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2-D DOA Estimation of Incoherently Distributed

Sources Considering Gain-Phase Perturbations in

Massive MIMO Systems
Ye Tian, Member, IEEE, Wei Liu, Senior Member, IEEE, He Xu, Shuai Liu, Member, IEEE, and Zhiyan Dong

Abstract—In massive multiple-input multiple-output (MIMO)
systems, accurate direction-of-arrival (DOA) estimation is im-
portant for the base station (BS) to perform effective down-
link beamforming. So far, there have been few reports on
DOA estimation considering gain-phase perturbations in massive
MIMO systems. However, gain-phase perturbations indeed exist
in practical applications and cannot be ignored. In this paper,
an efficient method for two-dimensional (2-D) DOA estimation
of incoherently distributed (ID) sources considering array gain-
phase perturbations is proposed for massive MIMO systems.
Firstly, a shift invariance structure is established in the subspace
framework, and a constrained optimization problem is formu-
lated to estimate the nominal azimuth and elevation DOAs as well
as gain-phase perturbations with closed-form expressions, under
the assumption that some of the BS antennas are well calibrated;
secondly, the corresponding angular spreads are obtained with
the aid of the estimated gain-phase perturbations. Theoretical
analysis and an approximate Cramér-Rao bound are also pro-
vided. An improved estimation performance is achieved by the
proposed method as demonstrated by numerical simulations.

Index Terms—2-D DOA estimation, incoherently distributed
sources, gain-phase perturbations, massive multiple-input
multiple-output (MIMO), partially calibrated.

I. INTRODUCTION

MASSIVE or large-scale multiple-input multiple-output

(MIMO) is an enabling technology for the fifth-

generation (5G) cellular network, and has received increasing

attentions in recent years [1]. A massive MIMO system

typically is equipped with hundreds of antennas at each base

station (BS), and can provide much higher degrees of free-

dom (DOFs) to enhance capacity, link reliability and energy

efficiency of a wireless communication system given a fixed

bandwidth [2]-[4]. According to the realistic transmission en-

vironment as well as restricted antenna installation conditions,
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two-dimensional (2-D) massive MIMO systems have been

demonstrated by fitting a large number of antenna elements

at the BS [5]. In addition to the advantages mentioned above,

massive MIMO can offer other benefits, such as reduced

latency, simplified multiple access layer and robustness against

jamming signals [6].

The advantages/benefits of the massive MIMO technique

cannot be fully exploited without accurate DOA estimation,

since accurate DOA knowledge is crucial for the BS to perform

effective downlink beamforming of pilot symbols to help

estimate the channel gains required for signal detection [7].

In addition, the performance of DOA estimation in a wireless

communication system also characterizes the achievable rates

and the design of an optimal power allocation scheme [8]. As

the massive MIMO system is more likely to be implemented

in two dimensions in practice [5], some 2-D DOA estimation

algorithms for massive MIMO systems have been investigated

in recent years, which can be roughly divided into two

categories. The first category is based on the point source

model, where the basic assumption is that the energy of each

source is concentrated at discrete directions or each scattering

cluster generates a single propagation path between BS and

mobile station. Examples in this category include the tensor-

MODE based algorithm [9], the ESPRIT or unitary ESPRIT

algorithms [10]-[15], the root-MUSIC algorithm [16] and the

time-frequency MUSIC algorithm [17].

The second category is built on a distributed source model,

which assumes that one scattering cluster corresponds to

multiple propagation paths. This category can be further

classified into two subcategories, i.e., 2-D DOA estimation

of coherently distributed (CD) sources and incoherently dis-

tributed (ID) sources. Compared with the point source model,

the distributed source model is more appropriate for cellular

wireless communication systems due to the effect of multi-

path propagation [18]. The difference between CD sources

and ID sources lies in their different channel models. CD

sources correspond to slowly time-varying channels, whereas

ID sources correspond to rapidly time-varying channels. For

DOA estimation of CD sources, both subspace based and

sparse reconstruction based algorithms have been proposed

by extending the approaches based on the point source model

[19]-[23]. Although some of the above algorithms are designed

for 1-D DOA estimation of CD sources, they can be easily

extended to the 2-D case. However, for ID sources, it is

rather complicated since the signal components span the whole

observation space. Nevertheless, several 2-D localization algo-
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rithms for ID sources were also introduced from the subspace

theory perspective [24]-[29]. The algorithms presented in [24]-

[26] can provide good estimation performance, by employing

multi-dimensional optimization or search. However, due to

their high computational complexity, these algorithms are not

suitable for practical real-time massive MIMO implemen-

tations [28], [30]. To reduce computational complexity, an

ESPRIT-based approach was investigated [27], which can lead

to closed-form solutions without spectral search. Based on

[27], low-complexity beamspace-based algorithms for uniform

rectangular arrays (URAs) and uniform circular arrays (UCAs)

were proposed in [28] and [29], respectively.

All the methods mentioned above assume that the steering

vector of the antenna array is known. However, there are

unknown array perturbations (such as gain-phase perturba-

tions, mutual coupling and array geometry errors) in practice,

and they can significantly degrade the performance of DOA

estimation algorithms [31]-[33]. Although there have been

many algorithms for DOA estimation in the presence of array

perturbations [34]-[37], most of them are based on the point

source model. Moreover, some of these algorithms have a

very high computational complexity and cannot be used for a

practical massive MIMO system. Recently, an algorithm based

on the ESPRIT technique for 1-D DOA estimation of CD

sources with unknown mutual coupling was proposed [38], but

it cannot be extended to ID sources and 2-D DOA estimation

since it relies on a special structure of array covariance matrix.

There is a clear gap in literature for 2-D DOA estimation of

ID sources with array perturbations.

In this paper, the problem of 2-D DOA estimation for ID

sources with array perturbations in massive MIMO systems

is addressed, where the array gain-phase perturbations mainly

caused by imperfect amplifier and phase synchronization (or

more specifically, caused by phase noise of the local oscillator

[39], [40], the capacitor mismatch [41] and errors in down-

sampling due to clock drifting by the local oscillator [42]) are

considered, and the other array perturbations (whose influence

and calibration will be a topic of our further research) are

assumed to have been compensated in some way. Given the

fact that it is typically difficult to calibrate the whole large-

scale array, while a relatively small part of such an array can

be easily calibrated [43], [44], the partly calibrated uniform

rectangular array (URA) is considered here. Based on the

ESPRIT and constrained least squares techniques, the 2-D

nominal DOAs, their related angular spreads and the gain-

phase perturbations can be jointly estimated in closed-form

expressions, which is a computationally efficient way and suit-

able for practical real-time massive MIMO implementations.

Notice that the robust versions of ESPRIT against array gain-

phase perturbations have been proposed in the literature [45],

[46]. However, they are all established on the point source

model and uniform/nonuniform linear arrays, and cannot deal

with our considered scenario. The main contributions of this

paper are listed as follows.

1) To the best of our knowledge, it is the first time to

address the problem of 2-D DOA estimation for ID

sources with array perturbations. An efficient scheme is

proposed for 2-D DOA, angular spread estimation and

gain-phase perturbations calibration, under the condition

that part of array antennas are well calibrated.

