g. Theorem 2.1, the start of Section 3.2, and Theo-

rem 3.17.

2 Definitions

Throughout the paper, we shall denote by .G;X/ a permutation group G acting

on a set X , and we say X is a G-space. We write xg for the image of the element

x 2 X under g 2 G. For Y � X , the setwise stabiliser of Y in G is denoted by

G¹Y º, and the pointwise stabiliser of Y in G is G.Y /. The stabiliser of a point

x 2 X is denoted byGx . For a natural number k, aG-spaceX is said to be k-tran-

sitive if G is transitive on the set of ordered k-subsets of X ; it is k-primitive if it

is k-transitive, and in addition, for any distinct x1; : : : ; xk�1 2 X , the stabiliser

Gx1;:::;xk�1
acts primitively on X n ¹x1; : : : ; xk�1º. If G is transitive on the set of

unordered k-subsets of X , then it is called k-homogeneous. If G is k-transitive

(respectively, k-homogeneous) on X for every k 2 N, then G is said to be highly

transitive (respectively, highly homogeneous).

A group G acting on a set X is said to be oligomorphic if G has finitely many

orbits on Xk , the set of all k-tuples of X , for every natural number k. For more

about oligomorphic groups, see [13]. A structure M is !-categorical if M is

countably infinite and any countable structure N which satisfies the same first-

order theory asM is isomorphic toM . The connection between these two notions

lies in the following theorem.

Theorem 2.1 (Ryll-Nardzewski 1959, Engeler 1959, Svenonius 1959). Let M be

a countably infinite first-order structure. Then M is !-categorical if and only if

Aut.M/ is oligomorphic on M .

Definition 2.2. Let Y [Z form a partition of a transitiveG-spaceX with jZj > 1.

If the pointwise stabiliser G.Y / of Y in G is transitive on Z, then Z is called

a Jordan set for .G;X/ and Y is called a Jordan complement. The Jordan set Z

is improper if, for some k 2 N, .G;X/ is .k C 1/-transitive and jY j D k – so

in the improper case, the Jordan property is just a consequence of the degree of

transitivity; it is proper otherwise. We say that Z is a primitive Jordan set if G.Y /

is primitive on Z, and an imprimitive Jordan set otherwise. A Jordan group is

a transitive permutation group with a proper Jordan set.

The following definition is taken from [5]. The subsequent lemma is heavily

used in the classification results in [3,5] since many arguments apply properties of

the family of all Jordan sets, or of an orbit on Jordan sets.
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Definition 2.3. We fix the following terminology.

(a) A typical pair is a pair of subsets Y1; Y2 of X such that Y1 ª Y2, Y2 ª Y1,

and Y1 \ Y2 ¤ ;.

(b) A family of sets ¹Yi W i 2 I º will be said to be connected if, for any i; i 0 2 I ,

there exists j0; : : : ; jl 2 I such that j0 D i , jl D i 0, and Yjr�1
\ Yjr

¤ ; for

all 1 � r � l .

Lemma 2.4. The following statements hold.

(i) [5, Lemma 3.2] Suppose that .G;X/ is a transitive G-space and ¹Zi W i 2 I º

is a connected system of Jordan sets. Then
S

i2I Zi is a Jordan set for .G;X/.

(ii) [5, Lemma 3.1] The union of any typical pair of Jordan sets is a Jordan set.

We now introduce, very briefly, some of the relational structures that arise in

this paper. For further details, see [6].

First, recall the following, adopting the conventions of [3]. Let n 2 N with

n > 1. Then an n-Steiner system on X is a family B of subsets of X called blocks,

all of the same size (possibly infinite), such that any n distinct elements of X lie in

a unique block. We shall assume n-Steiner systems to be non-trivial in the sense

that there is more than one block, and blocks have size greater than n. Jordan

groups arising from projective and affine groups in their natural actions preserve

Steiner systems.

Recall also that a separation relation (see Cameron [11]) is the natural arity 4

relation induced on a circularly ordered set indicating that two elements lie in

distinct segments with respect to two other elements.

Let .X;�/ be a partially ordered set. Then X is said to be a (lower) semilin-

early ordered set if, for any a in X , the set ¹x 2 X W x � aº is totally ordered

by �, any two elements have a common lower bound, but the set X itself is

not totally ordered. Given a lower semilinear order .X;�/, let p 2 X and put

Yp ´ ¹x 2 X W x > pº. Define an equivalence relation Ep on Yp, putting

xEpy ” 9z.p < z � x ^ p < z � y/:

ThenEp is preserved by .Aut.X;�//p. The equivalence classes of the equivalence

relation Ep at the point p are called the cones at p.

From now on, by semilinear order, we always mean a lower semilinear order.

Definition 2.5. A quaternary relation D.x; yI z; w/ on X is a D-relation if, for all

x; y; z; w 2 X , (D1)–(D4) hold.

(D1) D.x; yI z; w/ ) D.y; xI z; w/ ^D.x; yIw; z/ ^D.z;wI x; y/.

(D2) D.x; yI z; w/ ) :D.x; zIy;w/.
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x z

y w

Figure 1. D.x; yI z; w/

(D3) D.x; yI z; w/ ) .8a 2 X/.D.a; yI z; w/ _D.x; yI z; a//.

(D4) .x ¤ z ^ y ¤ z/ ) D.x; yI z; z/.

We say it is a proper D-set if in addition (D5) holds.

(D5) .x; y; z distinct) ) .9t /.t ¤ z ^D.x; yI z; t//.

The D-set is said to be dense if

(D6) we have

D.x; yI z; w/ H) .9a 2 X/.D.a; yI z; w/ ^D.x; aI z; w/

^D.x; yI a;w/ ^D.x; yI z; a//:

Where D is clear from the context, we often refer to the D-set X .

We remark that if T is a finite graph-theoretic tree, then there is a D-relation

on the set of leaves of T : put D.x; yI z; w/ if x D y … ¹z; wº or z D w … ¹x; yº

or x; y; z; w are distinct and the path from x to y is disjoint from the path from z

to w. The correspondence between finite D-sets and such trees follows from [12,

Proposition 3.1 and Section 9], noting that the author uses different notation for the

relation D. If T is an infinite tree, then there is a similar definition of a D-relation

on the set of ends of T . The intuition is that the relationD.x; yI z; w/ captures the

relation among leaves/ends (or “directions”) depicted in Figure 1.

There are further treelike structures that we mention without detail, as they play

a more peripheral role here; for example, a general betweenness relation is, in-

formally, a ternary relation B.xIy; z/ on a set X which expresses that x lies on

the unique path between y and z (we usually omit the word “general”). If .X;�/

is a lower semilinear order, then one can define a general betweenness relation B

on X , putting B.xIy; z/ for any x; y; z 2 X if one of the following holds:

(i) y � x ^ :.z � x/;

(ii) z � x ^ :.y � x/;

(iii) x D glb¹y; zº, where glb denotes the greatest lower bound (if it exists).
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If T is an unrooted graph-theoretic tree, then there is a natural general between-

ness relation on its vertices – B.xIy; z/ holds if and only if x lies on the yz-

geodesic. It is easy to imagine an analogous relational structure with a notion of

betweenness where edges are replaced, for example, by the real interval Œ0; 1�,

and indeed, an R-tree carries a natural general betweenness relation defined via

geodesics as above – but a set with a general betweenness relation does not in

general have any automorphism-invariant metric.

A C -relation is a ternary relation which can be viewed as describing the be-

haviour of the maximal chains of a semilinear order .X;�/: if x; y; z are maximal

chains of X , then C.xIy; z/ holds if x \ y D x \ z � y \ z. Much more detail,

including axioms, can be found in [6], and there is an overview also in [3]. Note

that if .Y; C / satisfies the axioms of a C -relation, then there is a lower semilinear

order .X;�/ such that Y can be identified with a “dense” set of maximal chains

of X with C interpreted as above – here the density means that every a 2 X lies

in some maximal chain of Y .

If B is a general betweenness relation on X , then there is a concept of direction

of .X;B/, analogous to an end of a graph, and corresponding D-relation on the

set of directions (see [6, Section 16 and Theorem 23.2]). Conversely, if D is a D-

relation on X , then it is possible to interpret a general betweenness relation in the

structure .X;D/ – see [6, Theorem 25.3]. If .X; C / is a C -relation, then there is

a natural D-relation on the set of elements of X : for example,

.8x; y; z; w 2 X/.D.x; yI z; w/ ” .C.xI z; w/ ^ C.yI z; w//

_ .C.zI x; y/ ^ C.wI x; y///:

See [6, Theorems 23.4 and 23.5].

We now introduce the definition of a limit of D-relations, to give meaning to

Theorem 1.1 (iv) and Theorem 1.2. We have reversed the ordering on J compared

to presentations given previously – this seems to fit more naturally with our con-

struction.

Definition 2.6 ([3, Definition 2.1.9]). If .G;X/ is an infinite Jordan group, we say

that G preserves a limit of D-relations if there are a linearly ordered set .J;�/

with no least element, a chain .Yi W i 2 J / of subsets of X and chain .Hi W i 2 J /

of subgroups of G with Yi � Yj and Hi > Hj whenever i < j such that the fol-

lowing hold:

(i) for each i , Hi D G.XnYi /, and Hi is transitive on Yi and has a unique non-

trivial maximal congruence �i on Yi ;

(ii) for each i , .Hi ; Yi=�i / is a 2-transitive but not 3-transitive Jordan group

preserving a D-relation;
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(iii)
S

.Yi W i 2 J / D X ;

(iv) .
S

.Hi W i 2 J /;X/ is a 2-primitive but not 3-transitive Jordan group;

(v) �j � �i jYj
if i < j ;

(vi)
T

.�i W i 2 J / is equality in X ;

(vii) .8g 2 G/.9i0 2 J /.8i < i0/.9j 2 J /.Y
g
i D Yj ^ g�1Hig D Hj /;

(viii) for any x 2 X , Gx preserves a C -relation on X n ¹xº.

The notion of preserving a limit of general betweenness relations is essentially

the same, but with a general betweenness relation replacing the D-relation in (ii).

Note that we do not define limits of Steiner systems since the concept is not used

here.

3 Trees of D-sets

In this section, we construct the !-categorical structure M whose automorphism

group is shown in Sections 4 and 5 to preserve a limit of D-relations. The struc-

ture M is a Fraïssé limit of a class of finite structures (“trees of D-sets”). These,

informally, may be viewed as rooted lower semilinear orders with each vertex la-

belled by a finite D-relation (so essentially by a finite graph-theoretic tree) with

additional coherence conditions. We first introduce the key concept of a finite tree

of D-sets.

Notation. Let .T;�/ be a finite lower semilinear order with a root �. Label each

vertex � of T by a finite D-set D.�/ with a D-relation D� defined on D.�/. We

viewD.�/ as the set of leaves of a finite unrooted treeD.�/ (in the graph-theoretic

sense) without dyadic vertices (vertices of degree two), and withD� defined in the

natural way onD.�/ described in Section 2. We refer to vertices ofD.�/ as nodes,

and those of degree at least three are called ramification points, with the set of these

denoted by Ram.D.�//. If the ramification point r lies on the geodesics between

any two of the distinct nodes x; y; z, we write r D ram.x; y; z/, and any three

distinct leaves of D.�/ determine a unique ramification point such that the xy-

path, the xz-path, and the yz-path all pass through ram.x; y; z/. By a successor

of a vertex � 2 T , we mean a vertex � 2 T such that � < � ^ :9�.� < � < �/;

we write succ.�/ for the set of successors of �. For each r 2 Ram.D.�//, there

is an equivalence relation Er on D.�/ such that two leaves w1; w2 of D.�/ are

Er -equivalent if the unique paths from r to w1 and from r to w2 have at least two

common nodes (or equivalently, if the unique w1w2-path of D.�/ does not pass

through r). The Er -classes will be called branches at r . For each r 2 Ram.D.�//,
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one of the branches at r will be distinguished and called the special branch at r .

This device enables us to define a ternary relation L and also ensures that the

Fraïssé limit M which we construct has a strictly decreasing family of subsets as

in Definition 2.6.

We shall use Roman letters x; y; z; w; u; v; : : : for leaves of a D-set, and letters

r; r 0; r 00 or r1; r2; : : : for the ramification points. Greek letters ˛; �; �; : : : refer to

the vertices of the tree, while we retain the letter � for the root. This notation will

persist in Section 4, where everything is infinite and the labelling graph-theoretic

trees are replaced by general betweenness relations.

The relationship between the various D-sets is governed by certain maps f�

and g!� as in [8]. For each � 2 T , we assume there is a fixed bijection

f� W succ.�/ ! Ram.D.�//

from the set of successors of the vertex � in T to the set of ramification points of

theD-setD.�/. For r 2 Ram.D.�//, if ! D f �1
� .r/, then there is a bijection g!�

from the D-set D.!/ to the set of non-special branches at r (in the D-set D.�/).

Let �0; : : : ; �m be vertices of the semilinear order T such that �0 < � � � < �m.

Then .�0; : : : ; �m/ is a chain of successors if we have �iC1 2 succ.�i / for each

i 2 ¹0; : : : ; m � 1º. Given the chain .�0; : : : ; �m/, there is a map g�m�0
, which we

define by induction, that maps each leaf of theD-setD.�m/ to a union of branches

at the ramification point f�0
.�1/ of D.�0/. Let a 2 D.�m/, and define

g�m�0
.a/ ´ ¹x 2 D.�0/ W 9y 2 g�m�m�1

.a/.x 2 g�m�1�0
.y//º:

The structure above, consisting of the labelled semilinear order and the maps

f� and g�� , will be called a (finite) tree of D-sets, and we use symbols �; � 0 to

denote such structures, and refer to T as the structure tree of � . We have not yet

described how to parse a tree of D-sets as a first-order structure.

The diagram in Figure 2 is an example of a tree of D-sets. Note that, in D.�/,

as indicated by the arrows, x lies in the special branch at r 0 and u lies in the special

branch at r , and in D.�/, Nx lies in the special branch at r1 and also in the special

branch at r 0
1.

Let �; � 0 be two trees of D-sets. An isomorphism between trees of D-sets is an

isomorphism between the corresponding two lower semilinear orders

�W .T;�/ ! .T 0;�/

together with, for every vertex � 2 T , a graph isomorphism  � from D.�/ to

D.�.�//. The maps  � are required to map the special branch at any ramifica-

tion point r to the special branch at  �.r/, and to commute with the maps f�

and g!� .
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D.!0/

NvNz

D.�0/

NwNz

�

! D f �1
� .r1/

� D f �1
� .r/

!0 D f �1
� .r 0

1/

�0 D f �1
� .r 0/

D.!/

NyNv

D.�/

r1r 0
1

Nx

Ny

Nz

Nv

D.�/

rr 0

x

y

z

w

u

v

Figure 2. Tree of D-sets

If � is a tree of D-sets with vertices � < � of the structure tree, then we say

that the D-set D.�/ omits the element u 2 D.�/ if there is no x 2 D.�/ such

that u 2 g��.x/. If � is an immediate successor of �, this means that u lies in the

special branch of the ramification point f�.�/ of D.�/.

We shall view a finite tree ofD-sets � as a first-order structure in a language L

which has a ternary relation L, two quaternary relations L0 and S , a 5-ary rela-

tion S 0, a 6-ary relation R and a 7-ary relation Q. The relations L and S capture

the special branch structure and the D-relations. The other relations are auxiliary;

they ensure that there is a robust notion of instances of S or L “happening in the

same D-set” and that an appropriate form of amalgamation holds. In the Fraïssé

limit, these other relations will be ;-definable without parameters in S and L. The

universe of the L -structure � will be the domain of the root D-set of � (i.e. the

universe is the set D.�/, where � as usual denotes the root of the structure tree),

and the relations are interpreted on D.�/ as follows.

(i) L.xIy; z/ holds in � if

(a) either x; y; z lie in distinct branches at node r of the root D-set D.�/, and the

branch containing x is special at r (Figure 3),
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r

x

y

z

Figure 3. L.xIy; z/

(b) or there is a D-set D.�/ with a ramification point r , and leaves Nx; Ny; Nz lying

in distinct branches at r with Nx lying in the special branch at r , such that

x 2 g��. Nx/, y 2 g��. Ny/, z 2 g��. Nz/ .

We say in (a) that D.�/ witnesses L.xIy; z/, and in (b) that D.�/ witnesses

L.xIy; z/. For example, in Figure 2, D.�/ witnesses L.xI z; w/ and D.�/ wit-

nesses L.xI z; v/. We use the semi-colon to distinguish the special branch in the

first argument, while there is symmetry between the other two arguments.

(ii) Let x; y; z; w 2 D.�/ be distinct. Then the relation S.x; yI z; w/ holds,

written � ˆ S.x; yI z; w/, if one of the following holds.

(a) In the root D-set, with universe denoted D.�/ and D-relation D�, we have

D�.x; yI z; w/.

