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1School of Management & Economics, University of Turin, tiziano.deangelis@unito.it

2School of Mathematics, University of Leeds, *mmnme@leeds.ac.uk; †j.palczewski@leeds.ac.uk

We prove that zero-sum Dynkin games in continuous time with partial
and asymmetric information admit a value in randomised stopping times
when the stopping payoffs of the players are general càdlàg measurable pro-
cesses. As a by-product of our method of proof we also obtain existence of
optimal strategies for both players. The main novelties are that we do not as-
sume a Markovian nature of the game nor a particular structure of the infor-
mation available to the players. This allows us to go beyond the variational
methods (based on PDEs) developed in the literature on Dynkin games in
continuous time with partial/asymmetric information. Instead, we focus on a
probabilistic and functional analytic approach based on the general theory of
stochastic processes and Sion’s min-max theorem (M. Sion, Pacific J. Math.,
8, 1958, pp. 171-176). Our framework encompasses examples found in the lit-
erature on continuous time Dynkin games with asymmetric information and
we provide counterexamples to show that our assumptions cannot be further
relaxed.

1. Introduction. In this paper we develop a framework for the study of the existence
of a value (also known as Stackelberg equilibrium) in zero-sum Dynkin games with par-
tial/asymmetric information in a non-Markovian setting, when the payoffs are general càdlàg
measurable processes and players are allowed to use randomised stopping times. As a by-
product of our method of proof we also obtain existence of optimal strategies for both players.
The games are considered on both finite and infinite-time horizon and the horizon is denoted
by T . The payoff processes can be decomposed into the sum of a regular process (in the sense
of Meyer [33]) and a pure jump process with mild restrictions on the direction of predictable
jumps for one of the two players. Regular processes form a very broad class encompassing,
for example, all càdlàg processes that are also quasi left-continuous (i.e., left-continuous over
stopping times).

We allow for a very general structure of the information available to the players. All pro-
cesses are adapted to an overarching filtration (Ft) whereas each player makes decisions
based on her own filtration, representing her access to information. Letting (F i

t ) be the filtra-
tion of the i-th player, with i= 1,2, we only need to assume that F i

t ⊆Ft for all t ∈ [0, T ]. In
particular, we cover the case in which players are equally (partially) informed, i.e., F1

t =F2
t ,

and, more importantly, the case in which they have asymmetric (partial) information, i.e.,
F1
t 6=F2

t .
Under this generality we prove that Dynkin games with second-mover advantage admit

a value in mixed strategies (which in this context are represented by randomised stopping
times) and optimal strategies exist for both players.

Our framework encompasses most (virtually all) examples of zero-sum Dynkin games
(in continuous time) with partial/asymmetric information that we could find in the literature

MSC2020 subject classifications: 91A27, 91A55, 91A15, 60G07, 60G40.
Keywords and phrases: non-Markovian Dynkin games, partial information, asymmetric information, optimal

stopping, randomised stopping times, regular processes, predictable-jump processes.
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(see, e.g., De Angelis et al. [12], [10], Gensbittel and Grün [22], Grün [23] and Lempa and
Matomäki [31]) and we give a detailed account of this fact in Section 3 (notice that [12]
and [31] obtain a saddle point for the game in pure strategies, i.e., using stopping times, but
in very special examples). Broadly speaking, all those papers’ solution methods hinge on
variational inequalities and PDEs and share two key features: (i) a specific structure of the
information flow in the game and (ii) the Markovianity assumption. In our work instead we
are able to analyse games at a more abstract level that allows us to drop the Markovianity as-
sumption and to avoid specifying an information structure. Of course the cost to pay for such
greater generality is a lack of explicit results concerning the value and the optimal strategies
(beyond their existence), which instead may be obtained in some problems satisfying (i) and
(ii) above. We also show by several counterexamples that our main assumptions cannot be
further relaxed as otherwise a value for the game may no longer exist.