2) The influence of gain-phase perturbations on the perfor-

mance of the ESPRIT-based approach is analyzed and a

condition on the minimal number of calibrated antennas

required to calibrate the whole array is derived.

3) An approximate Cramér-Rao bound (CRB) for 2-D

DOA estimation of ID sources with gain-phase perturba-

tions is derived, which matches better with the adopted

approximate signal model, compared with the existing

CRB.

The rest of this paper is organized as follows. The problem

is formulated in Section II and the joint estimation algorithm

for 2-D DOA, angular spreads and gain-phase perturbations is

presented in Section III. In Section IV, performance analysis

of the proposed method is provided including the influence

of gain-phase perturbations, the minimal number of required

calibrated antennas, and the approximate CRB. Numerical

simulations are provided in Section V and conclusions are

drawn in Section VI.

Notations: Throughout the paper, we use upper-case (lower-

case) bold letters to represent matrices (vectors). IM denotes

the M×M identity matrix, 1P denotes the all-one P×1 vector,

em stands for a vector whose mth element equals one and

zeros elsewhere, and 0
P×Q

stands for the P ×Q zero matrix.

(·)∗, (·)T , (·)H and (·)−1
represent the conjugate, transpose,

conjugate transpose and inversion operations, respectively. The

symbols ⊙ and ⊗ stand for the Schur-Hadamard product and

the Kronecker product, respectively. E{·} is the statistical

expectation, Re {·} and Im {·} the real part and imaginary

part of a complex value, respectively, δ (·) the Kronecker

delta function, Tr (·) and ∥·∥F the trace and the Frobenius

norm of a matrix, respectively, diag {z1, z2} a diagonal matrix

with its diagonal elements z1 and z2, blkdiag (·) the block-

diagonalization operation, ∠[·] the phase of a complex number.

[·]m,n is the (m,n)th element of a matrix, and [·]m the mth

element of a vector.

II. PROBLEM FORMULATION

A. Ideal URA Model

Consider that K uncorrelated narrowband ID sources trans-

mitted by user equipments (UEs) impinge on an M -element

ideal URA of the BS in a massive MIMO system, as illustrated

in Fig. 1, where M = MxMy with Mx and My being

the number of antennas in the x-direction and y-direction,

respectively. The array output observed at time instant t,
t = 1, 2, . . . , N , can be expressed as [27], [28]

x (t) =
K∑

k=1

sk (t)

Lk∑

l=1

γk,l (t)a (θk,l (t) , φk,l (t)) + n (t) , (1)

where sk (t) and n (t) are the signal transmitted by the kth

UE and the M × 1 additive noise vector, respectively, γk,l(t)
is the complex-valued path gain, and Lk is the number of

multipaths of the kth UE. 0 ≤ θk,l (t) = θk + θ̃k,l (t) <
π and 0 ≤ φk,l (t) = φk + φ̃k,l (t) < π/2, where θk and

φk are the nominal azimuth and elevation DOAs for the kth
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Fig. 1. URA geometry for massive MIMO system.

signal, while θ̃k,l (t) and φ̃k,l (t) are the corresponding random

angular deviations with zero mean and standard deviations σθk
and σφk

. a (θk,l (t) , φk,l (t)) denotes the steering vector of the

kth source signal.

Taking the origin of the axes as the phase reference point

and further exploiting the first order Taylor series expansion of

a (θk,l (t) , φk,l (t)) under the conditions that σθk and σφk
are

sufficiently small, a (θk,l (t) , φk,l (t)) can be approximately

expressed as [27], [28]

a (θk,l (t) , φk,l (t)) ≈ a (θk, φk) +
∂a (θk, φk)

∂θk
θ̃k,l (t)

+
∂a (θk, φk)

∂φk
φ̃k,l (t) , (2)

where the mth element of a (θk, φk) is given by

[a(θk, φk)]m = exp(ju sinφk[(mx − 1) cos θk

+ (my − 1) sin θk]),m = (my − 1)Mx +mx,

mx = 1, 2, . . . ,Mx,my = 1, 2, . . . ,My, (3)

with u = 2πd/λ, d being the adjacent sensor distance along

the x and y axes of the array, and λ being the wavelength of

the carrier.

Consequently, the array output x(t) in (1) can be written as

x (t) ≈ A (θ, φ) s̄ (t) + n (t) , (4)

where

A(θ, φ) =

[

a(θ1, φ1),a(θ2, φ2), . . . ,a(θK , φK),

∂a(θ1, φ1)

∂θ1
,
∂a(θ2, φ2)

∂θ2
, . . . ,

∂a(θK , φK)

∂θK
,

∂a(θ1, φ1)

∂φ1
,
∂a(θ2, φ2)

∂φ2
, . . . ,

∂a(θK , φK)

∂φK

]

, (5)

s̄ (t) = [s̄1,1(t), s̄2,1(t), . . . , s̄K,1(t), s̄1,2(t), s̄2,2(t), . . . ,

s̄K,2(t), s̄1,3(t), s̄2,3(t), . . . , s̄K,3(t)]
T , (6)

s̄k,1(t) = sk(t)

Lk∑

l=1

γk,l(t), (7)

s̄k,2(t) = sk(t)

Lk∑

l=1

γk,l(t)θ̃k,l(t), (8)

s̄k,3(t) = sk(t)

Lk∑

l=1

γk,l(t)φ̃k,l(t). (9)

B. Partly Calibrated URA Model

Now consider the case that only part of the URA is

well calibrated. Without loss of generality, assume that the

first P rows and Q columns of antennas of the array are

calibrated, whereas the remaining M − PQ antennas are un-

calibrated with perturbations modeled as unknown, direction-

independent gains and phases. Taking these unknown gain-

phase perturbations into account, the array output can be given

by

y (t) = Φ(µ)
K∑

k=1

sk (t)
Lk∑

l=1

γk,l (t)a (θk,l (t) , φk,l (t)) + n (t)

≈ Φ(µ)A (θ, φ) s̄ (t) + n (t) ,
(10)

where Φ(µ) denotes the gain-phase perturbation matrix, and

is expressed as

Φ(µ) = diag{[c, µQMx+1, . . . , µMxMy
]}, (11)

where

c = [1TP , µP+1, . . . , µMx
, . . . ,1TP , µ(Q−1)Mx+P+1, . . . , µQMx

]
︸ ︷︷ ︸

1×QMx

(12)

is a vector composed of the gain-phase perturbations of the

first MxQ (Mx rows × Q columns) antennas of the array,

µm = ρme
jψm with ρm and ψm representing the gain

perturbation and phase perturbation of the antenna located

at the m1th row and m2th column of the URA, m =
(m2 − 1)Mx +m1, m1 ∈ [1,Mx], m2 ∈ [1,My].

In addition, we also make the following assumptions:

• The signals sk(t), k = 1, . . . ,K, are zero-mean,

complex-valued and temporally independent and identi-

cally distributed (i.i.d.) random variables with covariance

σ2
sk

. The noise n(t) is stationary, zero-mean and spatially

white Gaussian with covariance matrix σ2
nIM .