(b) x; y; z; w lie in distinct non-special branches at node r of D.�/, and there

is some vertex � � f �1
� .r/ such that D.�/ contains distinct Nx; Ny; Nz; Nw such

that D�. Nx; NyI Nz; Nw/ holds in D.�/, and x 2 g��. Nx/, y 2 g��. Ny/, z 2 g��. Nz/,

w 2 g��. Nw/.

We say in (a) that D.�/ witnesses S.x; yI z; w/, and in (b) that D.�/ witnesses

S.x; yI z; w/.

Note. (1) It is easy to see that, given a tree of D-sets � and x; y; z 2 D.�/, the

relation L.xIy; z/ can be witnessed in at most oneD-set of � ; to see this, observe

that if it is witnessed inD-setsD.�/ andD.�/, then it cannot happen that� < � or

that � and � are incomparable. Likewise, if x; y; z; w 2 D.�/, then S.x; yI z; w/

is witnessed in at most one D-set of � . We omit the details.

(2) The relation S captures the D-relations; note that, unlike with D (see ax-

iom (D4)), with S , we do not allow equality among its parameters. We use the

semi-colon to reflect the symmetry between the first two arguments and the last

two.

(iii) L0.xIy; zIu/ holds in � if, in the D-set D.�/ witnessing L.xIy; z/, the

element u is omitted, that is, there is no Nu 2 D.�/ with u 2 g��. Nu/. We then say
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that the D-set D.�/ witnesses the relation L0.xIy; zIu/. We use the first semi-

colon as in L above, and the second one to distinguish the omitted element.

(iv) S 0.x; yI z; wI t / holds in � if in the D-set D.�/ witnessing S.x; yI z; w/,

the element t is omitted (in the same sense as in (iii)). Here the D-set D.�/ wit-

nesses the relation S 0.x; yI z; wI t /. Again, the second semi-colon indicates that

the last argument is distinguished.

(v)Q.x; yI z; w W pI q; s/ holds in � if there is someD-set in which the relations

S.x; yI z; w/ and L.pI q; s/ are both witnessed. We interpret this as S.x; yI z; w/

andL.pI q; s/ happen in the sameD-set (which witnessesQ.x; yI z; w W pI q; s/).

(vi) R.xIy; z W pI q; s/ holds in � if there is some D-set in which the relations

L.xIy; z/ and L.pI q; s/ are both witnessed. Again, we interpret this as saying

that the two L-relations happen in the sameD-set (and again, thisD-set witnesses

R.xIy; z W pI q; s/).

Remark 3.1. (1) By the definition above, the relations L0, S 0 cannot be witnessed

in the root D-set. Regarding the need for L0, S 0, Q, R, observe their role in the

proofs of Lemma 3.9, Lemma 3.10 (and the paragraph following its proof – these

lemmas underpin the amalgamation), Remark 3.4, and Lemma 4.7.

(2) When we say that one of the above relations holds in the tree of D-sets � ,

we mean it is witnessed in some D-set of � . We may thus view a finite tree of D-

sets as an L -structure whose universe is the set of leaves of the root D-set. From

now on, we use symbols like A;B;C;E; : : : (rather than �; � 0) for such finite L -

structures, and write �A for the corresponding tree of D-sets (which will be seen

in Lemma 3.7 to be determined up to isomorphism by A); we denote the structure

tree of �A by TA. Also, we write A < B if A is an L -substructure of B in the

sense of model theory. Occasionally, we write L¹x; y; zº, as an abbreviation for

L.xIy; z/ _ L.yI x; z/ _ L.zI x; y/, and we may say that L¹x; y; zº is witnessed

in a specific D-set.

Let D be the collection of all finite L -structures arising from finite trees of

D-sets as described above. If A 2 D , we write A also for its universe (which

will be the set D.�/, with corresponding graph-theoretic tree D.�/). In line with

earlier notation, the D-relation on the root D-set is denoted D�, or DA
� if the

underlying structure A is unclear. AD-set D.�/ of A may be denotedDA.�/ if A

is unclear from the context.

Lemma 3.2. Let A 2 D , and let x; y; z be distinct elements of A. Then,

(i) if x; y; z are distinct elements of A, then L¹x; y; zº holds in A, and

(ii) any substructure A0 of A of size at most 3 lies in D .
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Proof. (i) Let � be a vertex of the structure tree of A maximal such that there

are distinct Nx; Ny; Nz 2 D.�/ with x 2 g��. Nx/, y 2 g��. Ny/, and z 2 g��. Nz/. Then,

by maximality, one of Nx; Ny; Nz lies in the special branch at the ramification point

ram. Nx; Ny; Nz/, and hence D.�/ witnesses L¹x; y; zº.

(ii) Suppose first jA0j � 2. Then the elements of A0 do not determine any ram-

ification point of D.�/ (where D.�/ is the root D-set of A). It follows that the

structure on A0 corresponds to a tree of D-sets with just one vertex, with the cor-

responding D-set consisting just of the elements of A0 (with an edge between

them if jA0j D 2). If jA0j D 3 with A0 D ¹x; y; zº, then as in (i), we may suppose

A ˆ L.xIy; z/. Now A0 is a structure arising from a tree of D-sets with two ver-

tices � (the root) and its successor �. Here D.�/ has a ramification point r joined

to just the three leaves x; y; z with x special, and D.�/ consists of just an edge

joining the two nodes g�1
�� .y/ and g�1

�� .z/.

By Remark 3.4 below, we cannot replace 3 by 4 in Lemma 3.2 (ii).

Lemma 3.3. Let A 2 D , and let � be the root of TA.

(i) The relation D� on D.�/ satisfies the following: for all x; y; z; w 2 D.�/,

D�.x; yI z; w/ ” Œ...x D y/ _ .z D w// ^ ¹x; yº \ ¹z; wº D ;/

_ .x; y; z; w are all distinct ^ S.x; yI z; w/

^ .8t /.:S 0.x; yI z; wI t ///�:

(ii) If x; y; z 2 A, then L.xIy; z/ is witnessed in D.�/ if and only if

A ˆ L.xIy; z/ ^ 8t:L0.xIy; zI t /:

Proof. (i) We may suppose that x; y; z; w are distinct.

()) Suppose D�.x; yI z; w/. Then S.x; yI z; w/ holds, witnessed in the root

D-set. As D.�/ contains all elements of A and is the only D-set witnessing

S.x; yI z; w/, it follows that A ˆ .8t /:S 0.x; yI z; wI t /.

(() Suppose S.x; yI z; w/ ^ .8t /.:S 0.x; yI z; wI t // holds. For a contradic-

tion, we will assume that the D-set D.�/ witnessing S.x; yI z; w/ is not the root.

Then there is aD-setD.�/ with � < � in which x; y; z; w lie in distinct branches

Nx; Ny; Nz; Nw respectively at a ramification point r . As S.x; y; z; w/ is witnessed in

a higher D-set, none of x; y; z; w lies in a special branch at r . Since each ramifi-

cation point has a special branch, some t 2 A lies in the special branch at r . Then

S 0.x; yI z; wI t / holds, which is a contradiction.

(ii) This is immediate.
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r r 0

x z

y w

p

Figure 4. �C

Remark 3.4. The collection D does not have the hereditary property, that is, it

is not closed under substructure. For example, consider C 2 D with elements

x; y; z; w; p. Let r D ram.x; y; z/, r 0 ´ ram.x; z; w/, and suppose S.x; yI z; w/

holds, and L.xIy; z/ ^ L.xIy;w/ ^ L.xIy; p/ hold at r , all in the root D-set

D.�C / as in Figure 4. Let � ´ f �1
�C
.r/, and in D.�/, suppose that the relation

L.pIy; z/ is witnessed in the unique ramification point r 00. Also, let �0 ´ f �1
�C
.r 0/

and �1 ´ f �1
� .r 00/. The two labellingD-setsD.�0/ andD.�1/ each have just two

elements. Let A be the L -substructure of C induced on C n ¹xº. Then A … D ; in-

deed, ifA 2 D , then by Lemma 3.3 (i), S.p; yI z; w/must be witnessed in the root

D-set of A and p must be in the special branch at ram.p; y; z/ in this D-set, so

we have A ˆ Q.p; yI z; w W pIy; z/, contradicting the fact that

C ˆ :Q.p; yI z; w W pIy; z/:

Consider an L -structure A 2 D with structure tree TA with root �, and let � be

a successor of �. We define an L -structureA� whose domain is the set of leaves of

theD-setD.�/, that is, the set of non-special branches ofD.�/ at f�.�/. To define

the relations of A� , suppose first that Na; Nb; Nc 2 A� are distinct, and let a 2 g��. Na/,

b 2 g��. Nb/, and c 2 g��. Nc/. Then A� ˆ L. NaI Nb; Nc/ if and only if A ˆ L.aI b; c/.

It is easily checked that this is well-defined, i.e. independent of the choice of

a; b; c. The relations S;L0; S 0;Q;R are defined similarly on A� . If r D f�.�/,

we also sometimes write A� as Ar . If � is any vertex of TA, then T� is the subtree

of TA induced on ¹� 2 TA W � � �º. The structure tree of A� is just T� .

Given a structure tree T , we define the height h.T / of T to be the number

of vertices in the longest path from a leaf of T to the root �. If A 2 D , we put

h.A/ ´ h.TA/. Using the preceding paragraph and the lemma below, we often

argue inductively on h.T /.

Lemma 3.5. LetA 2 D with structure tree TA with root � with a successor �. Then

the following hold.

(i) A� is isomorphic to a substructure of A.

(ii) A� 2 D , with structure tree T� .
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(iii) h.T�/ < h.TA/.

(iv) jA� j < jAj.

Proof. All parts are elementary, and we omit the details.

Remark 3.6. It follows from the last lemma that the above construction can be iter-

ated for a successor of �. Thus, inductively, for any vertex � ¤ � of the structure

tree TA of A, there is a corresponding L -structure A�, and all parts of Lemma 3.5

hold with � replacing �. This is a convenient tool for inductive arguments.

Proposition 3.7. Suppose that �1; �2 are trees of D-sets with corresponding L -

structures A1; A2, and let �WA1 ! A2 be an isomorphism of L -structures. Then

� induces an isomorphism �W �1 ! �2 of trees of D-sets.

Proof. Let Ti be the structure tree of �i for i D 1; 2. We apply induction on h.T1/.

Let �1; �2 be the roots of T1; T2 respectively, and put �.�1/ D �2.

For the base case, suppose h.T1/ D 1. Then T1 has just the root �1, and D.�1/

has no ramification points, so has at most two leaves. Thus A1 consists of a set

of size at most 2 with none of the L -relations holding, and as � is an isomor-

phism, the same holds for A2. Hence T2 has one vertex �2, and � induces a unique

isomorphism T1 ! T2 and D.�1/ ! D.�2/.

For the inductive step, suppose m ´ h.T1/ � 2. By Lemma 3.3, � determines

an isomorphism ofD-structuresD.�1/ ! D.�2/ which preserves also the special

branch structure. This extends to a unique graph isomorphism (which we denote

by N�) D.�1/ ! D.�2/ taking the ramification points of D.�1/ to the ramification

points of D.�2/.

For each r 2 Ram.D.�1//, put �.f �1
�1
.r// D f �1

�2
. N�.r// to obtain a bijection

succ.�1/ ! succ.�2/. Let �1 be the successor of �1 corresponding to r and �2 the

successor of �2 corresponding to N�.r/. We claim that � induces an isomorphism

�� from the L -structure A�1
to the L -structure A�2

. Indeed, N� gives a bijection

D.�1/ ! D.�2/, and the fact that it is an isomorphism of L -structures follows

from the definition of the A�i
.

As h.A�1
/ < h.A/ (by Lemma 3.5 (iii)), it follows by induction that � induces

a unique isomorphism from the tree of D-sets corresponding to A�1
to that corre-

sponding to A�2
. This holds for all successors of �1, and the result follows.

3.1 One-point extensions

Fix an L -structure A 2 D . As a step towards proving the amalgamation property

for D , we will specify the possible forms of a one-point extension E D A [ ¹eº
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Figure 5. One-point extension: Type I

of A such that E 2 D and A is an L -substructure of E. We first describe some

one-point extensions.

Type I (Star-like). To obtain TE , which is the structure tree on the L -structure E,

from TA, we add a new root �E under the root �A of TA so that D.�E / is a star

with one ramification point (the centre) and non-special branches, each containing

a single leaf, in one-to-one correspondence with the leaves in the rootD-setD.�A/

ofA, and a special branch with single leaf e. We shall use the word star to describe

a tree of this form (a node connected to a finite collection of leaves). See Figure 3

for an example.

Since there is only one ramification point in D.�E /, it will have the form

f�E
.�A/, where �A is the immediate successor of �E . The D-set D.�E / is a star

whose centre is f�E
.�A/, where the branches (here identified with leaves) are

of the form g�A�E
.x/, x a leaf in D.�A/. The relations on A will also hold in

E ´ A [ ¹eº. Thus, if a; b; c 2 A andA ˆ L.aI b; c/, thenE ˆ L.aI b; c/; how-

ever, this is not witnessed in the root D-set of E, and indeed, E ˆ L0.aI b; cI e/.

Likewise, if a; b; c; d 2 A and A ˆ S.a; bI c; d/, then E ˆ S 0.a; bI c; d I e/.

Type II. Here we assume that the structure tree roots for the two structures A

and E are the same, denoted by �, and we add the new leaf e to the existing D-set
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Figure 6. One point extension: Type II (a)

DA.�/ of the root � of TA to obtain the rootD-setDE .�/ of E. We can do this in

two ways.

(a) Add a new leaf e adjacent to an existing ramification point r in DA.�/, with

the branch of e at r non-special. So the D-set DE .�/ corresponding to that

ramification point (i.e. with � D f �1
� .r/) gains a new leaf not in DA.�/,

namely g�1
�� .e/. This process iterates through the structure tree, so the defi-

nition is inductive on jAj.

(b) Create a new ramification point by adding a node on the midpoint of an ex-

isting edge in DA.�/, then add a leaf e at this node. Here we consider two

cases:

(i) e is the unique leaf of the special branch at this new ramification point;

(ii) e is not in the special branch at this ramification point.

In both cases, a new successor is added to the structure tree, but the D-set

labelling the new successor has just two endpoints, and hence there are no

modifications higher in the structure tree.

The following lemma is almost immediate, and we omit the proof.
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Lemma 3.8. If A 2 D and E is a one-point extension of A of Type I or Type II,

then E 2 D .

Lemma 3.9. IfA;E 2 D withA < E, and a; b; c; d 2 A are all distinct elements,

then DE
� .a; bI c; d/ ! DA

� .a; bI c; d/.

Proof. As a; b; c; d are distinct, Lemma 3.3 yields

DE
� .a; bI c; d/ H) S.a; bI c; d/ ^ .8t 2 E/:S 0.a; bI c; d I t /

H) S.a; bI c; d/ ^ .8t 2 A/:S 0.a; bI c; d I t /

H) DA
� .a; bI c; d/:

The next two lemmas yield that all one-point extensions A < E with A;E 2 D

have Type I or Type II.

Lemma 3.10. Suppose A;E 2 D with A < E, and there is no e 2 E such that

A [ ¹eº is a Type I extension of A. Then the root D-relation DA
� of A and the

relation DE
� .A/ induced on A by the root D-relation DE

� of E are the same.

Note. We do not here assume that jE n Aj D 1.

Proof. Let a; b; c; d 2 A, and assume DE
� .A/.a; bI c; d/. Then DE

� .a; bI c; d/.

We may suppose that a; b; c; d are distinct. By Lemma 3.9, DA
� .a; bI c; d/.

Conversely, let a; b; c; d 2 A be distinct, and suppose that DA
� .a; bI c; d/ but

:DE
� .A/.a; bI c; d/. Let r; r 0 be as in Figure 7 in DA.�/.

As A ˆ S.a; bI c; d/ and this is not witnessed in the rootD-set of E, it follows

from Lemma 3.3 that there is e 2 E n A such that E ˆ S 0.a; bI c; d I e/. We have

the picture in Figure 8 in DE .�/, with e special at the shown ramification point s.

This picture is a star, and we assume that A [ ¹eº is not a Type I extension of A.

This means that there must be some x 2 A (hence in E) witnessing that A [ ¹eº

is not a Type I extension of A, in particular, ensuring that the elements of A [ ¹eº

r r 0

a c

b d

Figure 7. DA
� .a; bI c; d/

s

a

c

b

d

e

Figure 8. DE
�
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do not form a star at s in DE .�/. We consider the various possible positions of x

with respect to a; b; c; d; e in DE .�/.

Case (1). Suppose x lies in the same branch at s as c (with a similar argument if

x lies in the same branch as a, b, or d ). Since

S.a; d I c; x/ ^ .8w 2 E/:S 0.a; d I c; xIw/

holds in E and hence in A, x must lie in the same branch as c at r 0 in DA.�/.