Our methodology draws on the idea presented in Touzi and Vieille [46] of using Sion’s
min-max theorem (Sion [41]). In [46] the authors are interested in non-Markovian zero-sum
Dynkin games with full information in which first- and second-mover advantage may occur at
different points in time, depending on the stochastic dynamics of the underlying payoff pro-
cesses. In that context randomisation is essentially used by the players to attain a value in the
game and avoid stopping simultaneously (another general study on such class of problems,
but without using Sion’s theorem, is contained in Laraki and Solan [30]). Since our set-up
is different, due to the partial/asymmetric information features and relaxed assumptions on
the payoff processes, we encounter some non-trivial technical difficulties in repeating argu-
ments from [46]; for example, our class of randomised stopping times is not closed with
respect to the topology used in [46] (see Remark 5.17). For this reason we develop an al-
ternative approach based on the general theory of stochastic processes combined with ideas
from functional analysis.

1.1. Literature review. Existence of a value (Stackelberg equilibrium) in zero-sum
Dynkin games is a research question that goes back to the 70’s in the classical set-up where
players have full and symmetric information. A comprehensive and informative review of
the main results since Dynkin’s inception of stopping games [15] is contained in the survey
paper by Kifer [27]. Here we recall that early results on the existence of a value in a diffusive
set-up were obtained by Bensoussan and Friedman [4] via PDE methods, and by Bismut [5]
via probabilistic methods (and allowing for processes with jumps). Those results were later
extended to right-continuous Markov processes by Stettner [43] (see also Stettner [44] and
[45]). In the non-Markovian setting the early results are due to Lepeltier and Maingueneau
[32]. Around the year 2000 zero-sum Dynkin games gained popularity thanks to their ap-
plications in mathematical finance suggested by Kifer [26] (see also Kyprianou [29] for an
early contribution). Numerous other papers have addressed related questions, including the
existence of value and optimal strategies, with various methods. The interested reader may
consult Ekström and Peskir [17] for modern results in a general Markovian setting or Ekström
and Villeneuve [18] for the special case of one-dimensional linear diffusions. It is also worth
mentioning that nonzero-sum Dynkin games have been studied by many authors including,
e.g., Hamadene and Zhang [24] for non-Markovian games, Attard [2] for general Markovian
games and De Angelis et al. [11] for games on one-dimensional linear diffusions. All the
papers mentioned in this (largely incomplete) literature review deal with players holding full
and symmetric information and the value is found in pure strategies, i.e., in stopping times.

Yasuda [47] was probably the first to study the existence of a value for Dynkin games with
randomised stopping times, in the case of discrete-time Markov processes. In that context,
randomisation is specified by assigning a probability of stopping at each time n = 1,2, . . ..
A similar type of games for Markov chains with an absorbing state was also studied by Do-
mansky [14]. Rosenberg, Solan and Vieille [39] developed more general results by removing
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the Markovianity assumption and the assumption of an ordering of payoffs (i.e., they did not
require that there be a first- or second-mover advantage). Randomised stopping times are also
used in mathematical finance, in the context of pricing and hedging game options in discrete
time with transaction costs (see [27, Sec. 5]), and in mathematical economics, to construct
subgame-perfect equilibria in (nonzero-sum) Dynkin games (see, e.g., Riedel and Steg [37]).
In continuous time, the most recent results on the existence of a value for non-Markovian
zero-sum Dynkin games with randomised stopping times are contained in Touzi and Vieille
[46] and in Laraki and Solan [30].

We emphasise that in all the papers mentioned above players are equally informed and the
need for randomisation stems mainly from a specific structure of the game’s payoff (often due
to the lack of an ordering of the payoff processes that induces alternating first- and second-
mover advantage). Our work instead is inspired by a more recent strand of the literature on
continuous-time Dynkin games that addresses the role of information across players and its
impact on their strategies (see also Section 3 for a fuller account). We believe this strand
was initiated with work by Grün [23], where one of the players knows the payoff process
in the game while the other one has access only to an initial distribution of possible payoff
processes. Grün proves existence of a value in randomised strategies and the existence of
an optimal strategy for the informed player. In Grün and Gensbittel [22] players observe
two different stochastic processes and the payoffs in the game depend on both processes.
The authors prove existence of a value and, under some additional conditions, of optimal
strategies for both players. Both these papers attack the problem via a characterisation of
the value as the viscosity solution of a certain variational inequality (of a type which is rather
new in the literature and is inspired by similar results in the context of differential games; see,
e.g., Cardaliaguet and Rainer [9]). Free-boundary methods in connection with randomised
stopping times are instead used in De Angelis et al. [10], where players have asymmetric
information regarding the drift of a linear diffusion underlying the game, and in Ekström et
al. [16], where the two players estimate the drift parameter according to two different models.
The methods used in those papers cannot be extended to the non-Markovian framework of
our paper.