• The angular deviations θ̃k,l(t), φ̃k,l(t) and the path gains

γk,l(t) are temporally i.i.d. Gaussian random variables

with covariances given by [27], [28]

E{θ̃k,l(t)θ̃k̄,l̄(t̄)} = σ2
θδ(k − k̄)δ(l − l̄)δ(t− t̄), (13)

E{φ̃k,l(t)φ̃k̄,l̄(t̄)} = σ2
φδ(k − k̄)δ(l − l̄)δ(t− t̄), (14)

E{γk,l(t)γk̄,l̄(t̄)} =
σ2
γ

Lk
δ(k − k̄)δ(l − l̄)δ(t− t̄). (15)

• The transmitted signals, additive noise, angular deviations

and the path gains are mutually uncorrelated.

• The number of UEs K is known a priori or pre-estimated

via methods such as those based on the robust LS-MDL

criterion [38], [47]. The number of antennas M is much
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larger than K, and the number of multipaths Lk is large

for any k ∈ [1,K].
• Part of the array is well calibrated, and the number of

calibrated antennas satisfies P,Q ≥ 2.

• A small angle scattering environment is considered, i.e.,

the angular spreads σθk and σφk
(k = 1, . . . ,K) are

sufficiently small.

III. PROPOSED METHOD

A. 2-D Estimation of Nominal DOAs

According to (10) and the above assumptions, we can obtain

the covariance matrix of the received signal y(t), given by

Ry = E
{
y (t)yH (t)

}

≈ Φ(µ)A (θ, φ)SAH (θ, φ)ΦH(µ) + σ2
nIM , (16)

where S = E
{
s̄ (t) s̄H (t)

}
is a 3K × 3K diagonal ma-

trix with [S]k,k = σ2
kσ

2
γ , [S]k+K,k+K = [S]k,kσ

2
θk

, and

[S]k+2K,k+2K = [S]k,kσ
2
φk

, k ∈ [1,K].
The eigenvalue decomposition (EVD) of Ry is approxi-

mated by

Ry ≈ [Es,En]

[
Λs 03K×(M−3K)

0(M−3K)×3K Λn

]

[Es,En]
H

= EsΛsE
H
s +EnΛnE

H
n , (17)

where Es and En are the M×3K-dimensional signal subspace

matrix and the M × (M − 3K)-dimensional noise subspace

matrix, respectively. Λs and Λn denote the diagonal matrices

comprising the 3K largest eigenvalues and the remaining M−
3K eigenvalues, respectively. In practice, Ry is replaced by

its finite-sample estimation, i.e.,

Ry ≈ R̂y = N−1
N∑

t=1

y (t)yH (t) ≈ ÊSΛ̂SÊ
H
S +ÊN Λ̂N ÊHN .

(18)

Next, we show how to jointly estimate 2-D DOAs, their corre-

sponding angular spreads as well as gain-phase perturbations

utilizing R̂y .

Instead of dividing the received array into three subarrays

as in [27], we divide the whole URA into four subarrays as

depicted in Fig. 2, which can provide more DOFs. The output

of each subarray can be expressed as

yτ (t) = Jτy (t) ≈ Φτ (µ)Aτ (θ, φ) s̄ (t) + nτ (t) , (19)

where Φτ (µ) and Aτ (θ, φ) denote the gain-phase perturba-

tion matrix and the nominal steering matrix of the τ th subarray,

respectively, τ = 1, . . . , 4. Jτ is given by

J1 =
[
IM−Mx

0(M−Mx)×Mx

]
,

J2 =
[
0(M−Mx)×Mx

IM−Mx

]
,

J3 = IMy
⊗
[
IMx−1 0(Mx−1)×1

]
,

J4 = IMy
⊗
[
0(Mx−1)×1 IMx−1

]
.

According to locations of these four subarrays, the following

relationships hold

A2 (θ, φ) = A1 (θ, φ)Ω2,1, (20)

�
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Fig. 2. The four considered subarrays of the URA.

A4 (θ, φ) = A3 (θ, φ)Ω4,3, (21)

where

Ω2,1 =





Π2,1 Π2,2 Π2,3

0K×K Π2,1 0K×K

0K×K 0K×K Π2,1



 ∈ C
3K×3K , (22)

Ω4,3 =





Ξ4,3 Ξ4,4 Ξ4,5

0K×K Ξ4,3 0K×K

0K×K 0K×K Ξ4,3



 ∈ C
3K×3K , (23)

Π2,1 = diag (H2 (θ1, φ1) , . . . , H2 (θK , φK)) , (24)

Ξ4,3 = diag (H4 (θ1, φ1) , . . . , H4 (θK , φK)) , (25)

Π2,2 = diag

(
∂H2 (θ1, φ1)

∂θ1
, . . . ,

∂H2 (θK , φK)

∂θK

)

, (26)

Ξ4,4 = diag

(
∂H4 (θ1, φ1)

∂θ1
, . . . ,

∂H4 (θK , φK)

∂θK

)

, (27)

Π2,3 = diag

(
∂H2 (θ1, φ1)

∂φ1
, . . . ,

∂H2 (θK , φK)

∂φK

)

, (28)

Ξ4,5 = diag

(
∂H4 (θ1, φ1)

∂φ1
, . . . ,

∂H4 (θK , φK)

∂φK

)

, (29)

with H2 (θ1, φ1) = exp (ju sinφk sin θk) and H4 (θ1, φ1) =
exp (ju sinφk cos θk).

It is well known that the signal subspace Es spans the same

space as the array steering matrix; then, we have

Es = Φ(µ)A (θ, φ)T, (30)

where T is an 3K × 3K nonsingular matrix. Subsequently,

(30) directly yields

Es1 = J1Es = Φ1(µ)A1 (θ, φ)T, (31)

Es2 = J2Es = Φ2(µ)A2 (θ, φ)T, (32)

Es3 = J3Es = Φ3(µ)A3 (θ, φ)T, (33)

Es4 = J4Es = Φ4(µ)A4 (θ, φ)T. (34)
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Substituting (20), (21) into (32) and (34), respectively, we

have

Φ1,2(µ)Es2 = Es1Ψ2,1, (35)

Φ3,4(µ)Es4 = Es3Ψ4,3, (36)

where

Ψ2,1 = T−1Ω2,1T,Ψ4,3 = T−1Ω4,3T, (37)

Φ1,2(µ) = Φ1(µ)/Φ2(µ) = diag(c̄), (38)

Φ3,4(µ) = Φ3(µ)/Φ4(µ) = diag(c̃), (39)

and the expanded expressions of c̄ and c̃ are given by (40)

and (41) at the top of next page.