Put r 00 ´ ram.x; c; d/ (in DA.�/). Let x0 2 A be in the special branch at r 00.

We assume for convenience that A ˆ L.x0I c; d/ (other cases being similar). Now

Q.a; bI c; d W x0I c; d/ and Q.a; d I c; x W x0I c; d/ both hold in A, and hence both

hold in E, so S.a; d I c; x/ and L.x0I c; d/ are witnessed in the same D-set of E,

which must be the rootD-set (as S.a; d I c; x/ holds there). Likewise, S.a; bI c; d/

and L.x0I c; d/ are witnessed in the sameD-set ofE, so S.a; bI c; d/ is witnessed

in the root D-set of E, a contradiction.

Case (2). If x is in the same branch at s as the special branch containing e in E,

then we will see S 0.a; bI c; d I x/ holds in E and hence in A. This is impossible,

since we have DA
� .a; bI c; d/, so A ˆ S.a; bI c; d/ ^ .8t /:S 0.a; bI c; d I t /.

Case (3). Suppose neither of (1), (2) holds, but that (to ensure A [ ¹eº is not

a Type I extension of A) there exists x0 2 A in the same branch as x at s in

DE .�/ (distinct from the branches containing a; b; c; d; e). Since S.x; x0Iu; v/

(for any distinct u; v 2 ¹a; b; c; dº) holds in the root D-set of E, the same holds

in A. Let t be the unique ramification point of DA.�/ of form ram.x; x0; u/ for all

u 2 ¹a; b; c; dº. Also, let x00 2 A lie in the special branch at t . We shall suppose

L.x00I x; a/ (there are other similar cases, if say x00 D x). Now

Q.a; bI c; d W x00I x; a/

holds in A and hence in E, as does

Q.u; vI x; x0 W x00I x; a/

for any distinct u; v 2 ¹a; b; c; dº. Since such relations S.u; vI x; x0/ are witnessed

in the rootD-set ofE, so isL.x00I x; a/ and hence so also is S.a; bI c; d/, a contra-

diction.

Similarly, it is readily seen, if A;E 2 D with A < E, and there is no e 2 E n A

such that A < A [ ¹eº is of Type I, and a; b; c 2 A are distinct, then L.aI b; c/ is

witnessed in DA.�/ if and only if it is witnessed in DE .�/.

Lemma 3.11. IfA;E 2 D andE is a one-point extension ofA withE D A [ ¹eº,

then the extension is of Type I or of Type II.
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Proof. Assume that the extension is not of Type I. By Lemma 3.10, we have

DE
� .A/ D DA

� , and the root D-set DA.�/ of A is a substructure of DE .�/ (in

the language of D-relations), and hence we can identify DA.�/ with a subset of

DE .�/. Furthermore, for a; b; c 2 A, L.aI b; c/ is witnessed inDA.�/ if and only

if it is witnessed in DE .�/ by the above paragraph. Thus, either e is added (in

DE .�/) as a new non-special leaf to an existing ramification point r of DA.�/,

or e is added on a new ramification point r 0 of an edge of DA.�/. To prove the

extension is of Type II, we consider the following cases.

Case (i). Suppose that e is added as the unique leaf of a new non-special branch at

an existing ramification point r of DA.�/. By induction, as jAr j < jAj, Ar < Er

is an extension of Type I or II (recall the notation Ar ; Er from before Lemma 3.5).

It follows that A < E is a Type II extension.

Case (ii). Suppose that e is added on a new ramification point r 0 of an edge of

DA.�/. In this case, forE, �A obtains a new successor �r 0 whoseD-set has size 2.

The structure is otherwise unchanged, and E is an extension of A of Type II (b).

Lemma 3.12. LetA < E withA;E 2 D . Then there is an element e 2 E n A such

that A [ ¹eº 2 D .

Proof. We may suppose there is no e 2 E n A such that A < A [ ¹eº is a Type I

extension. Thus the relation DE
� induces DA

� on DA.�/ by Lemma 3.10.

Suppose there is an edge ofDA.�/ such thatE has a ramification point r on the

edge and there is e 2 E n A and a; b 2 A such that a; b; e lie in distinct branches

at r . We may suppose (by careful choice of e) that one of a; b; e lies in the special

branch at r in DE .�/. In this case, A [ ¹eº 2 D , a one-point extension of A of

Type II (b).

Suppose the configuration described in the last paragraph does not occur. Since

DE
� induces DA

� , there is a ramification point r of DA.�/ and some e 2 E n A

lying in a new non-special branch at r of DE .�/, with e adjacent to r in DE .�/.

Arguing inductively on jAj, we may choose e here (among elements of E lying

in a new branch at r) so that if E 0 ´ A [ ¹eº, then E 0
r 2 D and Ar < E

0
r is

an extension of Type I or II. Then E 0 2 D and is a one-point extension of A of

Type II (a).

The next lemma enables us to reduce proving amalgamation to the special case

of amalgamating one-point extensions.

Lemma 3.13. Assume A < E with A;E 2 D . Then we may enumerate E n A as

¹e1; e2; : : : ; enº so that, for each i D 1; : : : ; n, if Ei is the L -substructure of E

on A [ ¹e1; : : : ; eiº, then Ei 2 D .
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Proof. Let n ´ jE n Aj. We prove by induction on m that, for all m < n, there

are distinct e1; : : : ; em 2 E n A such that, for each i D 0; : : : ; m, the L -structure

Ei induced on A [ ¹e1; : : : ; eiº lies in D (where E0 D A).

The base case m D 0 is trivial. Assume that the result holds for m. Then, by

Lemma 3.12, there is some e 2 E nEm such that Em [ ¹eº 2 D . Put emC1 ´ e.

3.2 Amalgamation property

Fraïssé’s amalgamation technique builds a countable structure M as a union of

a sequence of finite structures, each itself an amalgam of substructures. We say that

a class C has the amalgamation property if, when A;E1; E2 2 C and fi WA ! Ei

are embeddings (for i D 1; 2), there is D 2 C and embeddings gi WEi ! D such

that g1 ı f1 D g2 ı f2. We say that C has the amalgamation property for one-

point extensions if the above holds whenever jE1 n f1.A/j D jE2 n f2.A/j D 1.

Lemma 3.14. Let C be a class of finite structures, and suppose that the following

hold:

(i) the class C has the amalgamation property for one-point extensions;

(ii) for anyA;E 2 C withA<E, we may writeE nAD ¹e1; : : : ; enº so that ifEi

is the induced substructure of E on A [ ¹e1; : : : ; eiº (for each i D 1; : : : ; n),

then Ei 2 C .

Then the class C has the amalgamation property.

Proof. See the last three paragraphs of the proof of [8, Lemma 3.7].

Lemma 3.15. The class D has the amalgamation property.

Proof. We will prove the amalgamation property for one-point extensions, and

the result then follows from Lemmas 3.13 and 3.14. Assume A < E1 and A < E2

withA;E1; E2 2 D such thatE1 n A D ¹e1º andE2 n A D ¹e2º. We may assume

that e1 and e2 are distinct, and we want to define a structureE onE1 [E2, induc-

ing each Ei , in such a way that E 2 D . Let Ti be the structure tree corresponding

to Ei with root �i , where i D 1; 2. We will consider three cases.

Case (i). Suppose that E1 and E2 are Type I extensions of A. Then, in the struc-

ture tree of E, place the root �2 beneath the root �1 in such a way that e2 is special

inDE .�2/ (i.e. in the special branch at the unique ramification point) with e1 non-

special, and in DE .�1/, the element e1 is special. Here E is a Type I extension

of E1.
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Case (ii). Suppose that one of the Ei , say E1 is of Type I, and E2 is of Type II.

Then define the structure tree ofE by placing the root �1 under �2 so thatDE .�1/

is a star in which e1 is special and e2 is not.

Case (iii). Suppose that E1 and E2 are of Type II over A. Then we will consider

the following four sub-cases.

(1) Assume that e1; e2 are added to the same ramification point r of D.�A/ to

get E1; E2 respectively. Keep them distinct in E. Then neither of e1; e2 is special

at r in the root D-sets DE1.�/ and DE2.�/. In the root D-set of E, e1; e2 will lie

in non-special branches at r . Then, higher up, two new end-points are added to the

same D-set D.f �1
�E
.r//, and we finish inductively since jAr j < jAj, so .E1/r and

.E2/r can be amalgamated over Ar .

(2) Suppose that e1 and e2 are added to distinct ramification points r1 and r2 of

D.�A/. Then, again, when building E, a leaf will be added to each of the D-sets

corresponding to these ramification points. The structures Er1
and .E1/r1

will be

isomorphic, and Er2
will be isomorphic to .E2/r2

.

(3) Suppose that the branch e1 is added to an old ramification point r ofD.�A/,

and e2 creates a new ramification point s, i.e.A < E1 is of Type II (a), andA < E2

has Type II (b). Then a new successor f �1
�E
.s/ has trivialD-set in E (i.e. with only

2 elements joined by an edge), and D.f �1
�E
.r// is isomorphic to D.f �1

�E1
.r//.

(4) Assume that both e1 and e2 create new ramification points, that is, both give

Type II (b) extensions. Then keep these ramification points distinct in E. Hence

D.�E / will have two new ramification points (compared to D.�A/), and �E has

two new successors with labelling D-sets of just two elements.

Lemma 3.16. The class D has the joint embedding property.

Proof. Take two finite structures A;B 2 D with n;m points respectively. Con-

sider their structure trees TA and TB with roots �A; �B respectively. Build a new

tree T with root � such that D.�/ contains two ramification points r and r 0 with

nC 1 branches at r , and mC 1 branches at r 0, with special branches as shown in

Figure 9. The resulting structure E will have Er isomorphic to A and Er 0 isomor-

phic to B .

rr 0
nC 1mC 1

Figure 9
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The class D is not closed under substructure (see Remark 3.4). However, the

following theorem now follows from Lemmas 3.15 and 3.16 by a fairly standard

version of Fraïssé’s theorem (see for example [15, Theorem 2.10]). The approach

is also described in [17], with the resulting Fraïssé limit described as weakly homo-

geneous.

Theorem 3.17. There is a unique countable L -structure M with the following

properties.

(i) M is a union of a chain of members of D .

(ii) Every member of D embeds in M .

(iii) If A;E 2 D and A < E and f WA ! M is an embedding of L -structures,

then there is an embedding gWE ! M which extends f .

(iv) Every isomorphism between substructures of M which lie in D extends to an

automorphism of M .

For the rest of this paper, M will denote the structure given by this theorem.

We will refer to condition (iv) of the theorem as semi-homogeneity of M , and

frequently just say that an automorphism exists, or that a tuple of M has a given

finite extension in M , “by semi-homogeneity”.

3.3 Oligomorphicity of M

In this section, we will show that the automorphism group of M is oligomorphic

and hence by Theorem 2.1 (the Ryll-Nardzewski theorem) thatM is!-categorical.

To ensure that oligomorphicity of Aut.M/ follows from Lemma 3.17, we need

to eliminate situations such as the following. Suppose it happened thatM has finite

substructuresEi (for i 2 N) in the class D , and suppose jE1j < jE2j < jE3j < � � �

and that Ei is a substructure of M of smallest size subject to lying in D and

containing ai ; bi . Then the pairs .ai ; bi / all lie in distinct orbits of Aut.M/ onM 2.

Our next lemma eliminates this possibility. First we note the following lemma,

a standard result easily proved by induction.

Lemma 3.18. Let T be a graph-theoretic tree with n leaves, where n � 3. Then T

has at most n � 2 ramification points.

Lemma 3.19. Define f W N ! N by

f .n/ D .n � 2/C .n � 2/.n � 3/C � � � C .n � 2/.n � 3/ � � � 2 D

n�3
X

iD1

.n � 2/Š

i Š
:

Then, for every finite A�M , there is F 2 D with A � F �M and jF j � f .jAj/.
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Proof. By Theorem 3.17,A lies in a finite substructureE ofM lying in D . We aim

to choose F inside E, of minimal size. Let � be the root of the structure tree of E,

let DE .�/ be the corresponding D-set, let DA.�/ be the induced D-set structure

on A, and let DE .�/, DA.�/ be the corresponding tree structures. Let n ´ jAj.

We shall build F as the union of a finite sequenceA D F0 � F1 � F2 � � � � � E.

We may suppose thatE is chosen minimally, that is, there is no proper substructure

E 0 of E with E 0 2 D and A � E 0 < E.

Let jAj D n. We have jRam.DA.�//j � n � 2 (by Lemma 3.18). We form F1

by adding to A, for each ramification point r of DA.�/ such that the special

branch of E at r contains no member of A, a member of that special branch. Then

jF1j � jAj C n � 2, and F1 contains a special branch at each such ramification

point r of DA.�/ and has no additional ramification points.

Next, for each such ramification point r of DA.�/, let � be the corresponding

successor in the structure tree of E. (We note here that, by minimality of E, it

cannot happen that the elements of A all lie in distinct non-special branches at

the same ramification point r of DE .�/, and thus indeed jDA.�/j < jAj D n.)

There are at most n � 2 such � , and theD-setDE .�/ of E contains at most n � 1

elements with representatives in A, giving a D-set DA.�/ of size at most n � 1,

so with at most n � 3 ramification points. We build F2 to ensure that it contains

a special branch at each ramification point of DA.�/ for each � . This requires

adding at most .n � 2/.n � 3/ points to F1, so jF2j � jF1j C .n � 2/.n � 3/.

We iterate this process. In order to build F3 from F2, we consider the at most

.n � 2/.n � 3/ ramification points of F2 (of D-sets of successors of �/ and the

corresponding .n � 2/.n � 3/ vertices � of height 3 in the structure tree of E.

Each D-set DE .�/ contains at most .n � 2/ elements with representatives in A,

so the corresponding D-set DA.�/ has at most .n � 4/ ramification points.

Continuing this process, we find that, for Fi , each D-set of height i (where

� has height 1) has at most n � 1 � i ramification points and that, for j � i ,

each D-set of Fi at height j has a special branch at each ramification point.

Thus, putting F ´ Fn�3, we find that F has a special branch at each ramifi-

cation point of each D-set, so F 2 D . Finally, we see inductively that, for each i ,

jFi j D jFi�1j C .n � 2/.n � 3/ : : : .n � .i C 1//. Thus jF j � f .jAj/, and the re-

sult follows.

Corollary 3.20. The structure M given in Theorem 3.17 is !-categorical and has

oligomorphic automorphism group.

Proof. Since the language L is finite, there are finitely many members of D of any

given finite size, and the result is immediate from Lemma 3.19 and Theorems 2.1

and 3.17.



26 A. I. Almazaydeh and D. Macpherson

4 Analysing the Fraïssé limit

Throughout this section, we let M be the structure built in Section 3 and put

G D Aut.M/. In the previous section, we defined finite trees of D-sets. Here we

show that M itself can be viewed as a “tree of D-sets”. We have to construct the

“structure tree” of M – in the language of model theory, we interpret it in M .

It will be a dense semilinear order without maximal or minimal elements, so in

particular, there will be no notion of “root” or of “successor”. The vertices of

the structure tree are labelled by classes of an equivalence relation on the set of

triples from M satisfying L, with the equivalence relation determined by the rela-

tion symbol R. Vertices of the structure tree are labelled by correspondingD-sets.

Given a vertex hxyzi of the structure tree, the elements of the correspondingD-set

are equivalence classes of a further equivalence relation Exyz defined on a subset

Jxyz of M .

4.1 Automorphisms of M

In Lemma 4.2, we collect some basic symmetry properties of G D Aut.M/. As

the language L consists of six relations, it is convenient first to show that the

relations L0; S 0;Q;R are ;-definable in M in terms of L; S .

Lemma 4.1. The following statements hold:

M ˆ .8x; y; z; w/.L0.xIy; zIw/

$ ŒL.xIy; z/ ^ L.wIy; z/ ^ L.wI x; z/ ^ L.wI x; y/

^ :S.x;wIy; z/�/; (4.1)

M ˆ R.xIy; z W pI q; s/

$ ŒL.xIy; z/ ^ L.pI q; s/

^ .8t /.L0.xIy; zI t / , L0.pI q; sI t //�; (4.2)

M ˆ S 0.x; yI z; wI t /

$
^̂

u;v2¹x;y;z;wº^u¤v

R.t I x; y W t Iu; v/

^
^̂

u;v;s2¹x;y;z;wº^L.uIv;s/

:R.t I x; y W uI v; s/

^ S.x; yI z; w/; (4.3)
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M ˆ Q.x; yI z; w W pI q; s/

$ ŒS.x; yI z; w/ ^ L.pI q; s/

^ .8t /.S 0.x; yI z; wI t / , L0.pI q; sI t //�: (4.4)

Proof. (4.1) ()) Suppose that L0.xIy; zIw/ holds in M . Pick a finite substruc-

ture A 2 D such that x; y; z; w 2 A < M . Then there is a D-set of A containing

x; y; z; w with w lying in the special branch at r D ram.x; y; z/, the ramification

point (so all of x; y; z; w lie in distinct branches at the same ramification point r

of this D-set). We may assume that this D-set is the root D-set D.�/ of A. So

L.wIy; z/ ^ L.wI x; z/ ^ L.wI x; y/ are witnessed in this root D-set. Then the

labelling D-set of the vertex f �1
� .r/ (or one above it) witnesses L.xIy; z/ and

omits w, and clearly A ˆ :S.x;wIy; z/, so M ˆ :S.x;wIy; z/.