Although not directly related to Dynkin games, we notice that methods from functional
analysis and the general theory of stochastic processes have been used recently to study op-
timal stopping problems by Pennanen and Perkkïo [34]. By relaxing the problem to include
randomised stopping times the authors reduce the optimal stopping problem to an optimisa-
tion of a linear functional over a convex set of randomised stopping times and find that the
solution exists as an extreme point, i.e., a pure stopping time. Closely related contributions
date back to Baxter and Chacon [3] and Meyer [33] who establish compactness of the set
of randomised stopping times in weak topologies defined by functionals which can be inter-
preted as stopping of quasi left-continuous processes, in [3], and regular processes, in [33]. In
our game framework we need to rely on min-max arguments instead of convex optimisation
as in the optimal stopping case, so compactness arguments are not immediately applicable.
However, [3, 33] inspired our approach and some of our convergence results in Section 5.1.
Furthermore, the topology of [33] on the set of randomised stopping times turns out to be
equivalent to the topology obtained via different routes in our paper (Lemma 5.18).

1.2. Structure of the paper. The paper is organised as follows. The problem is set in
Section 2 where we also state our main result on the existence of a value in full generality
(Theorem 2.4). For the ease of readability we also state a version of the result under slightly
stronger conditions on the underlying processes (Theorem 2.5), which allows a more linear
approach to the proof. An extension to the case of a game with conditioning on some initial
information is also stated as Theorem 2.6. Before turning to proofs of our results we use
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Section 3 to illustrate how our framework encompasses Dynkin games in continuous time
with partial and asymmetric information that have appeared in the literature to date. Section
4 is used to reformulate the Dynkin game in terms of a game of increasing (singular) controls.
Section 5 begins with a statement of Sion’s min-max theorem which is followed by a (short)
proof of our Theorem 2.5. The latter is based on several technical results which are addressed
in detail in Sections 5.1, 5.2 and 5.3. The proof of Theorem 2.4 is then given in Section 5.4
and the one of Theorem 2.6 is finally given in Section 5.5. We close the paper with a few
counterexamples in Section 6 showing that our conditions cannot be relaxed.

2. Problem setting and main results. Fix a complete probability space (Ω,F ,P)
equipped with a filtration (Ft)t∈[0,T ], where T ∈ (0,∞] is the time horizon of our problem.
All random variables, processes and stopping times are considered on this filtered probability
space unless specified otherwise. We write E for the expectation with respect to measure P.
By a measurable process we mean a stochastic process which is B([0, T ])×F -measurable.
We denote by Lb a Banach space of càdlàg measurable processes with the norm

‖X‖Lb
:= E

[
sup

t∈[0,T ]
|Xt|

]
<∞.

A process (Xt)t∈[0,T ] ∈ Lb is called regular if

E[Xη −Xη−|Fη−] = 0 P-a.s. for all predictable (Ft)-stopping times η.(1)

Notice that if T =∞, then ∞ is a one-point compactification of [0,∞), so that càdlàg and
regular processes are understood as follows (c.f. [13, Remark VI.53e]): a process (Xt)t∈[0,∞]

is càdlàg if it is càdlàg on [0,∞) and the limit X∞− := limt→∞Xt exists; the random vari-
able X∞ if F∞-measurable and F∞ is potentially different from F∞− = σ

(
∪t∈[0,∞) Ft

)
.

Furthermore, (Xt)t∈[0,∞] is regular, if it is regular on [0,∞) and

E[X∞ − lim
t→∞

Xt|F∞−] = 0.