Obviously, if Ψ2,1 and Ψ4,3 are known, then the 2-D DOAs

can be successfully estimated by performing EVD on Ψ2,1 and

Ψ4,3, since the diagonal elements of Ω2,1 and Ω4,3 (which

contain the 2-D DOA information) are the eigenvalues of Ψ2,1

and Ψ4,3. Unfortunately, Ψ2,1 and Ψ4,3 are unknown and

cannot be obtained directly via (35) and (36), since Φ1,2(µ)
and Φ3,4(µ) are also unknown. Hence we need to estimate

Φ1,2(µ) and Φ3,4(µ) first. As some of the array antennas are

calibrated, we construct the following optimization problems

min
c̄,Ψ2,1

∥
∥
∥Φ1,2(µ)Ês2 − Ês1Ψ2,1

∥
∥
∥

2

F
s. t. W1c̄ = 1P (Q−1),

(42)

min
c̃,Ψ4,3

∥
∥
∥Φ3,4(µ)Ês4 − Ês3Ψ4,3

∥
∥
∥

2

F
s. t. W2c̃ = 1Q(P−1),

(43)

where W1 and W2 are given by (44) and (45) at the top

of the next page. In order to solve (42) and (43), we first

minimize the cost function with respect to Ψ2,1 and Ψ4,3,

whose closed-form solutions are

Ψ̂2,1=
(

ÊHs1Ês1

)
−1

ÊHs1Φ1,2(µ)Ês2, (46)

Ψ̂4,3=
(

ÊHs3Ês3

)
−1

ÊHs3Φ3,4(µ)Ês4. (47)

Consequently, the formulations (42) and (43) can be re-cast

as

min
c̄

∥
∥
∥Ps1Φ1,2(µ)Ês2

∥
∥
∥

2

F
s. t. W1c̄ = 1P (Q−1), (48)

min
c̃

∥
∥
∥Ps3Φ3,4(µ)Ês4

∥
∥
∥

2

F
s. t. W2c̃ = 1(P−1)Q, (49)

where Ps1 = IM−Mx
− Ês1(Ê

H
s1Ês1)

−1ÊHs1, and Ps3 =
IM−My

− Ês3(Ê
H
s3Ês3)

−1ÊHs3.

With
∥
∥
∥Ps1Φ1,2(µ)Ês2

∥
∥
∥

2

F
= Tr

(

ÊHs2Φ
H
1,2(µ)P

H
s1Ps1Φ1,2(µ)Ês2

)

= Tr
(

ÊHs2Ês2Φ
H
1,2(µ)Ps1Φ1,2(µ)

)

= c̄H
(

ÊHs2Ês2 ⊙Ps1

)

c̄,

∥
∥
∥Ps3Φ3,4(µ)Ês4

∥
∥
∥

2

F
= Tr

(

ÊHs4Φ
H
3,4(µ)P

H
s3Ps3Φ3,4(µ)Ês4

)

= Tr
(

ÊHs4Ês4Φ
H
3,4(µ)Ps3Φ3,4(µ)

)

= c̃H
(

ÊHs4Ês4 ⊙Ps3

)

c̃,

(42) and (43) can be finally reformulated as

min
c̄

c̄H
(

ÊHs2Ês2 ⊙Ps1

)

c̄ s. t. W1c̄ = 1P (Q−1), (50)

min
c̃

c̃H
(

ÊHs4Ês4 ⊙Ps3

)

c̃ s. t. W2c̃ = 1Q(P−1). (51)

Define Γ1,2 = ÊHs2Ês2 ⊙ Ps1, Γ3,4 = ÊHs4Ês4 ⊙ Ps3, and

by exploiting the well-known Lagrange multiplier method, we

have

ˆ̄c = Γ−1
1,2W1

(
WH

1 Γ−1
1,2W1

)−1
1P (Q−1), (52)

ˆ̃c = Γ−1
3,4W2

(
WH

2 Γ−1
3,4W2

)−1
1Q(P−1). (53)

With ˆ̄c and ˆ̃c, Φ̂1,2(µ) and Φ̂3,4(µ) are constructed as

Φ̂1,2(µ) = diag{ˆ̄c}, Φ̂3,4(µ) = diag{ˆ̃c}. (54)

By further defining

Υa = [Ês1 Φ̂1,2(µ)Ês2]
H [Ês1 Φ̂1,2(µ)Ês2], (55)

Υb = [Ês3 Φ̂3,4(µ)Ês4]
H [Ês3 Φ̂3,4(µ)Ês4], (56)

and performing EVD on Υa and Υb, we have

Υa = UaΛaU
H
a , Υb = UbΛbU

H
b , (57)

where Ua and Ub are the 6K × 6K eigenvectors of Υa

and Υb, respectively, while Λa and Λb are the 6K × 6K
diagonal matrices, whose diagonal elements correspond to the

eigenvalues of Υa and Υb, respectively.

Ua and Ub can be partitioned as

Ua =

[
Ua11 Ua12

Ua21 Ua22

]

,Ub =

[
Ub11 Ub12

Ub21 Ub22

]

, (58)

and each submatrix has dimensions of 3K×3K. Finally, Ψ2,1

and Ψ4,3 are estimated as

Ψ̂2,1 = −Ua12U
−1
a22, Ψ̂4,3 = −Ub12U

−1
b22. (59)

Following the same estimation and matching procedure

in [27] and [28] after conducting EVD on Ψ̂2,1 and Ψ̂3,4,

we can obtain 2-D nominal DOAs of ID sources without

ambiguities. Let υ1,3(k−1)+l̃ and υ2,3(k−1)+l̃ (l̃ = 1, 2, 3)

denote the pair-matched eigenvalues of Ψ̂2,1 and Ψ̂4,3, which

correspond to the estimates of [Ω2,1]k+(l̃−1)K,k+(l̃−1)K and

[Ω4,3]k+(l̃−1)K,k+(l̃−1)K , respectively. Finally, the nominal

azimuth and elevation DOAs of the kth source are estimated

as

θ̂k =
1

3

3∑

l̃=1

tan−1

(
∠υ1,3(k−1)+l̃

∠υ2,3(k−1)+l̃

)

, (60)

φ̂k =
1

3

3∑

l̃=1

sin−1

(

1

u

√
∑2

p=1
(∠υp,3(k−1)+l̃)

2

)

, (61)

where k ∈ [1,K].
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c̄ =

[

1TP ,
µP+1

µMx+P+1
, . . . ,

µMx

µ2Mx

, . . . ,1TP ,
µ(Q−2)Mx+P+1

µ(Q−1)Mx+P+1
, . . . ,

µ(Q−1)Mx

µQMx
︸ ︷︷ ︸

1×(Q−1)Mx

,
1

µQMx+1
, . . . ,

1

µQMx+P
︸ ︷︷ ︸

1×P

,

µ(Q−1)Mx+P+1

µQMx+P+1
, . . . ,

µQMx

µ(Q+1)Mx
︸ ︷︷ ︸

1×(Mx−P )

,
µQMx+1

µ(Q+1)Mx+1
, . . . ,

µ(My−1)Mx

µMyMx
︸ ︷︷ ︸

1×(My−Q−1)Mx

]T

, (40)

c̃ =

[

1TP−1,
1

µP+1
,
µP+1

µP+2
, . . . ,

µMx−1

µMx

, . . . ,1TP−1,
1

µ(Q−1)Mx+P+1
,
µ(Q−1)Mx+P+1

µ(Q−1)Mx+P+2
, . . . ,

µQMx−1

µQMx
︸ ︷︷ ︸

1×(Mx−1)Q

,
µQMx+1

µQMx+2
, . . . ,

µMyMx−1

µMyMx
︸ ︷︷ ︸

1×(Mx−1)(My−Q)

]T

(41)

W1 =








IP 0P×(Mx−P ) 0P×(My−2)Mx

0P×Mx
IP 0P×(My−2)Mx−P

...
...