(() In a finite structure A 2 D with x; y; z; w 2 A < M , suppose that

L.xIy; z/ ^ L.wIy; z/ ^ L.wI x; z/ ^ L.wI x; y/ ^ :S.x;wIy; z/:

We aim to show M ˆ L0.xIy; zIw/. We may suppose (by choosing A as small

as possible) that the root D-set D.�/ of A is the only one containing x; y; z; w

as distinct elements, that is, in any higher D-set of A, either some of these will

be omitted, or some element corresponds to a union of branches of the root D-set

containing more than one of x; y; z; w.

Suppose first that S.x; yI z; w/ is witnessed in D.�/ (the argument is similar if

S.x; zIy;w/ is witnessed inD.�/). Let r1 D ram.x; y; z/ and r2 D ram.x; z; w/.

See Figure 10. SinceL.wI x; y/, we see that x (and y) cannot be special at r1. And

sinceL.xIy; z/, we see thatw cannot be special at r1. Thus some other direction u

(as depicted) must be special at r1. Then, since z and w are identified in f �1
� .r1/,

we cannot have L.xIy; z/ ^ L.wI x; y/, a contradiction.

Thus x; y; z; w all lie in different branches at the same ramification point r

of D.�/. We may suppose further (by the minimality of the choice of A) that one

of x; y; z; w is special at r . Since L.wIy; z/ ^ L.wI x; z/ ^ L.wI x; y/, this must

r1 r2

x

y

z

w

u

Figure 10
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be w, with L.xIy; z/ witnessed in a higher D-set of A. Thus A ˆ L0.xIy; zIw/,

so M ˆ L0.xIy; zIw/.

(4.2) ()) Suppose that M ˆ R.xIy; z W pI q; s/, and let A 2 D be any fi-

nite substructure of M containing x; y; z; p; q; s. Then A ˆ R.xIy; z W pI q; s/,

so from the wayR was defined, L.xIy; z/ and L.pI q; s/must be witnessed in the

same D-set of A. It follows immediately that

A ˆ .8t /.L0.xIy; zI t / , L0.pI q; sI t //:

Since this holds for any such A, it holds in M .

(() Suppose that M satisfies

L.xIy; z/ ^ L.pI q; s/ ^ .8t /.L0.xIy; zI t / , L0.pI q; sI t //;

and let A 2 D be a finite substructure of M containing x; y; z; p; q; s. Then, as

M ˆ L.pI q; s/ ^ L.xIy; z/, theseL-relations are witnessed in distinct compara-

ble D-sets of A (here comparability is with respect to the structure tree ordering),

or incomparable D-sets of A, or in the same D-set of A.

If L.xIy; z/ and L.pI q; s/ are witnessed in distinct comparable D-sets of A,

say L.pI q; s/ below L.xIy; z/, then there is some t 2 A with

A ˆ L0.xIy; zI t / ^ :L0.pI q; sI t /;

a contradiction.

Suppose that L.pI q; s/ and L.xIy; z/ are witnessed in incomparable D-sets

of A. Then we may suppose (replacing A by a substructure if necessary) that,

in the root D-set D.�/ of A, there are distinct ramification points r1 and r2
such that x; y; z lie in distinct branches at r1 and p; q; s lie in distinct branches

at r2. We now see that, for all possible choices of special branches at r1 and r2,

A ˆ .9t /:.L0.xIy; zI t / , L0.pI q; sI t //, again a contradiction.

Thus L.pI q; s/ and L.xIy; z/ are witnessed in the same D-set of A, so we

have A ˆ R.xIy; z W pI q; s/, and hence M ˆ R.xIy; z W pI q; s/, as required.

(4.3) ()) AssumeM ˆ S 0.x; yI z; wI t /, and letA 2 D be a substructure ofM

containing x; y; z; w in distinct non-special branches of some ramification point r

of the root D-set, and t 2 A in a special branch at r . As A ˆ S 0.x; yI z; wI t /,

there is a D-set of A witnessing S.x; yI z; w/ and omitting t . In particular, we

have M ˆ S.x; yI z; w/.

In the rootD-set ofA, we see that
VV

u;v2¹x;y;z;wº^u¤vR.t Ix;y W t Iu;v/ holds

in A (and hence inM ). Also, L.t I x; y/ is witnessed in the rootD-set of A, which

cannot witness L.uI v; s/ for u; v; s 2 ¹x; y; z; wº. Thus

A ˆ
^̂

u;v;s2¹x;y;z;wº^L.uIv;s/

:R.t I x; y W uI v; s/;

and hence this holds also in M .
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(() Assume, for a contradiction, that the right-hand side holds and that

M ˆ :S 0.x; yI z; wI t /:

Then there is a finiteA 2 D with x;y; z;w; t 2A�M andAˆ :S 0.x;yIz;wI t /.

AsM ˆ S.x; yI z; w/, there is aD-set ofAwitnessing S.x; yI z; w/ and contain-

ing t . Careful analysis of the possible positions of t , and possible choices of special

branches, shows that

^̂

u;v2¹x;y;z;wº^u¤v

R.t I x; y W t Iu; v/ ^
^̂

u;v;s2¹x;y;z;wº^L.uIv;s/

:R.t I x; y W uI v; s/

cannot hold in A, so cannot hold in M .

(4.4) This is similar to (4.2).

It follows from Lemma 4.1 that G is the automorphism group of the reduct

of M to the language with just the relation symbols L and S .

Lemma 4.2. The group G in its action on M is

(i) 3-homogeneous,

(ii) 2-transitive,

(iii) primitive,

(iv) 2-primitive.

Proof. (i) Let A D ¹x; y; zº and A0 D ¹x0; y0; z0º be 3-element subsets ofM . Ob-

serve that the induced structures onA andA0 lie in D since any 3-element substruc-

ture of any member of D lies in D (Lemma 3.2 (ii)), andM is a union of a chain of

members of D . By Lemma 3.2 (i), we haveA ˆ L¹x; y; zº andA0 ˆ L¹x0; y0; z0º.

Without loss of generality, assumeA ˆ L.xIy; z/ andA0 ˆ L.x0Iy0; z0/. It is eas-

ily seen that the map gWA ! A0 with .x; y; z/g D .x0; y0; z0/ is an isomorphism.

Hence, by Theorem 3.17, g extends to some element of G.

(ii) Suppose x; y; x0; y0 2 M with x ¤ y and x0 ¤ y0. Let A be the induced

structure on ¹x; yº, and A0 that on ¹x0; y0º. Then A;A0 2 D by Lemma 3.2 (ii),

and the map gWA ! A0 given by .x; y/g D .x0; y0/ is an isomorphism. By Theo-

rem 3.17, g extends to an element of G, as required.

(iii) This follows from (ii).

(iv) Since G is 2-transitive, it remains to check that, for a 2 M , the group Ga

is primitive on M n ¹aº. Using semi-homogeneity, we see that if M ˆ L.aI b; c/,

thenG contains an element g with .a; b; c/g D .a; c; b/. It follows using 3-homo-
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geneity that Ga has 3 orbits on ordered pairs of distinct elements from M n ¹aº,

namely

¹.x; y/ W M ˆ L.aI x; y/º;

¹.x; y/ W M ˆ L.xI a; y/º;

¹.x; y/ W M ˆ L.yI a; x/º:

We must show that there is no proper non-trivial Ga-congruence on M n ¹aº. So,

for the fixed a, it suffices to show the following are not equivalence relations.

(a) Ea.x; y/ , L.aI x; y/ _ x D y. This relation is not transitive. Indeed, as-

sume L.aI x; y/ ^ L.aIy; z/. Working in a finite substructure of M lying in D ,

we may choose a; y; x to be in distinct branches distinct at a ramification point r

with a in the special branch, and z lying in the same branch as x as in Figure 11.

Therefore, :L.aI x; z/ ^ x ¤ z, so Ea is not a transitive relation.

(b) Fa.x; y/ , L.xI a; y/ _ x D y. This relation is not symmetric since we

have L.xI a; y/ ! :L.yI a; x/ (in any finite substructure and hence in M ). The

same argument also eliminates the relation L.yI a; x/ _ x D y.

(c) F 0
a.x; y/ , L.xI a; y/ _ L.yI a; x/ _ x D y. This is not transitive as, in

the configuration in Figure 12, we have F 0
a.x; y/ ^ F 0

a.y; z/ ^ :F 0
a.x; z/.

4.2 Construction

In this section, we aim to recover a notion of structure tree for M , using the re-

lations L and S . First, define K� ´ ¹.x; y; z/ 2 M 3 W M ˆ L.xIy; z/º. Recall

that ifA 2 D , thenA ˆ R.xIy; z W pI q; s/ if and only ifL.xIy; z/ andL.pI q; s/

are witnessed in the sameD-set ofA. It follows thatR defines an equivalence rela-

tion onK�, and the structure tree ofM will have universeK�=R, with a semilinear

order induced from substructures of M lying in D – see Lemma 4.10. We refer to

the equivalence classes of R on K� as vertices and denote the R-class containing

.x; y; z/ as hxyzi.
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We show next that each vertex hpqsi corresponds to a subset Jpqs of M and

that there is a naturalGhpqsi-invariant equivalence relationEpqs on Jpqs . We then

show in Lemma 4.7 that the quotient Jpqs=Epqs carries a definable D-relation,

thereby giving the claimed “tree of D-sets” structure for M .

Definition 4.3. Let p; q; s 2 M with M ˆ L.pI q; s/. Define

Jpqs ´ ¹j W R.pI q; s W j I q; s/ _R.pI q; s W pI j; s/ _R.pI q; s W pI j; q/º:

Lemma 4.4. Let x; y; z; p; q; s 2 M with M ˆ L.xIy; z/ ^ L.pI q; s/. Then

(i) M ˆ R.xIy; z W pI q; s/ , Jxyz D Jpqs .

(ii) Jxyz D Jpqs , hxyzi D hpqsi.

Proof. (i) ()) Assume M ˆ R.xIy; z W pI q; s/. To show that Jxyz � Jpqs , let

b 2 Jxyz , so we want b 2 Jpqs . There is a finite L -substructure A < M contain-

ing x; y; z; p; q; s; b withA 2 D . AsR is a symbol of L ,A ˆ R.xIy; z W pI q; s/,

so L.xIy; z/ and L.pI q; s/ are witnessed in the same D-set of A. But b 2 Jxyz ,

so we may suppose that R.xIy; z W bIy; z/ holds (other cases are similar). Thus

we may suppose L.xIy; z/ and L.pI q; s/ are witnessed in the root D-set of A.

By considering possible configurations in A, we see

R.pI q; s W bI q; s/ _R.pI q; s W pI b; s/ _R.pI q; s W pI b; q/;

so b 2 Jpqs .

(() Assume, for a contradiction Jxyz D Jpqs and :R.xIy; z W pI q; s/. Then

there is a finite substructure A 2 D such that x; y; z; p; q; s 2 A < M . Since we

have A ˆ :R.xIy; z W pI q; s/, L.xIy; z/ and L.pI q; s/ are witnessed in differ-

ent D-sets of A. We suppose first that these D-sets are comparable, so (without

loss of generality) there is t 2 A such thatA ˆ L0.xIy; zI t / and t lies in theD-set

of A witnessing L.pI q; s/. We see easily that t 2 Jpqs n Jxyz . On the other hand,

if L.pI q; s/ and L.xIy; z/ happen in two incomparable D-sets, then a lower D-

set contains p; q; s in distinct branches at a ramification point, r say, with t in the

special branch and x; y; z in distinct branches at another ramification point, r 0 say,

with t 0 in the special branch. There are several possible configurations to consider,

but in each case, we find Jxyz ¤ Jpqs .

(ii) This is immediate from (i).

Definition 4.5. Define a relation Epqs on Jpqs such that uEpqsv holds if and

only if

.8m/.8n/Œ.R.pI q; s W mIn; u/ $ R.pI q; s W mIn; v//

^ .R.pI q; s W uIm; n/ $ R.pI q; s W vIm; n//�:
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Observe that if Jxyz D Jx0y0z0 , then R.xIy; z W x0Iy0; z0/ by Lemma 4.4, and

it follows that Exyz D Ex0y0z0 . Indeed, if uExyzv, then

.8m/.8n/Œ.R.xIy; z W mIn; u/ $ R.xIy; z W mIn; v//

^ .R.xIy; z W uIm; n/ $ R.xIy; z W vIm; n//�;

so (as R is an equivalence relation on K�)

.8m/.8n/Œ.R.x0Iy0; z0 W mIn; u/ $ R.x0Iy0; z0 W mIn; v//

^ .R.x0Iy0; z0 W uIm; n/ $ R.x0Iy0; z0 W vIm; n//�;

so uEx0y0z0v. Also,Exyz is an equivalence relation on Jxyz , and is invariant under

G¹Jxyzº.

Definition 4.6. We define a quotient structure as follows.

(i) Given Jxyz andExyz , defineRxyz to be the quotient Jxyz=Exyz , so elements

of Rxyz are Exyz-classes of elements of M . We use the notation Œm� to refer

to the element of Rxyz containing the element m 2 M (when the underlying

equivalence relation Exyz is clear). We call such objects Œm� directions when

viewed as elements ofRxyz , and pre-directions when viewed as subsets ofM .

We shall refer to the subset Jxyz of M as a pre-D-set.

(ii) Let Œu�; Œv�; Œt �; Œs� 2 Rxyz . Write

Dxyz.Œu�; Œv�I Œt �; Œs�/ ” .Œu� D Œv� ^ Œu� … ¹Œs�; Œt �º/

_ .Œt � D Œs� ^ Œt � … ¹Œu�; Œv�º/

_Q.u; vI t; s W xIy; z/:

By considering finite substructures, it can be checked that any such subset Œm�

of M , as in (i) above, is a direction of a unique set Rxyz .

Lemma 4.7. The following statements hold.

(i) The relation Dxyz is well-defined on Rxyz .

(ii) If hxyzi D hx0y0z0i, then Dxyz D Dx0y0z0 .

(iii) The structure .Rxyz;Dxyz/ is a dense proper D-set.

(iv) The relation Dxyz is G¹Jxyzº-invariant.
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Proof. (i) Suppose that Œu�; Œv�; Œs�; Œt � 2 Rxyz are distinct, and u0 2 Œu�, v0 2 Œv�,

s0 2 Œs�, and t 0 2 Œt �. We must showDxyz.u; vI s; t/$Dxyz.u
0; v0I s0; t 0/, so sup-

pose M ˆ Dxyz.u; vI s; t/. We may assume M ˆ Q.u; vI s; t W xIy; z/, so must

show M ˆ Q.u0; v0I s0; t 0 W xIy; z/. Choose any large A 2 D with A � M con-

taining x; y; z; u; u0; v; v0; s; s0; t; t 0, so A ˆ Q.u; vI s; t W xIy; z/.

By the definition of Exyz and using symmetry conditions on the variables in R,

we have, in M and hence in A,

.8m8n/.R.xIy; z W uIm; n/ $ R.xIy; z W u0Im; n//;

.8m8n/.R.xIy; z W mI v; n/ $ R.xIy; z W mI v0; n//;

.8m8n/.R.xIy; z W mIn; t/ $ R.xIy; z W mIn; t 0//:

Consider the D-set D.�/ of A witnessing S.u; vI s; t/ and L.xIy; z/. If u; u0 cor-

respond to distinct leaves of D.�/, then there is some w 2 A so that L¹u; u0; wº

is witnessed in D.�/, say with L.uIu0; w/ witnessed in D.�/. Thus we have

A ˆ R.xIy; z W uIu0; w/, so A ˆ R.xIy; z W u0Iu0; w/, which is clearly impossi-

ble. Thus u; u0 correspond to the same leaf ofD.�/, and likewise, v; v0 correspond

to the same leaf of D.�/, as do s; s0, and also t; t 0. It follows that

A ˆ Q.u0; v0I s0; t 0 W xIy; z/;

so M ˆ Q.u0; v0I s0; t 0 W xIy; z/, as required.