Throughout the paper we consider several filtrations and stochastic processes, so in order to
keep the notation simple we will often use (Ft) instead of (Ft)t∈[0,T ] and similarly (Xt) (or
simply X) for a process (Xt)t∈[0,T ].

We consider two-player zero-sum Dynkin games on the (possibly infinite) horizon T . Ac-
tions of the first player are based on the information contained in a filtration (F1

t )⊆ (Ft). Ac-
tions of the second player are based on the information contained in a filtration (F2

t )⊆ (Ft).
Each player selects a random time (taking values in [0, T ]) based on the information she
acquires via her filtration: the first player’s random time is denoted by τ while the second
player’s random time is σ. The game terminates at time τ ∧ σ ∈ [0, T ] with the first player
delivering to the second player the payoff

(2) P(τ, σ) = fτI{τ<σ} + gσI{σ<τ} + hτI{τ=σ}.

The first player (or τ -player) is the minimiser in the game whereas the second player (or σ-
player) is the maximiser. That means that the former will try to minimise the expected payoff
(see (3) below) while the latter will try to maximise it.

The payoff processes f , g and h satisfy the following conditions:

(A1) f, g ∈ Lb,
(A2) f, g are (Ft)-adapted regular processes,
(A3) ft ≥ ht ≥ gt for all t ∈ [0, T ], P-a.s.,
(A4) h is an (Ft)-adapted, measurable process.
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In particular, we do not assume that h is càdlàg.
In the context of zero-sum games that we will address below, our assumption (A3) corre-

sponds to the so-called games with the second-mover advantage, i.e., games in which both
players have an incentive to wait for the opponent to end the game.

Assumption (A1) is natural in the framework of optimal stopping problems (see, e.g., [35,
Section 2.2], [25, Eq. (D.29)]) and Dynkin games ([46]). With (A2) we replace semimartin-
gale assumptions on f and g from [46] while imposing the regularity condition dating back
to [33] in the optimal stopping framework. Regular processes encompass a large family of
stochastic processes encountered in applications. It is straightforward to see that quasi left-
continuous processes [38, Section III.11] are regular. In the Markovian framework all stan-
dard processes [7, Def. I.9.2] and, in particular, weak Feller processes ([38, Def. III.6.5 and
Thm. III.11.1] or [7, Thm. I.9.4]) are regular. Hence, strong and weak solutions to stochastic
differential equations (SDEs) driven by multi-dimensional Brownian motion (or Lèvy pro-
cess and bounded coefficients) [1, Section 6.7] and solutions to jump-diffusion SDEs are also
regular processes. More generally, a regular process is allowed to jump at predictable times
η, provided that such jumps have zero mean conditional on Fη−.

We subsequently relax Assumption (A2) by allowing payoff processes with predictable
jumps of nonzero mean. That is, we replace (A2) with the following:

(A2’) Processes f and g have the decomposition f = f̃ + f̂ , g = g̃+ ĝ with
1. f̃ , g̃ ∈ Lb,
2. f̃ , g̃ are (Ft)-adapted regular processes,
3. f̂ , ĝ are (Ft)-adapted (right-continuous) piecewise-constant processes of integrable

variation with f̂0 = ĝ0 = 0, ∆f̂T = f̂T − f̂T− = 0 and ∆ĝT = ĝT − ĝT− = 0,
4. either f̂ is non-increasing or ĝ is non-decreasing.

Notice that there are non-decreasing processes (f̂+
t ), (f̂−

t ), (ĝ+t ), (ĝ
−
t ) ∈ Lb starting from 0

such that f̂ = f̂+ − f̂− and ĝ = ĝ+ − ĝ− [13, p. 115].
Under Assumption (A2’), we allow jumps of f̂ in any direction and only upward jumps of

ĝ, or, viceversa, jumps of ĝ in any direction and downward jumps of f̂ . This ensures a certain
closedness property (see Section 5.4). It is worth emphasising that further relaxation of condi-
tion (A2’) is not possible in the generality of our setting as demonstrated in Remark 5.25 and
in Section 6.3. While regular processes have no restrictions on non-predictable jumps, (A2’)
relaxes condition in Eq. (1) by allowing predictable jumps with non-zero (conditional) mean.
The necessity to restrict the direction of predictable jumps of one of the payoff processes is a
new feature introduced by the asymmetry of information. In classical Dynkin games it is not
necessary, see [17, 32, 44].