...

0P×(Q−2)Mx
IP 0P×(My−Q+1)Mx−P







, (44)

W2 =








IP−1 0(P−1)×(Mx−P ) 0(P−1)×(My−1)(Mx−1)

0(P−1)×(Mx−1) IP−1 0(P−1)×[(My−1)(Mx−1)−P+1]

...
...

...

0(P−1)×(Q−1)(Mx−1) IP−1 0(P−1)×[(My−Q+1)(Mx−1)−P+1]







. (45)

B. Estimation of Gain-phase Perturbations and Angular

Spreads

Based on ˆ̄c and ˆ̃c, we can further obtain estimation of the

array gain-phase perturbations as

µ̂(Q+m)Mx+ρ =

{
m∏

n=0

[ˆ̄c](Q−1−n)Mx+ρ

}
−1

,

m ∈ [0,My −Q− 1], ρ ∈ [1, P ], (62)

µ̂ν+mMx
=

{
ν∏

n=P+1

[ˆ̃c]n+m(Mx−1)−1

}
−1

,

ν ∈ [P + 1,Mx],m ∈ [0, Q− 1]. (63)

The detailed process of gain-phase perturbations estimation

and calibration is illustrated in Fig. 3. Obviously, by using the

P ×Q well calibrated antennas as well as equations (62) and

(63), we only obtain the estimate of gain-phase perturbations

of antennas labeled as red and green circles. However, with

such estimates, one can easily conclude that the gain-phase

perturbations of the left antennas (labeled as blue circles) can

be further estimated as

µ̂(Q+m)Mx+P+ρ =







m∏

n=0
[ˆ̄c](Q−n−1)Mx+P+ρ

µ̂(Q−1)Mx+P+ρ







−1

,

ρ ∈ [1,Mx − P, ],m ∈ [0,My −Q− 1]. (64)
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Fig. 3. Estimation process for array gain-phase perturbations, where black
circles denote the well calibrated antennas, red and green circles the antennas
calibrated with black circles, and blue ones the antennas calibrated with red
or green circles.

As the gain-phase perturbations have been estimated, we

first compensate them by

⌣

Ry = Φ̂−1 (µ)
[

R̂y − σ̂2
nIM

] (

Φ̂H (µ)
)
−1

, (65)

where Φ̂ (µ) is the estimate of Φ (µ), and σ̂2
n is the estimate

of σ2
n obtained by averaging the smallest M−3K eigenvalues

of R̂y .

Subsequently, we estimate S utilizing
⌣

Ry as

Ŝ=
(

ÂHÂ
)
−1

ÂH
⌣

Ry

(

ÂÂH
)
−1

Â, (66)

where Â is the estimate of A (θ, φ). According to the expres-
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Algorithm 1: Joint 2-D DOA, Gain-Phase Perturbation and Angular
Spread Estimation

1: Calculate the sample covariance matrix R̂y according to (18) and

perform EVD on R̂y to obtain signal subspace matrix Ês.

2: Form Êsl, l ∈ [1, 4] according to (31)∼(34), and further construct

Γ1,2 = ÊHs2Ês2 ⊙Ps1 and Γ3,4 = ÊHs4Ês4 ⊙Ps3.

3: Estimate ˆ̄c and ˆ̃c based on (52) and (53), as well as Φ̂1,2(µ) and

Φ̂3,4(µ) via (54).
4: Construct Υa and Υb according to (55) and (56), and then calculate

Ψ̂2,1 and Ψ̂3,4 using (59).

5: Perform EVD on Ψ̂2,1 and Ψ̂3,4, and match their eigenvalues
based on the method introduced in [20].

6: Estimate the nominal DOAs with (60) and (61), and gain-phase
perturbations with (62)∼(64).

7: Compensate the gain-phase perturbations to form
⌣

Ry , and further

obtain Ŝ via (66).
8: Estimate angular spreads via (67) and (68).

sion of S, σθk and σφk
are respectively estimated as

σ̂θk =

√
[

Ŝ
]

k+K,k+K

/[

Ŝ
]

k,k
, k ∈ [1,K], (67)

σ̂φk
=

√
[

Ŝ
]

k+2K,k+2K

/[

Ŝ
]

k,k
, k ∈ [1,K]. (68)

The proposed method for 2-D DOA estimation of ID sources

in the presence of gain-phase perturbations is summarized in

Algorithm 1, where χ̂ denotes the estimation result of χ with

N samples.

Remark 1: The computational complexity of the pro-

posed method mainly lies in the construction of R̂y

and its EVD, the estimation of Ψ̂2,1 and Ψ̂4,3, and

their EVDs, as well as the estimation of gain-phase

perturbations, which in total requires multiplications of

O(M2N + 4
3M

3)+O(36(2M −Mx −My)K
2 + 144K3)+

O((M −Mx)
3
+ (M −My)

3
). Since M is far larger than K

for a massive MIMO system, the complexity of the proposed

method is close to O
(
M3
)

as M → ∞, which is at the same

level as that of the algorithm in [27].

Remark 2: It should be noted that the proposed method is

designed for fully digital arrays, where each antenna element

has its own Radio Frequency (RF) chain. However, in order

to reduce the cost of RF chains in massive MIMO systems,

hybrid antenna arrays are often adopted in practice. Under

such a circumstance, one can first apply the preprocessing

scheme [48], [49] to reconstruct the spatial covariance matrix

as if a fully digital array is exploited, and then utilize the

proposed method for 2-D DOA estimation, which implies

that the proposed method is applicable to hybrid arrays with

necessary adaptations.

Remark 3: The proposed method can be regarded as a

modified version of ESPRIT based methods [10]-[15], [27].

Their differences are mainly reflected in the following two

aspects: i) The existing ESPRIT based DOA estimation al-

gorithms for massive MIMO systems are either established

on the point source assumption or the ideal array model. In

contrast, we take both the ID source model and the array gain-

phase perturbations into account, and the developed modified

ESPRIT method can yield a robust 2-D DOA estimation result

for ID sources in the presence of unknown array gain-phase

perturbations; ii) the influence of array gain-phase errors on

the 2-D DOA estimation performance of ID sources in mas-

sive MIMO systems has not been analyzed and evaluated in

existing ESPRIT based algorithms. In comparison, a detailed

analysis is provided here on this point from both theoretical

and simulation perspectives, which fills the gap in literature

(see the next two sections for details).

IV. PERFORMANCE ANALYSIS AND CRAMÉR-RAO BOUND

A. Required Number of Calibrated Antennas

It is clear that the effectiveness of the proposed method

depends on calibration of part of the array antennas. More

specifically, in order to yield meaningful solutions ˆ̄c and ˆ̃c (as

shown in (52) and (53)), the following inequalities must hold

P (Q− 1) ≥ 1, P ∈ {1, 2, . . . ,Mx} , (69)

Q (P − 1) ≥ 1, Q ∈ {1, 2, . . . ,My} , (70)

which means that at least 2 × 2 (i.e., P ≥ 2, Q ≥ 2)

antennas must be well calibrated. Moreover, it is necessary

for the P ×Q calibrated antennas to be spatially continuous.