(ii) As hxyzi D hx0y0z0i, we have R.xIy; z W x0Iy0; z0/. So if Dxyz.u; vI t; s/,

then M ˆ Q.u; vI t; s W xIy; z/, so any sufficiently large finite substructure A

of M satisfies R.xIy; z W x0Iy0; z0/ ^Q.u; vI t; s W xIy; z/, so satisfies

Q.u; vI t; s W x0Iy0; z0/;

so M ˆ Q.u; vI t; s W x0Iy0; z0/. Hence Dx0y0z0.u; vI t; s/ holds.

(iii) We want to show that conditions (D1)–(D6) of Definition 2.5 hold. Axioms

(D1), (D2), (D3), and (D4) follow immediately from corresponding conditions

on S , inherited via Q. For (D5), suppose that Œu�; Œv�; Œt � 2 Rxyz are distinct.

Pick A 2 D with x; y; z; u; v; t 2 A < M . We may suppose that L.xIy; z/ is wit-

nessed in the rootD-set of A. By semi-homogeneity, A has a Type II (b) extension

A < A0 D A [ ¹sº such that S.u; vI t; s/ is witnessed in the rootD-set of A0, with

A0 < M . Then M ˆ Q.u; vI t; s W xIy; z/, and we have Dxyz.u; vI t; s/.

The argument is similar for (D6). Suppose

Œu�; Œv�; Œt �; Œs� 2 Rxyz with Dxyz.Œu�; Œv�I Œt �; Œs�/;

and for convenience, we suppose them distinct. Pick

A 2 D with x; y; z; u; v; t; s 2 A < M:
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Then A ˆ Q.u; vI t; s W xIy; z/, and we may suppose L.xIy; z/ and S.u; vI t; s/

are witnessed in the root D-set of A. By semi-homogeneity A has a Type II (b)

extension A < A0 D A [ ¹aº < M , as depicted in Figure 13.

Then

A ˆ S.a; vI t; s/ ^ S.u; aI t; s/ ^ S.u; vI a; s/ ^ S.u; vI t; a/;

all witnessed in the root D-set of A, so in M , we have (putting D D Dxyz and

arguing via Q)

D.Œa�; Œu�I Œt �; Œs�/ ^D.Œu�; Œa�I Œt �; Œs�/ ^D.Œu�; Œv�I Œa�; Œs�/ ^D.Œu�; Œv�I Œt �; Œa�/;

as required.

(iv) This follows immediately from (ii) and Lemma 4.4 (ii).

Lemma 4.8. The following statements hold.

(i) If L.pI q; s/ holds in M , then there are x; y; z; w 2 M such that

M ˆ Q.x; yI z; w W pI q; s/:

(ii) If S.x; yI z; w/ holds in M , then there are p; q; s 2 M such that

Q.x; yI z; w W pI q; s/:

Proof. (i) First observe that the induced L -structure on ¹p; q; sº lies in D . Pick

A < M with A 2 D , containing distinct elements p0; q0; s0; x0; y0; z0; w0 such that

the relations L.p0I q0; s0/ and S.x0; y0I z0; w0/ are witnessed in the root D-set

of A. Then A ˆ Q.x0; y0I z0; w0 W p0I q0; s0/, so M ˆ Q.x0; y0I z0; w0 W p0I q0; s0/.

By 3-homogeneity (Lemma 4.2 (i)), there is g 2 G with .p0; q0; s0/g D .p; q; s/.

Put x ´ x0g , y ´ y0g , z D z0g , w ´ w0g . Then M ˆ Q.x; yI z; w W pI q; s/,

as required.

(ii) Similar to (i).

The notions of ramification point and branch (at a ramification point), as intro-

duced at the start of Section 3 for finiteD-sets, make sense also for infiniteD-sets,
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interpreted in the obvious way. We do not define them formally here, but refer

to [6]. A D-set .R;D/ determines a corresponding general betweenness relation

(see [6, Theorem 25.3]), whose elements form the set Ram.R/ of ramification

points of R. If r 2 Ram.R/, then r corresponds to a structural partition of R (in

the terminology of [6]), whose sectors are the branches at r (see [6, Section 24]).

We shall say that L.pI q; s/ is witnessed in Rxyz if M ˆ R.xIy; z W pI q; s/,

and likewise that S.u; vI t; s/ is witnessed in Rxyz if M ˆ Q.u; vI t; s W xIy; z/.

If L.pI q; s/ is witnessed in Rxyz , and the Exyz-classes of p; q; s lie in distinct

branches at the ramification point r , we say that the branch at r containing p=Exyz

is the special branch at r . Let Ram.Rxyz/ denote the set of ramification points of

Rxyz . If a1; : : : ; an 2 Rxyz (for n � 3/ lie in distinct branches at r 2 Ram.Rxyz/,

we write r D ram.a1; : : : ; an/.

We next show that the setK�=R carries a natural invariant partial order (a dense

semilinear order without endpoints) and so plays the role of structure tree for M .

The ordering is induced from finite substructures of M , using the next lemma.

If A 2 D with structure tree TA and x; y; z 2 A, then we write hxyziA for the

vertex � of TA such that D.�/ witnesses L.xIy; z/. We also write JA
xyz for the

subset of A corresponding to hxyziA in A (the analogue of Jxyz in M ); also,

EA
xyz denotes the equivalence relation on JA

xyz , defined as in Definition 4.5 (so

the EA
xyz-classes are the leaves of D.�/).

Lemma 4.9. Let A;B 2 D with A � B , and x; y; z; u; v; w 2 A with

A ˆ L.xIy; z/ ^ L.uI v;w/:

(i) We have hxyziA � huvwiA if and only if hxyziB � huvwiB .

(ii) If p; q 2 A, then

p; q 2 JA
xyz ” p; q 2 JB

x;y;z and pEA
xyzq ” pEB

xyzq:

(iii) If A � M and p; q 2 A, then

p; q 2 JA
xyz ” p; q 2 Jxyz and pEA

xyzq ” pExyzq:

Proof. By Lemma 3.13, we may suppose that B is a one-point extension of A.

Parts (i) and (ii) then hold by inspection of the different kinds of one-point exten-

sion, and (iii) follows from (ii).

Since M is a union of a directed system of members of D , it follows that there

is a well-defined relation � on K�=R, with hxyzi � huvwi if and only if there

is A 2 D with x; y; z; u; v; w 2 A � M such that hxyziA � huvwiA. Since finite
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structure trees are lower semilinearly ordered, it follows that .K�=R;�/ is also

a lower semilinear order. The following lemma justifies us in viewing it as the

structure tree of M . (As pointed out by Bradley-Williams and Truss, the defini-

tion of the corresponding ordering given in [8, Definition 5.2 (C)] – which in the

notation here would be hxyzi � huvwi , Jxyz � Juvw – is incorrect, but the

version given in (i) below works in [8] too.)

Lemma 4.10. The following statements hold.

(i) If huvwi; habci 2 K�=R, then huvwi � habci if and only if

8x; y 2 Jabc.:xEabcy ! .x; y 2 Juvw ^ :xEuvwy//:

In particular, � on K�=R is interpretable over ; in M and so is Aut.M/-

invariant.

(ii) If hxyzi; huvwi 2 K�=R are comparable with respect to �, then we have

hxyzi � huvwi , Jxyz � Juvw .

(iii) If hxyzi; hpqsi are incomparable elements of K�=R, then there is a ver-

tex habci such that habci D inf¹hxyzi; hpqsiº, so .K�=R;�/ is a meet-

semilattice.

(iv) The semilinear order .K�=R;�/ has no maximal or minimal elements and is

dense, that is, satisfies 8u8v.u < v ! 9w.u < w < v//.

Proof. (i) For the left-to-right direction, suppose huvwi � habci and x; y 2 Jabc

satisfy :xEabcy. Let A 2 D with x; y; a; b; c; u; v; w 2 A � M . By the defini-

tion of �, we have huvwiA � habciA, and by Lemma 4.9 (iii), x; y 2 JA
abc

with

:xEA
abc
y. It follows easily that x; y 2 JA

uvw with :xEA
uvwy and thus

x; y 2 Juvw ^ :xEuvwy:

For the converse, suppose that huvwi and habci are incomparable in K�=R. Pick

A 2 D with a; b; c; u; v; w 2 A � M . Then habciA and huvwiA are incompara-

ble in the structure tree of A. If � is the infimum of these vertices in TA and

r D ram.a; b; c/ and s D ram.u; v; w/ (in D.�/), then r ¤ s, so two of a; b; c,

say a; b, are in the same branch at s. Thus aEA
uvwb, and so aEuvwb, but clearly,

a; b 2 Jabc and :aEabcb.

(ii) This follows easily from (i).

(iii) ChooseA 2 D with x; y; z; p; q; s 2 A � M . Then hxyziA and hpqsiA are

incomparable by Lemma 4.9, and there are a; b; c 2 A with L.aI b; c/ such that

habciA D inf¹hxyziA; hpqsiAº. This property of being the infimum is preserved

in one-point extensions of A and hence holds in M .
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(iv) We first show that the semilinear order .K�=R;�/ has no least element. Let

hxyzi 2 K�=R. Let B be a minimal substructure of M in D containing x; y; z,

so B D ¹x; y; zº. Choose a structure A 2 D containing x0; y0; z0; p; q; s as de-

picted in Figure 14 (in the root D-set) so that L.x0Iy0; z0/ is witnessed in the

successor D-set D.�/ of the root D.�/ of A corresponding to the ramification

point r , and p; q; s are as shown in D.�/. Let �WAr ! B be the isomorphism

.x0; y0; z0/ 7! .x; y; z/.

We may suppose A � M . By semi-homogeneity, � extends to some g 2 G.

Clearly, hspqi < hx0y0z0i, and it follows that hsgpgqgi < hxyzi, as required.

A similar argument shows that K�=R has no greatest element under �.

The argument for density is a similar application of semi-homogeneity. Assume

hxyzi < hpqsi. We may find a finite substructureA ofM containing x;y;z;p;q;s

such that L.xIy; z/ is witnessed in the root D-set D.�/ of A, which has a rami-

fication point r at which p; q; s lie in distinct non-special branches. Using semi-

homogeneity, we may suppose that there are l; m; n 2 A such that p; q; s; l; m; n

all lie in distinct non-special branches at r , that L.l Im; n/ is witnessed in the suc-

cessorD.�/ corresponding to r and that p; q; s lie in distinct non-special branches

at a ramification point of D.�/. It follows that hxyziA < hlmniA < hpqsiA, and

hence hxyzi < hlmni < hpqsi, as required.

Our next task is to identify analogues for M of the maps f� and g�� for mem-

bers of D . The map fhxyzi determines a bijection between the set of cones of

.K�=R;�/ at hxyzi and Ram.Rxyz/, and this is the context of the following

lemma.

Lemma 4.11. Suppose x; y; z; p; q; s 2 M and hxyzi < hpqsi.

(i) Then ExyzjJpqs
refines Epqs .

(ii) Let p; q; s lie in distinct branches at the ramification point r of Rxyz , and let

u; v 2 Jpqs be Epqs-inequivalent. Then u; v lie in distinct branches at r .
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Proof. (i) This is immediate from Lemma 4.10 (i).

(ii) We prove the contrapositive, so suppose we have in Rxyz a diagram such as

in Figure 15.

Using Q and R, we see that if A 2 D with x; y; z; p; q; s; u; v 2 A � M , then

the D-set of A witnessing L.xIy; z/ has the same picture. Thus the D-set of A

witnessing L.pI q; s/ has u; v in the same leaf, and it follows via the definition of

Epqs that uEpqsv holds.

Now suppose hxyzi < hpqsi. Then, by the last lemma, p; q; s are inequivalent

moduloExyz , so there is a ramification point r ofRxyz such that theExyz-classes

of p; q; s lie in distinct branches at r . Put fhxyzi.hpqsi/ D r .

Lemma 4.12. The following statements hold.

(i) In the above notation, the value of fhxyzi.hpqsi/ depends only on the cone at

hxyzi containing hpqsi.

(ii) fhxyzi determines a bijection between the set of cones at hxyzi and the set of

ramification points of Rxyz .

Proof. (i) We show the first part via the following three claims.

Claim 1. If a; b 2 Jpqs are inequivalent modulo Epqs , then they lie in distinct

branches at r .

Proof. This is immediate from Lemma 4.11 (ii).

Claim 2. If hxyzi < hpqsi < hp0q0s0i, then fhxyzi.hpqsi/ D fhxyzi.hp
0q0s0i/.

Proof. In this situation, p0; q0; s0 are inequivalent modulo Ep0q0s0 and hence mod-

ulo Epqs (Lemma 4.11 (i)) so lie in distinct branches at r (by Claim 1).

Claim 3. If hpqsi and hp0q0s0i are incomparable but in the same cone at hxyzi,

then fhxyzi.hpqsi/ D fhxyzi.hp
0q0s0i/.

Proof. Pick p00; q00; s00 with

hxyzi < hp00q00s00i < hpqsi and hxyzi < hp00q00s00i < hp0q0s0i:

By Claim 2, fhxyzi.hpqsi/ D fhxyzi.hp
00q00s00i/ D fhxyzi.hp

0q0s0i/.



Jordan permutation groups and limits of D-relations 39

Part (i) follows.

(ii) To see that fhxyzi is surjective, let r 2 Ram.Rxyz/ and choose p; q; s 2 M

such that, modulo Exyz , they lie in distinct non-special branches at r . Then we

have hxyzi < hpqsi by considering finite substructures of M . It follows that

fhxyzi.hpqsi/ D r .

For injectivity, suppose hpqsi; hp0q0s0i 2K�=R, with hxyzi< hpqsi; hp0q0s0i.

Suppose that there is a finite A 2 D with x; y; z; p; q; s; p0; q0; s0 2 A < M such

that p; q; s and p0; q0; s0 meet at the same ramification point in the D-set of A in

which L.xIy; z/ holds. Then this holds in any A0 2 D with A < A0 < M (e.g.

consider a sequence of one-point extensions between A and A0). It follows by

semi-homogeneity that there are u; v;w 2 M with

hxyzi < huvwi; huvwi < hpqsi; huvwi < hp0q0s0i;

so hpqsi and hp0q0s0i lie in the same cone of K�=R at hxyzi.

Lemma 4.13. Let hxyzi < hpqsi, and let Œm� be a pre-direction of Rpqs and

r ´ fhxyzi.hpqsi/ 2 Ram.Rxyz/. Then there is a unique set t of branches of

Rxyz at r such that Œm� D
S S

t .

Proof. To clarify the notation, observe that
S

t is a set of directions of Rxyz and

that
S S

t is the corresponding subset of M .

Consider a finite structure A 2 D with x; y; z; p; q; s;m 2 A � M . Let �; �

be the vertices of the structure tree of A whose D-sets witness L.pI q; s/ and

L.xIy; z/ respectively, and let � label the root D-set of A, so � < � < �. Let r

be the ramification point of D.�/ corresponding to the cone at � containing �

(so we use the same symbol r in M and A). Now m is a leaf of D.�/ and

g��.m/ D
S

¹t1; : : : ; tnº for some branches t1; : : : ; tn of D.�/ at r . Each ti is

a set of leaves of D.�/, say

t1 D ¹u
.1/
1 ; : : : ; u.1/

m1
º

:::

tn D ¹u
.n/
1 ; : : : ; u.n/

mn
º;

so that

n
[

iD1

ti D t1 [ � � � [ tn D ¹u
.1/
1 ; : : : ; u.1/

m1
; : : : ; u

.n/
1 ; : : : ; u.n/

mn
º:

Now the subset of A corresponding to m is g��.m/ which equals

[

¹g��.u
.1/
1 /; : : : ; g��.u

.1/
m1
/; : : : ; g��.u

.n/
1 /; : : : ; g��.u

.n/
mn
/º:
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Since this holds for any A0 2 D with A < A0 < M , and branches of M at r arise

as unions of branches of the corresponding finite structures, the result follows.

Define ghpqsihxyzi.Œm�/ D t where Œm� D
S S

t as above. So ghpqsihxyzi is

a map from the directions of Rpqs to the power set of the set of non-special

branches at r . From the definition, we see that if Œm� ¤ Œm0�, then

ghpqsihxyzi.Œm�/ \ ghpqsihxyzi.Œm
0�/ D ;:

Lemma 4.14. The map ghxyzihpqsi depends only on hxyzi; hpqsi, not on the

choice of x; y; z; p; q; s.

Proof. The point essentially is that, in any finite structure

A 2 D with x; y; z; p; q; s;m 2 A < M;

the set t of branches depends just on the direction of m in the D-set witness-

ing L.pI q; s/ and on the map g�� , where � codes in A the D-set witnessing

L.pI q; s/, and � the D-set witnessing L.xIy; z/.

Proposition 4.15. The following statements hold.

(i) The group Ghxyzi is transitive on Ram.Rxyz/.

(ii) (a) The stabiliser Ghxyzi D G¹Jxyzº induces a transitive group on the subset

Jxyz of M .

(b) The group G is transitive on the semilinear order .K�=R;�/.