We further require a technical assumption

(A5) The filtrations (Ft) and (F i
t ), i= 1,2, satisfy the usual conditions, i.e., they are right-

continuous and F i
0, i= 1,2, contain all sets of P-measure zero.

Players assess the game by looking at the expected payoff

(3) N(τ,σ) = E
[
P(τ,σ)

]
.

The game is said to have a value if

sup
σ

inf
τ
N(τ,σ) = inf

τ
sup
σ

N(τ,σ),

where, for now, we do not specify the nature of the admissible random times (τ,σ). The
mathematical difficulty with establishing existence of a value lies in the possibility to swap
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the order of ‘inf’ and ‘sup’ and this is closely linked to the choice of admissible random
times. Furthermore, an admissible pair (τ∗, σ∗) is said to be a saddle point (or a pair of
optimal strategies) if

N(τ∗, σ)≤N(τ∗, σ∗)≤N(τ,σ∗),

for all other admissible pairs (τ,σ).

REMARK 2.1. Our problem formulation enjoys a symmetry which will be later used in
proofs. Since we do not make assumptions on the sign of f , g, h, if the value exists for the
game with payoff P(τ,σ), then it also exists for the game with payoff P ′(τ,σ) :=−P(τ,σ).
However, in the latter game the τ -player is a maximiser and the σ-player is a minimiser, by
the simple fact

sup
σ

inf
τ
E[P(τ,σ)] =− inf

σ
sup
τ

E[P ′(τ,σ)],(4)

where, obviously, in P ′ we have the payoff processes f ′
t :=−ft, g′t :=−gt and h′t :=−ht.

It has been indicated in the literature that games with asymmetric information may not
have a value if players’ strategies are stopping times for their respective filtrations, see [23,
Section 2.1]. Indeed, in Section 6 we demonstrate that the game studied in this paper may
not, in general, have a value if the first player (resp. the second player) uses (F1

t )-stopping
times (resp. (F2

t )-stopping times). It has been proven in certain Markovian set-ups that the
relaxation of player controls to randomised stopping times may be sufficient for the existence
of the value (see, e.g., [23], [22]). The goal of this paper is to show that this is indeed true in
the generality of our non-Markovian set-up for the game with payoff (3).

The framework of this paper encompasses all two-player zero-sum Dynkin games in con-
tinuous time that we found in the literature. Indeed, when (Ft) = (F1

t ) = (F2
t ), the game (3)

is the classical Dynkin game with full information for both players. The case of (F1
t ) = (F2

t )
but (F1

t ) 6= (Ft) corresponds to a game with partial but symmetric information about the
payoff processes (e.g., [12]), whereas (F1

t ) 6= (F2
t ) is the game with asymmetric informa-

tion. One can have (F1
t ) = (Ft), i.e., only the second player is uninformed (e.g., [23]), or

(F1
t ) 6= (Ft) and (F2

t ) 6= (Ft), i.e., both players access different information flows and nei-
ther of them has full knowledge of the underlying world (e.g., [22]). In Section 3, we present
in full detail how games with asymmetric information studied in the literature fit into our
framework.

As mentioned above the concept of randomised stopping time is central in our work, so
we introduce it here. For that we need to consider increasing processes: given a filtration
(Gt)⊆ (Ft) let

A◦(Gt) :={ρ : ρ is (Gt)-adapted with t 7→ ρt(ω) càdlàg,

non-decreasing, ρ0−(ω) = 0 and ρT (ω) = 1 for all ω ∈Ω}.