Otherwise, the gain-phase perturbations cannot be obtained.

In practice, calibrating spatially continuous antennas could be

relatively easier and more convenient than calibrating the same

number of antennas scattered around. Particularly, if the URA

is fully calibrated, i.e., P = Mx, Q = My , the proposed

method will be simplified to the ESPRIT-based in [27] and

the only difference lies in their subarray division strategies.

B. Influence of Gain-Phase Perturbations on Estimation Ac-

curacy

For simplicity, assume that the number of snapshots is

sufficient and only Ψ2,1 is used for this analysis. Sup-

pose that there exist array gain-phase perturbations, but

one applies ESPRIT-based technique for 2-D DOA esti-

mation without considering their influences. As a result,

Ψ2,1=
(
EHs1Es1

)
−1

EHs1Φ1,2 (µ)Es2 will deviate from its true

value as Ψ̄2,1=
(
EHs1Es1

)
−1

EHs1Es2. Define

∆Ψ2,1=Ψ2,1 − Ψ̄2,1

=
(
EHs1Es1

)−1
EHs1 (Φ1,2 (µ)− IM−Mx

)Es2. (71)

Obviously, ∆Ψ2,1 will yield an error of eigenvalue

∆υk = qk∆Ψ2,1uk

= qk
(
EHs1Es1

)−1
EHs1 (Φ1,2 (µ)− IM−Mx

)Es2uk

=

M−Mx∑

m=1

[q̄]m[c̄]m
[
ūT
]

m
−
M−Mx∑

m=1

[q̄]m
[
ūT
]

m

=

Q
∑

n=1

nMx∑

m=m̄

[q̄] ([c̄]m − 1) [ūT ]m

= υk (1− ρ̄c) ,

where υk = qkΨ2,1uk, q̄ = qk
(
EHs1Es1

)
−1

EHs1, ū = Es2uk,

and ρ̄c =
∑M−Mx

m=1 [q̄]m[ūT ]m/υk, m̄=(n − 1)Mx + P + 1.
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According to the relationship between the 2-D DOAs and the

eigenvalues (polynomial roots), we have

∆θk =
1

u sinφk cos θk
Im (∆υk/υk) , (72)

∆φk =
1

u cosφk sin θk
Im (∆υk/υk) . (73)

It can be observed that ∆θk = 0 and ∆φk = 0 if the array is

fully calibrated or the gain-phase perturbation in each antenna

is identical. Meanwhile, the more number of antennas that are

calibrated, the closer ∆υk is to zero; the closer the gain-phase

perturbations of two adjacent antennas are, the closer ρ̄c is

to one, and finally the closer ∆θk and ∆φk are to zeros.

Unfortunately, the above mentioned conditions cannot be

guaranteed in practice, and the perturbations between different

antennas are typically different. Therefore, a direct application

of ESPRIT-based estimators will produce a bias, regardless of

the signal to noise ratio (SNR) and the number of snapshots.

As a comparison, we estimate Φ1,2 (µ) first, and then obtain

Ψ2,1 as Ψ2,1=
(
EHs1Es1

)
−1

EHs1Φ1,2 (µ)Es2, which directly

leads to the result that ∆υk = 0, ∆θk = 0, and ∆φk = 0.

In other words, the performance of the existing ESPRIT-

based estimators is affected by array gain-phase perturbations

seriously (especially for large-scale antenna arrays), while the

proposed method performs independent of such perturbations,

which will also be validated by numerical simulations in

Section V.

Remark 4: In case of finite number of snapshots, there exists

another bias ∆Ψ̄2,1 = Ψ̂2,1 − Ψ2,1, which will yield a new

error of eigenvalue ∆ῡk = υ̂k − υk. However, based on the

central limit theorem, ∆ῡk will be small, provided that the

number of snapshots is large enough.

C. Approximate Cramér-Rao Bound

The Cramér-Rao Bound (CRB) provides a lower bound on

the covariance matrix of any unbiased estimator, which is

obtained by taking the inverse of the Fisher information matrix

(FIM). Define

z = [θT ,ϕT ,σθ
T ,σφ

T ,σγ
T ,ρT ,ϕT ,σs

T ]T (74)

as the vector of unknown parameters associated with our

signal model, where θ = [θ1, . . . , θK ]T , φ = [φ1, . . . , φK ]T ,

σθ = [σ2
θ1
, σ2
θ2
, . . . , σ2

θK
]T , σφ = [σ2

φ1
, σ2
φ2
, . . . , σ2

φK
]T ,

σγ = [σ2
γ1
, σ2
γ2
, . . . , σ2

γK
]T , σs = [σ2

s1
, σ2
s2
, . . . , σ2

sK
]T , and

ρ = {[ρP+1, . . . , ρMx
, . . . , ρ(Q−1)Mx+P+1,

. . . , ρQMx
, ρQMx+1

, . . . , ρM ]T },

ϕ = {[ϕP+1, . . . , ϕMx
, . . . , ϕ(Q−1)Mx+P+1,

. . . , ϕQMx
, ϕQMx+1

, . . . , ϕM ]T }.

The (l, h)th element of FIM F with covariance matrix Ry is

given by

F(l, h) = NTr

{

R−1
y

∂Ry

∂ςl
R−1
y

∂Ry

∂ςh

}

, (75)

whose matrix form is given in Appendix, and ςl is the lth
unknown parameter. Consequently, the CRBs of 2-D DOA

estimations can be obtained by taking the inverse of F, i.e.,

CRBθ =

√

1

K

∑K

k=1
[F−1]kk, (76)

CRBφ =

√

1

K

∑2K

k=K+1
[F−1]kk. (77)

Remark 5: The signal model used for approximate CRB

derivation in [27] is different from that for algorithm deriva-

tion, and gain-phase perturbations are also not considered. In

contrast, we take the gain-phase perturbations into account and

the signal model used for the algorithm and CRB derivation is

consistent, which indicates that the derived approximate CRB

in this paper is more reasonable for performance assessment.

V. SIMULATIONS AND RESULTS

In this section, simulations are performed to demonstrate

the effectiveness of the proposed method. The ESPRIT-based

algorithm in [27] (named as ESPRIT-W), the ESPRIT-based

algorithm in [27] combined with our gain-phase perturbations

estimation and compensation result (named as ESPRIT-C),

the efficient beamspace-based algorithm in [28] (named as

Beamspace-W), the efficient beamspace-based algorithm in

[28] combined with our gain-phase perturbations estimation

and compensation result (named as Beamspace-C), as well as

the approximate CRB obtained by the inverse of simplified

FIM (the gain-phase perturbations are assumed to be known,

which is just for the purpose of simplification since the whole

FIM is hard to handle in the simulations) are selected for

comparison. Meanwhile, the proposed method with perfect

compensation (named as Proposed-P) is also simulated as a

benchmark in some experiments. The number of antennas, the

number of UEs and the number of multipaths are M = 100,

K = 2 and Lk = 50, respectively, where
√
M = Mx = My

and d = λ/2. The signals transmitted from all UEs are BPSK

modulated, and the basic spatial information of the two UEs

are set to be {θ1, φ1, σθ1 , σφ1
, σγ1} = {10◦, 20◦, 1◦, 1◦, 1} and

{θ2, φ2, σθ2 , σφ2
, σγ2} = {30◦, 50◦, 1◦, 1◦, 1}, respectively.