(iii) The group G¹Jxyzº induces a 2-transitive group on the set of directions of

Rxyz , i.e. is transitive on the set of pairs of distinct directions.

(iv) The groupG is transitive on the set X , where X D
S

Rxyz , the union of all

the sets of directions in the structure M .

(v) The group G¹Jxyzº is transitive on the set of non-special branches of Rxyz ,

and for each r 2 Ram.Rxyz/ and branch U at r , the groupG¹Jxyzº;U induces

a transitive group on U .

(vi) The equivalence relation Exyz is the unique maximal G¹Jxyzº-congruence

on Jxyz .
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Proof. (i) Assume r; r 0 are two ramification points of Rxyz and x; y; z and p; q; s

are triples lying in distinct branches at r; r 0 respectively with L.pI q; s/ witnessed

in Rxyz . We want to find some

g 2 Ghxyzi such that rg D r 0:

Now R.xIy; z W pI q; s/ holds. By 3-homogeneity, there is

g 2 G such that .x; y; z/g D .p; q; s/:

By Lemma 4.4, Jxyz D Jpqs so hxyzi D hpqsi, so g 2 Ghxyzi, and g preserves

the D-relation on Rxyz (Lemma 4.7 (iv)), so rg D r 0.

(ii) (a) Let u 2 Jxyz , so

R.xIy; z W uIy; z/ _R.xIy; z W xIu; z/ _R.xIy; z W xIy; u/

holds. Let r ´ ram.x; y; z/. To show the transitivity, we want to find g 2 Ghxyzi

such that ug D x. There are three cases to consider.

Case (1). If u is in the same branch as x at r in Rxyz , then L.xIy; z/, L.uIy; z/

are witnessed in Rxyz , and hence hxyzi D huyzi. By semi-homogeneity of G,

there is g 2G such that .u;y; z/g D .x;y; z/. As Jxyz D Juyz , by Lemma 4.4 (ii)

we have g 2 Ghxyzi.

Case (2). If x; y; z; u are in distinct branches at a ramification point r , then

L.xIy; z/ ^ L.xIu; y/ ^ L.xIu; z/

holds, and by semi-homogeneity, there exists w in the same branch as u at r such

that L.uIw; z/ is witnessed at r 0 ´ ram.u;w; z/ in the same D-set Rxyz , i.e.

R.xIy; z W uIw; z/ holds. Therefore, L.xIy; z/ ^ L.uIw; z/ holds, so there is

g 2 G such that .u;w; z/g D .x; y; z/. By Lemma 4.4, we have g 2 Ghxyzi.

Case (3). Suppose that u is in the same branch as z (the argument is the same if

u is in the same branch as y). If u is special at ram.u; y; z/, then there is some

g 2 G fixing y; z and taking u to x, and as Rxyz D Ruyz , the D-set is fixed

by g, so g 2 Ghxyzi. Otherwise, by semi-homogeneity, there is some w such that

L.uIw; y/ is witnessed inRxyz . Again, there is g 2G with .u;w;y/g D .x;y; z/,

as required.

(ii) (b) Let hxyzi; hpqsi 2 .K�=R;�/. Then M ˆ L.xIy; z/ ^ L.pI q; s/, so

by semi-homogeneity, there is g 2 G with .p; q; s/g D .x; y; z/. Then we have

hpqsig D hxyzi.

(iii) Let Œp� ¤ Œq� be distinct directions of Rxyz with

Œp� D p=Exyz; Œq� D q=Exyz;
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and put Œx� D x=Exyz , Œy� D y=Exyz . It suffices to show there is g 2 G¹Jxyzº

with .Œx�; Œy�/g D .Œp�; Œq�/. Choose s 2 M such that R.xIy; z W pI q; s/ holds –

this exists by semi-homogeneity. Using 3-homogeneity (Lemma 4.2 (i)), there is

g 2 G with .x; y; z/g D .p; q; s/. Since R.xIy; z W pI q; s/ holds, g fixes Jxyz

setwise, so g preserves Exyz , and so it fixes Rxyz setwise, and clearly, we have

.Œx�; Œy�/g D .Œp�; Œq�/.

(iv) This follows from (ii) (b) and (iii).

(v) Let U be the branch containing y at r ´ ram.x; y; z/ in Rxyz , and let

L.pI q; s/ be witnessed in Rxyz . Put r 0 ´ ram.p; q; s/, and let V be the branch

at r 0 containing q. It suffices to show that there is g 2 G¹Jxyzº with V g D U . But

this is immediate – we may choose any g with .p; q; s/g D .x; y; z/, as exists by

semi-homogeneity.

In order to prove the second assertion, with x; y; z; r; U as above, let w 2 U .

Then L.xIw; z/ is witnessed in Rxyz , and by semi-homogeneity, there is g 2 G

with .x; y; z/g D .x; w; z/. Clearly, g fixes U setwise.

(vi) Maximality of Exyz follows immediately from 2-transitivity of G¹Jxyzº on

Rxyz D Jxyz=Exyz , and this was proved in (iii).

It remains to prove that Exyz is the unique maximal G¹Jxyzº-congruence. To

see this, suppose E� is a G¹Jxyzº-congruence on Jxyz and E� 6� Exyz . Without

loss of generality, we may suppose xE�y. Let x0 2 Jxyz with xExyzx
0. Then

L.xIy; z/ ^ L.x0Iy; z/. It follows by semi-homogeneity that there is a g 2 G

with .x; y; z/g D .x0; y; z/. Then J
g
xyz D Jxyz , and as yg D y, g fixes E�.y/

setwise, so as xE�y, we have x0E�y. Thus x=Exyz �E�.y/. HenceExyz �E�,

and it follows that E� is universal, as required.

5 Proof of the main theorem

In this section, we prove that G D Aut.M/ is a Jordan group preserving a limit

of D-relations. The main work is in Section 5.1, where we first show that every

pre-direction is a Jordan set and then use Lemma 2.3 to identify other Jordan sets.

We then show that G does not preserve on M any structure of types (i)–(iii) in

Theorem 1.1. Finally, in Section 5.2, we prove that G satisfies the requirements of

Definition 2.6 to obtain our main result, Theorem 1.2.

5.1 Finding a Jordan set

Recall first that T D .K�=R;�/ is a lower semilinear order and meet semilattice.

We refer to it as the structure tree of M .
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Definition 5.1. A subset OU ofM is said to be a pre-branch if there are x; y; z 2 M

with L.xIy; z/ and a branch U in Rxyz such that

OU D ¹u 2 M W Œu� 2 U º D
[

¹Œu� W Œu� 2 U º;

that is, OU is the union of all Exyz-classes in the single branch U at some ramifica-

tion point r of theD-set .Rxyz;Dxyz/. In this situation, we say OU is a pre-branch

at the ramification point r .

Given aD-setRi ofM , we put ORi D
S

Ri , the union of the pre-directions (see

Definition 4.6) corresponding to directions of Ri , so ORi � M , and in the notation

of Section 4, ORxyz D Jxyz .

Fix a direction Œn� of M (so n 2 M ). Let hpqni be the unique vertex of the

structure tree of M , whose D-set Rpqn has Œn� as a direction (the uniqueness is

noted after Definition 4.6); then p; q … Œn�. Note that L.pI q; n/ is witnessed in

this D-set. Define

I ´ ¹i 2 T W i < hpqniº;

and for each i 2 I , let Ri be the D-set indexed by i . Let Di denote the cor-

responding D-relation Dxyz , where Ri D Rxyz . Then I carries a total order <

induced from T , where i < j , ORj � ORi . For each i 2 I , let ri D fi .hpqni/,

the ramification point of Ri corresponding to the cone (of the structure tree) at i

containing hpqni. By Lemma 4.14, there is a set Si of branches at ri such that

ghpqnii .Œn�/ D
S S

Si .

Since our goal is to show that Œn� is a Jordan set for G, we consider the induced

structure on Œn�, viewed as a pre-direction, i.e. as a subset of M . First, for each

i 2 I , there is an equivalence relation Fi on Œn� defined by

d1Fid2 ” d1; d2 lie in the same pre-branch of ORi at ri :

Also, for each i 2 I , let Ei be the equivalence relation Exyz (restricted to Œn�),

where Ri D Rxyz .

Lemma 5.2. Let i; j 2 I with i < j . Then Ei � Fi � Ej � Fj .

Proof. Take a particular pre-branch at ri in ORi lying in Œn�, say OUi . By the defini-

tion of the relation Fi , the pre-branch OUi is an Fi -class. It is clear that the relation

of being in the same pre-direction of ORi refines Fi , so Ei � Fi . Similarly, we

have Ej � Fj . To show that Fi � Ej , we see by Lemma 4.13 that if Œm� is a pre-

direction for someRj , where j 2 I with j > i , then Œm� is a union of pre-branches

of ORi at ri .
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Lemma 5.3. Given an Fi -class OUi , the intersection of the Ej -classes containing
OUi (for j > i) is just OUi .

Proof. We want to show that Fi D
T

j >i Ej . It is clear from Lemma 5.2 that Fi �
T

j >i Ej . Conversely, suppose u; v 2 Œn� with :uFiv. We want to find j 2 I

with j > i such that :uEj v. Let a 2 M lie in the special branch of Ri at ri
(so a … Œn�). Consider a finite structure A 2 D containing elements a0; u0; v0; w0;

s0; t 0; p0; q0; n0 in distinct branches at a ramification point r at the root D-set (with

a0 special) such that there is an L -isomorphism

.a0; u0; v0; p0; q0; n0/ ! .a; u; v; p; q; n/:

We choose A so that, also in a higherD-setD.�/ (below the oneD.�/ witnessing

L.p0I q0; n0/), we have L.w0I s0; t 0/, with u0; v0; w0; s0; t 0 again in distinct branches

at the ramification point determined by the cone at � containing �. We may sup-

pose A � M . By semi-homogeneity, there is g 2 G with

.a0; u0; v0; p0; q0; n0/g D .a; u; v; p; q; n/:

The relation L.w0g I s0g ; t 0g/ will be witnessed in a D-set Rj with j > i , and we

have :uEj v. (The role of p; q; p0; q0 here is to ensure j 2 I , that is, j < hpqni.)

Lemma 5.4. Let u; v1; : : : ; vm be distinct elements of Œn�. Then there is a greatest

i 2 I such that u is Ei -inequivalent to each of v1; : : : ; vm, and for such i , the

element u will be Fi -equivalent to at least one vj with j 2 ¹1; : : : ; mº.

Proof. Find i0 2 I with i0 < hpqni containing elements p; q; u; v1; : : : ; vm all

lying in distinct branches at the ramification point ri0
of the D-set Ri0

. Consider

finite A � M with A 2 D and p; q; u; v1; : : : ; vm lying in distinct branches at

a ramification point of the root D-set.

By considering the structure of A, we see that there is i with i0 < i < hpqni

such that, at ri , u is in the same branch as at least one of the vi , but in a distinct

direction to each. (Working in A, consider theD-sets in the structure tree between

the root and the D-set Rpqn, and the corresponding ramification points; there will

be a least D-set such that u lies in the same branch as some vj at the relevant

ramification point.)

Definition 5.5. For each i 2 I , define a relation Ci on
S

Si (so on the set of

directions of Ri lying in the branches of Si ) as follows: if Œx�; Œy�; Œz� 2
S

Si ,

then Ci .Œz�I Œx�; Œy�/ $ Di .Œx�; Œy�I Œz�; Œw�/ for any direction Œw� of Ri lying out-

side
S

Si .
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It is easily seen that, for each i 2 I , Ci induces a C -relation on each Fi -class

of Œn� (considered as a branch at ri , i.e. modulo Ei ). Furthermore, Ci is invariant

under G.M n
S S

Si /, or under the subgroup of G stabilising both Œn� � M and ORi

setwise.

Lemma 5.6. Let g be a permutation of M which is the identity on M n Œn� and,

for each i 2 I , preserves the equivalence relation Ei , the relations L and S

on Œn�, and the C -relation induced by Ci on each Fi -class of Œn� (modulo Ei ).

Then g 2 G.

Proof. By Lemma 5.3 and the assumption that g preserves the relations Ei , it

follows that g preserves each Fi jŒn� and hence eachFi . By Lemma 4.1, it is enough

to show that g preserves L and S on M . Below, in Part (A), we show that g

preserves L, and in Part (B), that it preserves S .

Part (A). To prove that g 2 G preserves L, we consider four cases.

Case (I). If x; y; z … Œn�, then as g is the identity on M n Œn�, we have

L.xIy; z/ $ L.xg Iyg ; zg/;

and likewise for the other orderings of ¹x; y; zº.

Case (II). Let x 2 Œn�, y; z 2 M n Œn�. Let R be the D-set in which L¹x; y; zº is

witnessed with x; y; z lying in distinct branches at the ramification point r of R.

We need to show that the map xyz 7! xgyz preserves L. We will consider the

possible cases based on where the D-set R witnessing L¹x; y; zº could be.

Sub-case (1). Assume that the D-set R is Rhpqni, and let L¹x; y; zº hold, wit-

nessed in R. Now x; xg lie in the same element of R, and y; z lie in two other

distinct elements of R, fixed by g. It is therefore immediate that xyz 7! xgyz

preserves L.

Sub-case (2). Assume that the D-set R D Ri is lower than Rhpqni (so i 2 I ).

Now L.xIy; z/ cannot be witnessed in this D-set at ri because x 2 Œn�, so x

cannot lie in the special branch at ri . However, possibly L.yI x; z/ is witnessed

at ri (likewise L.zI x; y/), and then, since xg 2
S S

Si (as xg 2 Œn�), the rela-

tion L.yI xg ; z/ holds.

Suppose that, as in Figure 16, L.xIy; z/ holds in Ri with x special at another

ramification point r 0
i which is not a ramification point of directions in

S

Si . Then,

again, because xg 2
S S

Si and since x and xg lie in the same branch at r 0
i , we

get L.xg Iy; z/. Similarly, if L.yI x; z/ holds at r 0
i (likewise for L.zI x; y/), then

x and xg will be in the same branch at r 0
i , and it is readily seen that L.yI xg ; z/

holds. It cannot happen that L¹x; y; zº is witnessed at r 0
i within

S S

Si since y; z

are not in
S S

Si , so would lie in the same branch at such r 0
i .
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Sub-case (3). Assume that the D-set R is higher than Rhpqni. Now the direction

containing x in R contains the whole of Œn�, so is fixed by g, as are y and z. It

follows that x; y; z and xg ; y; z satisfy the same L-relation.

Sub-case (4). Suppose the D-set R corresponds to the vertex k of the structure

tree with k incomparable with hpqni. Let i D inf¹hpqni; kº, so i 2 I . We may

suppose that the cone of k at i (in the structure tree) corresponds to the ramifi-

cation point r 0 of Ri ; then r 0 ¤ ri . Since L¹x; y; zº is witnessed in R, x; y; z lie

in distinct non-special branches at r 0. Hence, as y; z …
S S

Si , it follows that r 0

cannot be a ramification point of
S

Si , and we have, for example, Figure 17 inRi .

Now, x; xg lie in the same branch at r 0, so in the same pre-direction of R, so the

same L-relation holds among x; y; z and xg ; y; z.

Case (III). Let x; y 2 Œn� and z 2 M n Œn�.

Sub-case (1). Suppose that the D-set R is Rhpqni. The relation L¹x; y; zº is not

witnessed in Rhpqni because x and y are in the same direction in Rhpqni.

Sub-case (2). Suppose that the D-set R is lower than Rhpqni, say R D Ri for

some i 2 I . If :xFiy, then the relation L.xIy; z/ or L.yI x; z/ cannot be wit-

nessed at ri because neither x nor y can be special at ri . If L.zI x; y/ holds at ri ,

then L.zI xg ; yg/ is witnessed in Ri (for xg ; yg are in distinct branches at ri
because Fi is preserved on Œn�).

If xFiy and L.xIy; z/ is witnessed at r (Figure 18), then we want to see that

L.xg Iyg ; z/ holds (and likewise if L.yI x; z/ holds). There is t 2 Œn� such that

tFix ^ tFiy and L.xIy; t/ holds. Since g preserves L on elements of Œn�, we get

L.xg Iyg ; tg/, and then

L.xIy; z/ $ L.xIy; t/ and L.xg Iyg ; zg/ $ L.xg Iyg ; tg/

as g preserves Ci . Also, L.xIy; t/ $ L.xg Iyg ; tg/ as x; y; t 2 Œn�, so

L.xIy; z/ $ L.xIy; t/ $ L.xg Iyg ; tg/ $ L.xg Iyg ; zg/:

Sub-case (3). Suppose that the D-set R is higher than Rhpqni. Then L¹x; y; zº

cannot be witnessed in R because x; y are in the same direction of R.
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Sub-case (4). Assume R is the D-set of the vertex k incomparable with hpqni,

and put i D inf¹k; hpqniº. Then the cone of k at i corresponds to a ramification

point r 0 of Ri distinct from ri , and as x; y; z lie in distinct branches of Ri at r 0,

we must have that r 0 is a ramification point of Si , as in Figure 19.