In the definition of A◦(Gt) we take the opportunity to require that the stated properties hold
for all ω ∈Ω. This leads to no loss of generality if G0 contains all P-null sets of Ω. Hence for
any ω ∈ N ⊂ Ω with P(N ) = 0 we can simply set ρt(ω) = 0 for t ∈ [0, T ) and ρT (ω) = 1.
Recall that in the infinite-time horizon case, T =∞, we understand ρT as an F∞-measurable
random variable while ρT− := limt→∞ ρt (which exists by the assumption that (ρt) is a
càdlàg process). Randomised stopping times can be defined as follows.
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DEFINITION 2.2. Given a filtration (Gt) ⊆ (Ft), a random variable η is called a (Gt)-
randomised stopping time if there exists a random variable Z with uniform distribution
U([0,1]), independent of FT , and a process ρ ∈A◦(Gt) such that

(5) η = η(ρ,Z) = inf{t ∈ [0, T ] : ρt >Z}, P-a.s.

The variable Z is called a randomisation device for the randomised stopping time η, and
the process ρ is called the generating process. The set of (Gt)-randomised stopping times is
denoted by T R(Gt). It is assumed that randomisation devices of different stopping times are
independent.

We refer to [42], [46] for an extensive discussion on various definitions of randomised
stopping times and conditions that are necessary for their equivalence. To avoid unneces-
sary complication of notation, we assume that the probability space (Ω,F ,P) supports two
independent random variables Zτ and Zσ which are also independent of FT and are the
randomisation devices for the randomised stopping times τ and σ of the two players.

DEFINITION 2.3. Define

V∗ := sup
σ∈T R(F2

t )
inf

τ∈T R(F1

t )
N(τ,σ) and V ∗ := inf

τ∈T R(F1

t )
sup

σ∈T R(F2

t )
N(τ,σ).

The lower value and upper value of the game in randomised strategies are given by V∗ and
V ∗, respectively. If they coincide, the game is said to have a value in randomised strategies

V = V∗ = V ∗.

The following theorem states the main result of this paper.

THEOREM 2.4. Under assumptions (A1), (A2’), (A3)-(A5), the game has a value in ran-

domised strategies. Moreover, if f̂ and ĝ in (A2’) are non-increasing and non-decreasing,

respectively, there exists a pair (τ∗, σ∗) of optimal strategies.

For the clarity of presentation of our methodology, we first prove a theorem with more
restrictive regularity properties of payoff processes and then show how to extend the proof to
the general case of Theorem 2.4.

THEOREM 2.5. Under assumptions (A1)-(A5), the game has a value in randomised

strategies and there exists a pair (τ∗, σ∗) of optimal strategies.

Proofs of the above theorems are given in Section 5. They rely on two key results: an
approximation procedure (Propositions 5.5 and 5.22) and an auxiliary game with ‘nice’ regu-
larity properties (Theorem 5.4 and 5.21) which enables the use of a known min-max theorem
(Theorem 5.1).

The σ-algebra F0 is not assumed to be trivial. It is therefore natural to consider a game
in which players assess their strategies ex-post, i.e., after observing the information available
to them at time 0 when their first action may take place. Allowing for more generality, let G
be a σ-algebra contained in F1

0 and in F2
0 , i.e., containing only information available to both

players at time 0. The expected payoff of the game in this case takes the form (recall that
τ,σ ∈ [0, T ]):

(6) E
[
P(τ,σ)

∣∣G
]
= E

[
fτI{τ<σ} + gσI{σ<τ} + hτI{τ=σ}

∣∣G
]
.

The proof of the following theorem is in Section 5.5.
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THEOREM 2.6. Under the assumptions of Theorem 2.4 and for any σ-algebra G ⊆F1
0 ∩

F2
0 , the G-conditioned game has a value, i.e.

(7) ess sup
σ∈T R(F2

t )
ess inf

τ∈T R(F1

t )
E
[
P(τ,σ)

∣∣G
]
= ess inf

τ∈T R(F1

t )
ess sup

σ∈T R(F2

t )
E
[
P(τ,σ)

∣∣G
]
, P-a.s.

Moreover, if f̂ and ĝ in (A2’) are non-increasing and non-decreasing, respectively, there

exists a pair (τ∗, σ∗) of optimal strategies in the sense that

(8) E
[
P(τ∗, σ)

∣∣G
]
≤ E

[
P(τ∗, σ∗)

∣∣G
]
≤ E

[
P(τ,σ∗)

∣∣G
]
, P-a.s.

for all other admissible pairs (τ,σ).