Except for the last simulation, the antennas in the first five

columns are assumed to be well calibrated, whereas the gain

and phase perturbations in other antennas are generated by

[33], [45]

ρm = 1 +
√
12σρξm, ψm =

√
12σψζm, (78)

where ξm and ζm are independent and identically distributed

random variables distributed uniformly over [−0.5, 0.5], σρ
and σψ are the standard deviations of ρm and ψm, respectively.

The estimation performance is evaluated by the root mean

square error (RMSE) from the results of 500 independent

Monte-Carlo trials.

A. Performance versus Average Received SNR

In the first set of simulations, the impact of the average

received SNR on the performance of different algorithms is

evaluated, and the RMSE results are shown in Fig. 4. The
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Fig. 4. RMSEs versus average received SNR, with M = 100, N = 500,
σρ = 0.1 and σψ = 20◦. (a), (b), (c) and (d) correspond to the estimation of
the nominal azimuth DOA, the nominal elevation DOA, the azimuth angular
spread and the elevation angular spread, respectively.

Fig. 5. RMSEs versus the number of snapshots, with M = 100, SNR=25dB,
σρ = 0.1 and σψ = 20◦. (a), (b), (c) and (d) correspond to the estimation of
the nominal azimuth DOA, the nominal elevation DOA, the azimuth angular
spread and the elevation angular spread, respectively.

number of snapshots is set to 500, σρ = 0.1, σψ = 20◦,

and the average received SNR varies from 0dB to 35dB.

From Figs. 4(a)-4(d), it can be seen that the proposed method

gives the best performance in the whole SNR region, and

its RMSEs decrease rapidly as the average received SNR

increases. In addition, it can be observed that direct application

of the ESPRIT-based and the Beamspace-based algorithms

(i.e., ESPRIT-W and Beamspace-W) suffer from serious per-

formance degradation in the presence of array gain-phase

perturbations. Moreover, by using the proposed calibrating

strategy, their performance has been improved effectively. On

the other hand, we also find that although both ESPRIT-

C and Beamspace-C utilize the same gain-phase perturba-

tion estimation and compensation mechanism, their nominal

DOA estimation performance is still lower than the proposed

method. This can be explained in that the proposed subarray

Fig. 6. RMSEs versus σρ, with M = 100, N = 500, SNR=20dB, and
σψ = 20◦. (a), (b), (c) and (d) correspond to the estimation of the nominal
azimuth DOA, the nominal elevation DOA, the azimuth angular spread and
the elevation angular spread, respectively.

Fig. 7. RMSEs versus σψ , with M = 100, N = 500, SNR=20dB, and
σρ = 0.1. (a), (b), (c) and (d) correspond to the estimation of the nominal
azimuth DOA, the nominal elevation DOA, the azimuth angular spread and
the elevation angular spread, respectively.

division scheme can provide much more DOFs or elements of

covariance matrix than that of the ESPRIT-based algorithm in

[27] and the Beamspace-based algorithm in [28].

B. Performance versus the Number of Snapshots

In the second set of simulations, the performance of the

proposed method is studied for different numbers of snapshots.

The result is shown in Fig. 5, where SNR is fixed at 25dB,

and the number of snapshots varies from 300 to 1500 with

a step of 200. From Figs. 5(a)-5(d), it can be seen that the

RMSEs of both nominal DOAs and their related angular spread

estimations by the proposed method decrease monotonically

with the number of snapshots. More specifically, for nom-

inal DOAs estimation, the proposed method still leads the

estimation performance, while for angular spreads estimation,

the proposed method has almost the same performance as
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ESPRIT-C and Beamspace-C. Meanwhile, we can also find

that there is a gap between the RMSEs and the related CRBs.

There are two possible reasons. Firstly, the estimation accuracy

increases as the number of calibrated antennas increases, and

when the array is fully calibrated, the RMSEs of the proposed

method will be closer to CRBs, which can be verified from

the simulation result of the Proposed-P method. Secondly, for

a massive MIMO system, the array at the BS is equipped

with a large number of antennas, and therefore, N is typically

on the same order of magnitude as M . According to the

general asymptotic theory [50], the sample covariance matrix

is no more a good estimator of its true value under such

circumstances, which directly yields that the RMSEs of the

proposed method cannot follow the related CRBs very well.

The problem of unbiased covariance matrix estimation for

a massive MIMO system might be a topic of our further

research.

C. Performance versus Gain and Phase Perturbations

Now the effect of gain perturbations and phase perturbations

on the performance of the proposed method is examined. The

SNR and the number of snapshots are set to 20dB and 500,

respectively. In Fig. 6, σψ = 20◦ and σρ varies from 0 to

0.3, whereas in Fig. 7, σρ = 0.1 and σψ varies from 5◦ to

30◦. From the simulation result, it can be seen that the per-

formance of all the methods is influenced slightly by the gain

perturbations, which is consistent with the observation in [51].

On the other hand, it can be observed that the performance of

ESPRIT-W and Beamspace-W without calibration deteriorates

greatly as phase perturbations increase. As a comparison, the

proposed method performs almost independent of the gain-

phase perturbations and can provide better estimation accuracy

than the other considered algorithms.

D. Performance versus the Number of Calibrated Antennas

Finally, the RMSEs versus the number of calibrated anten-

nas are provided. For simplicity, assume that Lc columns of

antennas are calibrated, where Lc varies from 2 to 10. As

shown in Fig. 8, the performance of all methods improves as

the number of calibrated antennas increases. Meanwhile, the

performance of the ESPRIT-W and Beamspace-W is affected

by the array gain-phase perturbations seriously. Unless the

array is fully calibrated (i.e., Lc = 10), their performance

is not satisfactory at all. In contrast, by exploiting our cali-

bration strategy, the proposed method as well as ESPRIT-C

and Beamspace-C can provide a much better performance,

provided that Lc ≥ 2. In more detail, when Lc ≥ 5, the

RMSEs of both nominal DOAs and related angular spreads

are lower than 10−1, again demonstrating the effectiveness of

the proposed method.

VI. CONCLUSION

In this paper, a new method for 2-D DOA estimation of

ID sources has been proposed for massive MIMO systems in

the presence of unknown gain-phase perturbations. In the pro-

posed method, a shift invariance structure is first constructed

Fig. 8. RMSEs versus the number of calibrated columns of antenna array,
with M = 100, N = 500, SNR=20dB, σρ = 0.1 and σψ = 20◦. (a), (b),
(c) and (d) correspond to the estimation of the nominal azimuth DOA, the
nominal elevation DOA, the azimuth angular spread and the elevation angular
spread, respectively.

to obtain estimates of 2-D nominal DOAs and gain-phase

perturbations in closed forms, and then estimation of angular

spreads is achieved after compensating the estimated gain-

phase perturbations. The approximate CRB for the studied

partly calibrated URA is also derived, which matches better

with the adopted approximate signal model. Through theoret-

ical analysis and numerical simulations, it has been shown

that the proposed method can provide not only improved

estimation accuracy in a computationally efficient way, but

also a performance almost independent of array gain-phase

perturbations.