Choose t as depicted, in the same branch as z at r 0 and the same branch as

x at ri . As g preserves L on Œn� and the C -relation on Fi -classes (considered

modulo Ei ), we have

L.xIy; z/ ” L.xIy; t/ ” L.xg Iyg ; tg/ ” L.xg Iyg ; z/;

and likewise for other permutations of ¹x; y; zº.

Case (IV). If x; y; z 2 Œn�, thenL.xIy; z/ $ L.xg Iyg ; zg/ follows immediately

by the hypothesis that g preserves L on Œn�.

Part (B). To prove that g preserves S , we argue as in Part (A).

Lemma 5.7. Each pre-direction Œn� is a Jordan set of G.

Proof. To show this, we define a group K � G which is transitive on Œn� and

fixes the complement M n Œn�. We construct K as an iterated wreath product of

groups of automorphisms of C -relations. The argument is similar to the proof of

[8, Proposition 5.6], but there is an imprecision there: the map � below is not

defined precisely in [8], leading to problems with the proof of [8, Claim 8]. The

approach given here works in [8] too.

Write Œn� D ¹ui W i 2 !º � M . For each u 2 Œn� and i 2 I , put

Œu�i ´ ¹x 2 M W xFiuº

(the pre-branch ofM at ri containing u), and define Ai .u/ ´ Œu�i=Ei (the branch

at ri containing u). In particular, for each i 2 I , let Vi WD Œu0�i=Ei , so we have

Vi D Ai .u0/. Let ei ´ u0=Ei 2 Vi , where u0=Ei denotes the Ei -class of u0.
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Define

� ´
°

f W I !
[

i2I

Vi W f .i/ 2 Vi for all i; supp.f / finite
±

;

where supp.f / D ¹i 2 I W f .i/ ¤ eiº.

We aim to find a system of maps �i
V WV ! Vi , where i 2 I and V ranges

through branches Ai .u/ for u 2 Œn�. Given such maps, define �W Œn� ! � by

�.u/.i/ D �i
Ai .u/.u=Ei / for all u 2 Œn� and i 2 I:

We shall define the maps �i
V so that � is a bijection. The definition of � is induc-

tive, done in parallel with the definition of the �i
V . As the base case, define �.u0/

so that �.u0/.i/ D ei for all i 2 I .

Suppose that �.u0/; : : : ; �.uk�1/ have been defined. We may suppose that each

map �i
Ai .ul / has been defined for all l < k and all i 2 I .

Let i.k/ be the largest i 2 I such that uk is Ei -inequivalent to ul for each

l < k. This exists by Lemma 5.4, and by that lemma, there is some l < k such

that ulFi.k/uk , so ulFiuk , that is, Ai .ul/ D Ai .uk/ for all i � i.k/. Now, by

assumption, �i
Ai .ul / has been defined for all i 2 I , so �i

Ai .uk/ has been defined

for all i � i.k/, but not for i < i.k/. For i < i.k/, choose gi 2 G such that

.Ai .uk//
gi D Vi and .uk=Ei /

gi D ei

(this exists since, by Proposition 4.15 (v), G is transitive on the set of non-special

branches and induces a transitive group on each branch). Then put

�i
Ai .uk/.u=Ei / D .u=Ei /

gi

for all i < i.k/ and u with uFiuk . Observe that the maps �i
Ai .ul / are now defined

for all l � k and all i 2 I .

Claim 1. With the maps �i
Ai .u/ so defined, we have �.uk/ 2 � for each k 2 !.

Proof. This is by induction on k. It is immediate that �.u0/ 2 �, so assume it

holds for all l < k. By construction, as �i
Ai .uk/ is a bijection Œuk�i=Ei ! Vi , we

have �.uk/.i/ 2 Vi . We must show supp.�.uk// is finite. There is l < k such that,

for i � i.k/, �.uk/.i/ D �.ul/.i/, so

supp.�.uk// \ ¹j 2 I W j � i.k/º D supp.�.ul// \ ¹j 2 I W j � i.k/º;

so by induction is finite. By construction, �.uk/.i/ D ei for all i < i.k/, and the

claim follows.
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Claim 2. �W Œn� ! � is a bijection.

Proof. To show that � is injective, suppose l < k. We must show �.ul/ ¤ �.uk/.

Pick i such that ukFiul , :ukEiul . Then Œuk�i D Œul �i , but Œuk�i=Ei ¤ Œul �i=Ei ,

so as Ai .uk/ D Ai .ul/,

�.uk/.i/ D �i
Ai .uk/.uk=Ei / ¤ �i

Ai .ul /.ul=Ei / D �.ul/.i/:

To see surjectivity, suppose for a contradiction that � is not surjective, and

let f 2 � n Range.�/ have minimal support, with supp.f / D ¹i1; : : : ; itº, where

i1 < � � �< it . Define f 0 2�, where f 0.i1/D ei1
, and f 0.j /D f .j / for all j ¤ i1.

By minimality of supp.f /, there is u 2 Œn�with �.u/D f 0. Let vD f .i1/ 2 Vi1
,

and let k be least such that uk lies in the Ei1
-class .�

i1

Ai1 .u/
/�1.v/.

To obtain a contradiction and thereby to prove surjectivity, it suffices to prove

�.uk/ D f . Certainly,

�.uk/.i1/ D �
i1

Ai1 .uk/
.uk=Ei1

/ D v D f .i1/:

For j > i1, we have �.uk/.j /D �j
Aj .uk/.uk=Ej /D �j

Aj .u/.u=Ej /D f .j /. Also,

i.k/ � i1, for otherwise, there is l < k such that ulEi1
uk , contradicting minimal-

ity of k. Hence �.uk/.j / D �j
Aj .uk/.uk=Ej / D .uk=Ej /

gj D ej D f .j / for all

j < i1, so indeed, �.uk/.j / D f .j / for all j .

For each i 2 I , let Hi be the group induced by G¹Vi º on Vi . For each triple

.i; g; h/, where i 2 I , gW .i;1/ !
S

j >i Vj with g.j / 2 Vj for all j , and h 2 Hi ,

define the function x.i; g; h/W� ! � as follows:

f x.i;g;h/.j / D

´

f .i/h if j D i and f j.i;1/ D g;

f .j / otherwise:

Now define K, the generalised wreath product, to be the subgroup of Sym.�/

generated by permutations x.i; g; h/ with i; g; h as above. By [16, Lemma 1], the

groupK is transitive on�. ThusK has an induced transitive action on Œn�, given by

ux D ��1..�.u//x/ for all x 2 K, u 2 U . (Note that we use Cameron’s notation

for the permutation groupK, as was also used in [8].) We extend this action to the

whole of M by putting vx D v for all v … Œn�.

Claim 3. In this action, K is a subgroup of Aut.M/.

Proof. It suffices to show that elements x.i; g; h/ as above are automorphisms

of M , and for this, we use Lemma 5.6. First, observe the following sub-claim.
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Sub-claim 1. For u; v 2 Œn�, and i 2 I , uEiv , �.u/.j /D �.v/.j / for all j � i .

Proof. If uEiv, then Aj .u/ D Aj .v/ for all j � i , so

�.u/.j / D �j
Aj .u/.u=Ej / D �j

Aj .v/.v=Ej / D �.v/.j /

for all j � i . Conversely, if :uEiv, then by Lemma 5.4, there is j � i such that

uFj v and :uEj v. Then Aj .u/ D Aj .v/, so

�.u/.j / D �j
Aj .u/.u=Ej / ¤ �j

Aj .v/.v=Ej / D �.v/.j /;

as required. G

Since x.i 0; g; h/ acts as a permutation in the single coordinate i 0, in its action

on �, it is clear that, for u; v 2 Œn� and i 2 I , we have �.u/.j / D �.v/.j / for

all j � i if and only if �.u/x.i 0;g;h/.j / D �.v/x.i 0;g;h/.j / for all j � i . Thus

uEiv if and only if ux.i 0;g;h/Eiv
x.i 0;g;h/, so the maps x.i 0; g; h/ preserve all the

equivalence relations Ei . Thus, by Lemma 5.3, the maps x.i 0; g; h/ also preserve

all the Fi .

For u; v;w 2 Œn�, put

�.u; v; w/ D Max¹i W u=Ei ; v=Ei ; w=Ei are all distinctº;

�.u; v; w/ D Max¹i W u=Ei ; v=Ei ; w=Ei are not all equalº:

Then �.u; v;w/ � �.u; v;w/, and �.u; v;w/D �.u; v;w/ if and only if there is i

(namely �.u; v; w/) such that u; v;w are Fi -equivalent but not Ei -equivalent.

Suppose �.u; v; w/ D �.u; v; w/ D i . Let Ci be as in Definition 5.5 with the

invariance properties noted there, and note that Ci induces a C -relation on Vi .

Then, since the map �i
Ai .u/ is induced by an element of G, we have

Ci .u=Ei I v=Ei ; w=Ei / $ Ci .�
i
Ai .u/.u=Ei /I�

i
Ai .v/.v=Ei /; �

i
Ai .w/.w=Ei //:

It follows that, under the assumption �.u; v; w/ D �.u; v; w/ D i , the fact that

Ci .u=Ei I v=Ei ; w=Ei / holds depends just on �.u/.i/, �.v/.i/, �.w/.i/. Simi-

larly, the fact thatL.uI v;w/ holds depends just on �.u/.i/, �.v/.i/, �.w/.i/. And

if u; v;w; z are all Fi -equivalent but Ei -inequivalent, the fact that S.u; vIw; z/

holds depends just on �.u/.i/, �.v/.i/, �.w/.i/, and �.z/.i/. We call this phe-

nomenon tail-independence.

Sub-claim 2. The groupK preserves the C -relation induced by Ci on the branches

at ri .

Proof. Suppose u; v;w lie in the same Fi -class but distinct Ei -classes, so

�.u; v; w/ D �.u; v; w/ D i;
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and assume Ci .uI v;w/ holds in this branch. Let x D x.i 0; g; h/ 2 K. If i 0 > i ,

then

�.u/.i/ D �.ux/.i/; �.v/.i/ D �.vx/.i/; �.w/.i/ D �.wx/.i/;

soCi .u
xI vx; wx/ by tail-independence. If i D i 0, thenCi .u

xI vx; wx/ holds since

the action of x in the i -th coordinate is induced by an element of GVi which

preserves the C -relation on Vi . If i 0 < i , then Ci .u
xI vx; wx/ holds by tail-inde-

pendence. G

Sub-claim 3. The groupK preserves theL-relation and S -relation on the branches

at ri . That is, if �.u; v; w/ D �.u; v; w/ D i , then for x 2 K, we have

L.uI v;w/ ” L.uxI vx; wx/;

and similarly for S .

Proof. This is similar to Sub-claim 2. G

Sub-claim 4. The group K preserves L on Œn�.

Proof. Let u; v;w 2 Œn� be distinct with L.uI v;w/. By Sub-claim 3, we may sup-

pose i D �.u; v; w/ < �.u; v; w/. Thus two of u; v;w are Fi -equivalent and the

other Fi -inequivalent to these. We suppose uFiv and :uFiw (the other cases are

similar). Pick z 2 Ai .u/ with Ci .zIu; v/, as shown in Figure 20. Then, for x 2 K,

L.uI v;w/ ” L.uI v; z/
by Sub-claim 3

(HHHHHHH) L.uxI vx; zx/ ” L.uxI vx; wx/

(since x preserves the relations Ej ; Fj and C ). G

Sub-claim 5. The group K preserves S on Œn�.

Proof. Let u; v;w; z 2 Œn� be distinct. Let i be greatest such that u=Ei , v=Ei ,

w=Ei , z=Ei are distinct. Then at least two of u; v;w; z are Fi -equivalent. If all

are Fi -equivalent, thenK preserves any S -relation among these by Sub-claim 3. If

just three of u; v;w; z are Fi -equivalent, then K preserves any S -relation among

them by the proof of Sub-claim 4. If say uFiv and :uFiw ^ :uFiz, then as K

preserves Fi , if x 2 K, we have uxFiv
x ^ :uxFiw

x ^ wxFiz
x . We now see

S.u; vIw; z/ ^ S.ux; vxIwx; zx/, as required. G
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By the sub-claims, the conditions of Lemma 5.6 are satisfied, completing the

proof of Claim 3

It follows that Œn� is a Jordan set for G.

Remark 5.8. In the above proof, in view of the way the group K is built from the

groups Hi , it follows that, for each ri and branch Vi at ri , the group G.M nŒn�/;¹Vi º

induces the whole group induced by G¹Vi º on Vi .

Proposition 5.9. Each pre-branch is a Jordan set for G in its action on M .

Proof. Let R be a D-set of M , and let U be a branch of R at a ramification

point r , with corresponding pre-branch OU � M . Pick z lying in a pre-branch at r

other than OU . We may choose a sequence .ri W i 2 N/ of ramification points which

is coinitial in U , that is, for each ramification point r 0 in U , there is i 2 N such

that, for all j � i , rj lies between r and r 0. We may suppose in addition that riC1

lies between ri and r for each i and that z lies in the special branch at ri for

each i (Figure 21). For each i , there is a union Ti of pre-branches at ri which is

a pre-direction of a higher D-set. We may choose the Ti so that, for each i , ri is

a ramification point of one of the branches of TiC1.

It follows that Ti � TiC1 for each i and that
S

i2N
Ti D OU . Since pre-direc-

tions are Jordan sets by Lemma 5.7, each Ti is a Jordan set, so OU is a Jordan set

by Lemma 2.4.

Recall from Definition 4.6 that, given a D-set R of M , the corresponding pre-

D-set is the union of the predirections of R.

Lemma 5.10. Each pre-D-set ORi is a Jordan set for G.

Proof. Consider two distinct ramification points r1; r2 ofR. Let Ur1
be the branch

at r1 which includes r2, and let Ur2
be the branch at r2 containing r1. We know by
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Proposition 5.9 that the corresponding pre-branches are Jordan sets and they form

a typical pair; hence, by Lemma 2.4, their union is a Jordan set and is the whole

pre-D-set.

Lemma 5.11. Let s 2 M . Then there is a Gs-invariant C -relation on M n ¹sº.

Proof. Consider all the pre-D-sets that contain s and the pre-branches OU in these

pre-D-sets that do not contain s, with the property that s lies in the special branch

at the ramification point at which U is a branch. Let K be this collection of pre-

branches. The elements of this collection are all Jordan sets (by Proposition 5.9).

Now we check that K satisfies [3, Lemma 2.2.2 (i)–(v)], applied to Gs acting

on M n ¹sº.

(i) and (ii) are trivial, that is, each element of K has size greater than 1, and K

is Gs-invariant.

(iii) K has no typical pair (Definition 2.3 (a)). First, suppose that OU ; OV 2 K

are pre-branches of the same D-set. Since OU ; OV both omit the element s of this

D-set, it is immediate that OU ; OV do not form a typical pair.

Next, suppose OU ; OV 2 K are pre-branches of distinct but comparable D-sets

R and R0 respectively with R0 below R. We may suppose that R lies in a cone

of the structure tree corresponding to the ramification point r of R0 and that V is

a branch at the ramification point r 0 of R0. If r D r 0, then OU is a union of pre-

branches at r 0 omitting s, so contains OV or is disjoint from OV . If r lies in the

branch at r 0 containing s, then again, OU either contains OV or OU \ OV D ;. If r is

a ramification point lying in OV , then OU � OV . And if r lies in a branch at r 0 other

than V or that containing s, then OU \ OV D ;.

Finally, suppose that OU and OV are pre-branches of D-sets R1; R2 labelling in-

comparable vertices �1; �2 of the structure tree. Let � ´ inf¹�1; �2º, and let R be

the D-set of �, and suppose Ri corresponds to the ramification points ri of R for

i D 1; 2. Thus OU and OV correspond to unions of pre-branches at r1 and r2 respec-

tively of R, omitting s. Note that s lies in both R1 and R2, and hence also in R.

If, say, r2 is a ramification point of U , then r1 is not a ramification point of V ,

(otherwise, s 2 OU [ OV ), and OV � OU ; likewise with r1; r2 reversed. Alternatively,

r2 is not a ramification point of OU , and r1 is not a ramification point of OV , and in

this case, OU \ OV D ;.

(iv) We must show that, given distinct u; v 2 M n ¹sº, there is a member of

K containing u; v. Choose a D-set R such that the pre-D-set OR contains u; v; s

in distinct pre-directions. There is a ramification point r at R such that s lies in

the special pre-branch at r , and u; v lie in the same other pre-branch OU at r . Then
OU 2 K , and it contains u; v.
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(v) We show that, given distinct u; v 2 M n ¹sº, there is a member of K con-

taining u but not v. Choose a D-set R such that OR contains u; v; s in distinct

pre-directions, meeting at ramification point r . There is a ramification point r 0 in

the branch at r containing u such that the branch at r 0 containing s is special. Let
OU be the pre-branch at r 0 containing u. Then OU 2 K , and it contains u but not v.