DERIVATION OF THE FIM F

For simplicity, we construct F for N = 1. The results for

N > 1 can be obtained by multiplying F by N . The partial

derivative of the covariance matrix with azimuth angle θk is

given by

∂Ry

∂θk
= ΦȦθkSA

HΦH +ΦASȦH
θk
ΦH , (79)

where Ȧθk = Ȧθ(eke
T
k + ek+KeTk+K + ek+2KeTk+2K) and

Ȧθ =
∑K
k=1

∂A
∂θk

. Subsequently, we have

Tr
{

R−1
y

∂Ry

∂θk
R−1
y

∂Ry

∂θk̄

}

= Tr
{

R−1
y (ΦȦθkSA

HΦH +ΦASȦH
θk
ΦH)

×R−1
y (ΦȦθk̄

SAHΦH +ΦASȦH
θk̄
ΦH)

}

= 2Re
{

Tr
{

R−1
y ΦȦθkSA

HΦHR−1
y ΦȦθk̄

SAHΦH

+R−1
y ΦȦθkSA

HΦHR−1
y ΦASȦH

θk̄
ΦH

}}

= 2Re

{
9∑

i=1

(Āi(k, k̄)⊙ ĀT
i (k, k̄)) + (B̄i(k, k̄)⊙ C̄T

i (k, k̄))

}

,

where k, k̄ ∈ [1,K], Ā = SAHΦHR−1
y ΦȦθ ∈

C
3K×3K , B̄ = SAHΦHR−1

y ΦAS ∈ C
3K×3K , C̄ =

ȦH
θ ΦHR−1

y ȦθΦ ∈ C
3K×3K , Āi, B̄i, C̄i are the ith block
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of Ā, B̄ and C̄, respectively. Taking Ā as an example, its

various blocks Āi ∈ C
K×K , i ∈ [1, 9], are given by

Ā =





Ā1 Ā2 Ā3

Ā4 Ā5 Ā6

Ā7 Ā8 Ā9



 .

Consequently, the Fisher information matrix F with respect

to azimuth angle θ is given by

Fθθ = 2Re

{
9∑

i=1

(
Āi ⊙ ĀT

i + B̄i ⊙ C̄T
i

)

}

. (80)

Similarly, the partial derivatives of the covariance matrix

with other unknown parameters are given by

∂Ry

∂φk
= ΦȦφk

SAHΦH +ΦASȦH
φk
ΦH ,

∂Ry

∂ρm
= Φ̇ρmASAHΦH +ΦASAHΦ̇H

ρm
,

∂Ry

∂ψm
= Φ̇ψm

ASAHΦH +ΦASAHΦ̇H
ψm
,

∂Ry

∂σ2
θk

= ΦAṠσθk
AHΦH ,

∂Ry

∂σ2
φk

= ΦAṠσϕk
AHΦH ,

∂Ry

∂σ2
γk

= ΦAṠσγk
AHΦH ,

∂Ry

∂σ2
sk

= ΦAṠσsk
AHΦH ,

where

Ȧφk
= Ȧφ(eke

T
k + ek+KeTk+K + ek+2KeTk+2K),

Ṡσθk
= Ṡσθ

ek+KeTk+K , Ṡσϕk
= Ṡσϕ

ek+2KeTk+2K ,

Ṡσsk
= Ṡσs

(eke
T
k + ek+KeTk+K + ek+2KeTk+2K),

Ṡσγ
k

= Ṡσγ
(eke

T
k + ek+KeTk+K + ek+2KeTk+2K),

Φ̇ρm = Φ̇ρemeTm, Φ̇ψm
= Φ̇ψemeTm,

and Ȧφ =
∑K
k=1

∂A
∂φk

, Φ̇ρ =
∑M
m=1

∂Φ
∂ρm

, Φ̇ψ =
∑M
m=1

∂Φ
∂ψm

,

Ṡσθ
=
∑K
k=1

∂S
∂σ2

θk

, Ṡσϕ
=
∑K
k=1

∂S
∂σ2

ϕk

, Ṡσs
=
∑K
k=1

∂S
∂σ2

sk

.

Following a similar procedure as in calculating Fθθ, we

obtain the other blocks of F. For example, the expressions

of Fφφ, Fρρ, Fψψ , Fσθσθ
, Fσϕσϕ

and Fσsσs
are respectively

given by

Fφφ = 2Re

{
9∑

i=1

(
D̄i ⊙ D̄T

i + B̄i ⊙ ĒTi
)

}

, (81)

Fρρ = 2Re
{

H̃[F̄⊙ F̄T + Ḡ⊙ H̄T ]H̃
T
}

, (82)

Fψψ = 2Re
{

H̃[̄I⊙ ĪT + J̄⊙ H̄T ]H̃
T
}

, (83)

Fσθσθ
= 2Re

{
K̄5 ⊙ K̄T

5

}
, (84)

Fσϕσϕ
= 2Re

{
L̄9 ⊙ L̄T9

}
, (85)

Fσsσs
= 2Re

{
9∑

i=1

M̄i ⊙ M̄T
i

}

, (86)

where

D̄ = SAHΦHR−1
y ΦȦφ, Ē = ȦH

φ ΦHR−1
y ȦφΦ,

F̄ = ASAHR−1
y Φ̇ρ, Ḡ = Φ̇H

ρ R−1
y Φ̇ρ,

H̄ = ASAHΦHR−1
y ΦASAH , Ī = ASAHR−1

y Φ̇ψ,

J̄ = Φ̇H
ψR−1

y Φ̇ψ, K̄ = AHΦHR−1
y ΦAṠσθ

,

L̄ = AHΦHR−1
y ΦAṠσϕ

, M̄ = AHΦHR−1
y ΦAṠσs

,

and

H̃ = blkdiag
(

[H̃1 . . . H̃Q I(My−Q)Mx
]
)

,

H̃1 = . . . = H̃Q =
[
0(Mx−P )×P IMx−P

]
.

As a result, the matrix form of F is expressed as

F =















Fθθ Fθφ Fθσθ
Fθσϕ

Fθσγ
Fθρ Fθψ Fθσs

Fφθ Fφφ Fφσθ
Fφσϕ

Fφσγ
Fφρ Fφψ Fφσs

Fσθθ Fσθφ Fσθσθ
Fσθσϕ

Fσθσγ
Fσθρ Fσθψ Fσθσs

Fσϕθ Fσϕφ Fσϕσθ
Fσϕσϕ

Fσϕσγ
Fσϕρ Fσϕψ Fσϕσs

Fσγθ Fσγφ Fσγσθ
Fσγσϕ

Fσγσγ
Fσγρ Fσγψ Fσγσs

Fρθ Fρφ Fρσθ
Fρσϕ

Fρσγ
Fρρ Fρψ Fρσs

Fψθ Fψφ Fψσθ
Fψσϕ

Fψσγ
Fψρ Fψψ Fψσs

Fσsθ Fσsφ Fσsσθ
Fσsσϕ

Fσsσγ
Fσsρ Fσsψ Fσsσs















.

This ends the derivation related to the matrix form of F.
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