Now define a ternary relation Cs such that, for every x; y; z 2 M n ¹sº, the

relation Cs.xIy; z/ holds if and only if .9U 2 K /.y; z 2 U ^ x … U/. Then Cs

is a Gs-invariant C -relation by [3, Lemma 2.2.2].

Lemma 5.12. There is no G-invariant separation relation on M .

Proof. Choose a configuration in M as depicted in Figure 22, in some D-set. By

semi-homogeneity, there is g 2 G inducing .x/.y/.z/.uv/. It is easily seen that

a permutation ofM with such cycle structure cannot preserve a separation relation

on M .

Lemma 5.13. There is no G-invariant Steiner system on M .

Note. We use the idea of [8, proof of Lemma 6.5].

Proof. For a contradiction, suppose there is a G-invariant Steiner n-system onM .

Let s1; : : : ; snC1 be distinct elements of a block B of the Steiner system. Since

we may choose a D-set in which all si lie in different branches at a ramification

point, there is a pre-branch V containing snC1 and omitting s1; : : : ; sn. Let t 2 V .

Since V is a Jordan set, there is g 2 G.M nV / with s
g
nC1 D t . As g fixes s1; : : : ; sn,

it fixes setwise the unique block B containing s1; : : : ; sn, so as snC1 2 B, also

t 2 B, that is, V � B.

Let s� be an element of M n B (hence not in V ), and let B
0 be the block con-

taining s1; : : : ; sn�2; snC1; s
�. As jB0j � nC 1, there is s�� 2 B

0 distinct from

s1; : : : ; sn�2; snC1; s
� with s�� … B, so as V � B, then we have s�� … V . But

s1; : : : ; sn�2; s
�; s�� are all in B

0, so determine B
0. So, as snC1 2 V \ B

0, by the

above argument using the Jordan property of V , we obtain V � B
0. So we have

V � B \ B
0, a contradiction as V is infinite and jB \ B

0j D n � 1.
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Lemma 5.14. There is no G-invariant D-relation on M .

Proof. Suppose for a contradiction that there is a G-invariant D-relation D de-

fined on M . Fix x; y; z0 2 M . Find u1 2 M n ¹x; y; z0º with D.u1; z0I x; y/.

Note that, in the argument below, we should not confuseD with the variousD-sets

in M coded by the structure tree.

Find a D-set R1 of M containing u1; z0; x; y in distinct branches at the same

ramification point r1, and pick v1 2 M lying in the pre-branch at r1 contain-

ing z0, withL.z0I v1; x/witnessed in thisD-set. See Figure 23. Let z1 2 M n OR1.

Choose h1; k1 2Gz0;z1
with .x; v1/

h1 D .v1; x/ and .u1; v1/
k1 D .v1; u1/ – these

exist by semi-homogeneity.

In the D-relation on M , consider the regions P;Q;R; S as depicted in Fig-

ure 24 (here x 2 R, u1 2 S , z0 2 P ).

Let supphh1; k1i denote the set of elements of M moved by some element of

the subgroup hh1; k1i of G generated by h1 and k1. If say v1 2 R, then we see

that R [ S � supp.k1/ � supphh1; k1i. If v1 2 S , then

R [ S � supp.h1/ � supphh1; k1i:

If v1 2Q, then R � supp.h1/ � supphh1; k1i, and S � supp.k1/ � supphh1; k1i.

Finally, if v1 2 P , then R; S � supp.h1/ � supphh1; k1i. Thus, wherever v1 lies,

R [ S � supphh1; k1i, so as h1; k1 fix z1, so z1 … R [ S . Thus z1 2 P [Q.

Since D.u1; z0I x; y/, y 2 R, so we have the picture in Figure 25.

z0y

z1x

Figure 25
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Now we iterate this argument with .z0; x; z1/ in place of .z0; x; y/. Pick

u2 2 M n ¹x; z0; z1º with D.u2; z0I x; z1/:

Find a D-set R2 of M containing u2; z0; x; z1 in distinct branches at the same

ramification point r2, and pick v2 2 M lying in the pre-branch at r2 containing

z0, with L.z0I v2; x/ witnessed in this D-set. Let z2 2 M n OR2. By semi-homo-

geneity, there are h2; k2 2 Gz0;z2
with .x; v2/

h2 D .v2; x/, .u2; v2/
k2 D .v2; u2/.

Let x; z0; u2; P
0;Q0; R0; S 0 replace x; z0; u1; P;Q;R; S above. Then we see that

z2 2 P 0 [Q0, and thus the D-relation on M satisfies the picture in Figure 26.

Observe that, as z1 … OR1 and z2 … OR2, we have

L.z1I x; z0/ ^ L.z2I x; z0/ ^ L.z2I x; z1/ ^ L.z2I z0; z1/:

Thus, by semi-homogeneity, there is g 2 Gz1;z2
inducing .x; z0/. Such g does not

preserve the D-relation on M , a contradiction.

5.2 Proof of the main theorem

In this section, we show that G D Aut.M;L; S/ is an infinite primitive Jordan

group preserving a limit of D-relations (Definition 2.6).

We may view M as an L -structure, or as a structure in just the language with

symbols L and S , since, by Lemma 4.1, the other L -symbols are ;-definable in

terms of L and S .

Let OR be a pre-D-set with D-set R, let H ´ G.M n OR/, and let E be the equiv-

alence relation on OR corresponding to being in the same direction (the equiv-

alence relation identified in Definition 4.5). Let D be the induced D-relation

on R D OR=E.

Lemma 5.15. In the above notation,

(i) H preserves E and the relation D,

(ii) H is transitive on OR,

(iii) H is 2-transitive but not 3-transitive on R,

(iv) E is the unique maximal H -congruence on OR.
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Proof. (i)H preserves E asH < G¹M n ORº, which preserves E as noted after Def-

inition 4.5. Also, the assertion that H preserves D follows from Lemma 4.7 (iv).

(ii) This follows from Lemma 5.10.

(iii) Fix x0 2 OR, and let x0=E denote the E-class of x0. We show that Hx0=E

is transitive on R n ¹x0=Eº. Let u; v be E-inequivalent elements of R n ¹x0º.

Choose a ramification point r such that there is a branch U at r containing u=E,

v=E and omitting x0=E. It is known that OU is a Jordan set (pre-branches are

Jordan sets), so there is g 2G.M n OU / <H with ug D v, and hence .u=E/g D v=E.

However, H is not 3-transitive, for if u; v; w 2 OR and they meet at a ramification

point r with L.uI v;w/, there is no element of H inducing .u=E; v=E/.w=E/.

(iv) The invariance of E follows from (i), and its maximality from (iii). For the

uniqueness, suppose E� is an H -congruence on OR and there are u; v 2 OR with

:uEv and uE�v. Since pre-directions are Jordan sets, for v0 2 OR if v0Ev, there

is g 2 H fixing M n .v=E/ pointwise with vg D v0. As ug D u, g fixes E�.u/,

so vE�v0, so v=E � v=E�, so E� contains E properly, hence is universal by

maximality of E.

Theorem 5.16. G preserves a limit of D-relations on M .

Proof. Let G D Aut.M/. Then G is an infinite Jordan group acting on M . Let

T be the structure tree of M (so T D .K�=R;�/, as identified in Lemma 4.10).

Let J be a maximal chain from T . Then J is linearly ordered by �. Let Rj be

the D-set indexed by j for j 2 J . Then, by Lemma 4.10 (ii), for i; j 2 J , we

have i < j , ORj � ORi . Thus . ORj W j 2 J / is a strictly increasing chain of sub-

sets of M , where the ordering under inclusion is the reverse of that induced from

the index set J . Let ORj be the pre-D-set corresponding toRj , letHj ´ G.Mn ORj /,

and let Ej be the unique maximal Hj -congruence on ORj as in Lemma 5.15 (iv).

Then ¹Hj W j 2 J º is an increasing chain of subgroups of G, with the ordering

under inclusion reversed from that of J . We must check conditions (i)–(viii) in

Definition 2.6.

(i) This follows from (ii) and (iv) in Lemma 5.15.

(ii) This is (i) and (iii) in Lemma 5.15. Note that, since pre-branches and pre-

directions are Jordan sets of G, branches are Jordan sets of each .Hj ; Rj /, so the

latter are Jordan groups.

(iii) It is clear that
S

. ORi W i 2 J / D M .

(iv) Let H ´
S

j 2J Hj . Then H is a Jordan group on M since each Rj is

a Jordan set forH . The groupG is not 3-transitive since it preserves the relation L

(and L.uI v;w/ ! :L.vIu;w/); hence H is not 3-transitive.

To show that H is 2-primitive on M , first observe a point from Lemma 5.7.

In the proof of that lemma (see also Remark 5.8), if Œn� is a pre-direction of the
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D-set labelled by the vertex jn, then for each j < jn, there are a D-set Rj and

ramification point rj such that Œn� D
S S

Sj for some set Sj of branches at rj . It

follows from that proof that, for each branch U 2 Sj at rj , the pointwise stabiliser

of the complement of Œn� induces GU on U .

Now let x0 2 M , and let � be a non-trivial Hx0
-congruence on M n ¹x0º. We

must show that � is universal. Pick distinct u; v 2 M n ¹x0º with u ¤ v. Choose

j 2 J such that x0; u; v lie in distinct pre-directions of Rj . Let B be the �-class

containing u. For a contradiction, we suppose that � is not universal, so may sup-

pose that B does not contain each pre-direction of Rj other than that of x0. In

particular, by (iii) and Lemma 5.7, it follows that B is a proper subset of ORj omit-

ting at least two pre-directions, including that of x0.

Let r be a ramification point of Rj such that u; v lie in the same pre-branch
OU at r , and x0 in a different pre-branch. Let C be the C -relation induced on

the corresponding branch U at r . Suppose there are distinct u0; v0; w0 2 OU such

that C.u0=Ej I v0=Ej ; w
0=Ej / and u0�w0. Let V be the largest branch in U con-

taining v0; w0 and omitting u0. Then the pre-branch OV is a Jordan set, so there is

g 2 G.M n OV / < Hx0
with .u0; w0/g D .u0; v0/. As g fixes u0, it follows that v0�w0.

Thus B \ ORj is a pre-branch ofRj , the union of a nested sequence of pre-branches

of Rj , or a union of more than one pre-branch at some fixed vertex. By choosing

j sufficiently low in the structure tree, we may assume that the last one holds, i.e.

B \ ORj is the union of more than one pre-branch at a ramification point rj of Rj .

Pick a ramification point r� of Rj such that elements of B and x0 lie in dis-

tinct pre-branches at r� with the pre-branch containing elements of B non-special,

and that containing x0 special. There is a pre-direction Œn� which is a union of

pre-branches at r� including the pre-branch OV at r� containing B, and exclud-

ing that containing x0. Now, by the observation above (i.e. Remark 5.8), since

G.M nŒn�/ � H , H induces the full group GV on V . In particular, using semi-

homogeneity there is a ramification point r between r� and rj such that Hx0
con-

tains an element hwith uh D u and rh
j D r . It follows that B

h � B, contradicting

that B is a block of Hx0
.

(v) Ej j ORi
� Ei if i > j , by Lemma 5.2.

(vi) We claim that
T

.Ei W i 2 J / is equality. Let u; v 2 M be distinct. By 2-

transitivity of G, there is a D-set R such that u; v lie in distinct directions of R.

Choose j 2 J such that the correspondingD-setRj labels a vertex of the structure

tree below that of R. Then u; v lie in distinct directions of Rj , so :uEj v.

(vii) Given g 2 G, choose an initial segment I of J which lies in the com-

mon part of J and J g . Let i0 2 Ig�1

� J g�1

\ J . Then, for any i < i0, we have

ig < i
g
0 and so ig 2 I . Thus ig D j for some j 2 J . Hence g�1Hig D Hj and

R
g
i D Rj .

(viii) This is by Lemma 5.11.
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Theorem 5.17. There are a ternary relation L and a quaternary relation S on

a countably infinite set M such that if G ´ Aut.M;L; S/, then G is oligomor-

phic, 3-homogeneous, 2-primitive but not 3-transitive or 4-homogeneous on M ,

and is a Jordan group preserving a limit of D-relations on M , and not preserving

any of the structures of types (i)–(iii) in Theorem 1.1.

Proof. This is by Corollary 3.20, Lemmas 4.2, 5.12, 5.13, 5.14 and Theorem 5.16.

The groupG is not 4-homogeneous as some but not all quadruples satisfy S under

some ordering. Note that G cannot preserve a linear or circular order or a linear

betweenness relation since it does not preserve a separation relation,G cannot pre-

serve a C -relation since it does not preserve a D-relation, and G cannot preserve

a semilinear order or general betweenness relation since it is 2-primitive.

6 Further questions

We have a number of questions around the construction in this paper, its compan-

ion in [8], and the exact statement of Theorem 1.1 which was proved in [3]. We

also have questions concerning the flexibility of our construction, and how it fits

in the developing theory of homogeneous and !-categorical structures.

Problem 6.1. Axiomatise a concept of .L; S/-structure. The idea here is to iden-

tify a set, probably finite, of axioms for a ternary relation L and quaternary rela-

tion S , from which the basic combinatorics of Sections 2 and 3 can be derived.

In particular, it should be possible from the axioms to interpret in any .L; S/-

structure a semilinear order (the “structure tree”), a family of D-sets in bijection

with the vertices of the semilinear order, a concept of special branch at a ramifica-

tion point of aD-set, the maps f� associating cones at the vertex � of the structure

tree with ramification points of the associated D-set D.�/, and the corresponding

maps g�� . There is need for an analogous axiomatisation of the corresponding

ternary relation (also denoted by L) in [8] – there is an initial discussion of this in

the last section of that paper. This should also be done for limits of Steiner systems.

Problem 6.2. Sharpen Theorem 1.1 above (the main result of [3]), and its proof

there, so that, in case (iv), the notion of limit of betweenness or D-relations (and

possibly of Steiner systems) is replaced by the concept identified in Problem 6.1.

At the very least, it should be possible to replace the total order I in Definition 2.6

by an invariant semilinear order, with a corresponding modification of the proof

of Theorem 1.1.

Problem 6.3. Clarify the connection between a limit of D-relations and a limit

of general betweenness relations. For example, is the structure constructed in [8]
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interpretable in the structure constructed in this paper (a question asked by Peter

Cameron)? Note that any D-relation interprets a general betweenness relation.

Problem 6.4. Show that the groupG D Aut.M/ constructed in Section 3 does not

preserve a limit of betweenness relations or Steiner systems on M . Is it maximal-

closed, i.e. maximal subject to being a closed proper subgroup of Sym.M/?

In his PhD thesis [10], David Bradley-Williams initiated a construction of a

limit of betweenness relations based on a discrete rather than a dense semilin-

ear order. This has been developed much further in joint work in preparation of

Bradley-Williams and Truss.

Problem 6.5. Carry out a programme analogous to that of Bradley-Williams and

Truss, but for limits of D-relations rather than betweenness relations. Can the be-

tweenness relations and D-sets in these structures be replaced by other kinds of

relational structures?

Problem 6.6. With G D Aut.M/ as in this paper, let nk.G/ be the number of

orbits of G on the set of k-element subsets of M . Find the asymptotic growth rate

of the sequence .nk.G//.

Regarding the last problem, we know by the main theorem of [23] that nk.G/ is

bounded below by an exponential function. There are very few known examples of

oligomorphic primitive permutation groups for which the growth is bounded above

exponentially. Most of these examples are associated with treelike structures.

There is a well-known connection between valued fields and treelike struc-

tures. For example, given a field F equipped with a non-trivial valuation map

vWF ! � [ ¹1º, where � is an ordered abelian group, there is aC -relation on F ,

invariant under addition and multiplication by non-zero elements, given by

C.xIy; z/ ” .v.x � y/ < v.y � z//I

see for example [22]. The well-known graph-theoretic tree on which SL2.Qp/

acts, as described by Serre [25, Chapter II], is associated with this. There is a D-

relation on the projective line PG1.F / defined by puttingD.x; yI z; w/ if and only

if the cross ratio Œx; yI z; w� lies in 1C M, where M is the maximal ideal of the

corresponding valuation ring – see [6, Theorem 30.4]. It is also well known that the

set of all valuations on a field is lower semilinearly ordered under reverse inclusion

of the corresponding valuation rings. This suggests the following problem.
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Problem 6.7. Show that the structureM in this paper, or more generally an .L; S/-

structure as in Problem 6.1, “lives” on a field, in the sense that the structure tree

can be identified with a set of valuation rings of the field.
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