3. Examples. Before moving on to prove the theorems stated above, in this section we
illustrate some of the specific games for which our general results apply. We draw form the
existing literature on two-player zero-sum Dynkin games in continuous time and show that a
broad class of these (all those we are aware of) fits within our framework. Since our contri-
bution is mainly to the theory of games with partial/asymmetric information, we exclude the
well-known case of games with full information which has been extensively studied (see our
literature review in the introduction).

3.1. Game with partially observed scenarios. Our first example extends the setting of
[23] and it reduces to that case if J = 1 and the payoff processes f , g and h are deterministic
functions of an Itô diffusion (Xt) on Rd, i.e., ft = f(t,Xt), gt = g(t,Xt) and ht = h(t,Xt).
On a discrete probability space (Ωs,Fs,Ps), consider two random variables I and J tak-
ing values in {1, . . . , I} and in {1, . . . , J}, respectively. Denote their joint distribution by
(πi,j)i=1,...,I,j=1,...,J so that πi,j = Ps(I = i,J = j). The indices (i, j) are used to identify
the scenario in which the game is played and are the key ingredient to model the asymmetric
information feature. Consider another probability space (Ωp,Fp,Pp) with a filtration (Fp

t )
satisfying the usual conditions, and (Fp

t )-adapted payoff processes f i,j , gi,j , hi,j , with (i, j)
taking values in {1, . . . , I} × {1, . . . , J}. For all i, j, we assume that f i,j , gi,j , hi,j satisfy
conditions (A1)-(A4).

The game is set on the probability space (Ω,F ,P) := (Ωp ×Ωs,Fp ∨ Fs,Pp ⊗ Ps). The
first player is informed about the outcome of I before the game starts but never directly
observes J . Hence, her actions are adapted to the filtration F1

t =Fp
t ∨σ(I). Conversely, the

second player knows J but not I , so her actions are adapted to the filtration F2
t =Fp

t ∨σ(J ).
Given a choice of random times τ ∈ T R(F1

t ) and σ ∈ T R(F2
t ) for the first and the second

player, the payoff is

P(τ,σ) = fI,J
τ I{τ<σ} + gI,Jσ I{σ<τ} + hI,Jτ I{τ=σ}.

Players assess the game by looking at the expected payoff as in (3). It is worth noticing that
this corresponds to the so-called ‘ex-ante’ expected payoff, i.e., the expected payoff before
the players acquire the additional information about the values of I and J . The structure
of the game is common knowledge, i.e., both players know all processes f i,j , gi,j and hi,j

involved; however, they have partial and asymmetric knowledge on the couple (i, j) which is
drawn at the start of the game from the distribution of (I,J ).

Drawing a precise parallel with the framework of Section 2, the above setting corresponds
to ft = fI,J

t , gt = gI,Jt , and ht = hI,Jt with the filtration Ft = Fp
t ∨ σ(I,J ). The observa-

tion flows for the players are given by (F1
t ) and (F2

t ), respectively.
The particular structure of players’ filtrations (F1

t ) and (F2
t ) allows for the following de-

composition of randomised stopping times, see [21, Proposition 3.3] (recall the radomisation
devices Zτ ∼ U([0,1]) and Zσ ∼ U([0,1]), which are mutually independent and independent
of FT ).
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LEMMA 3.1. Any τ ∈ T R(F1
t ) has a representation

(9) τ =

I∑

i=1

I{I=i}τi,

where τ1, . . . , τI ∈ T R(Fp
t ), with generating processes ξ1, . . . , ξI ∈ A◦(Fp

t ) and a com-

mon randomisation device Zτ . An analogous representation holds for σ with σ1, . . . , σJ ∈
T R(Fp

t ), generating processes ζ1t , . . . , ζ
J
t ∈ A◦(Fp

t ), and a common randomisation device

Zσ .

COROLLARY 3.2. Any (F1
t )-stopping time τ has a decomposition (9) with τ1, . . . , τI

being (Fp
t )-stopping times (and analogously for (F2

t )-stopping times).

Hence, given a realisation of the idiosyncratic scenario variable I (resp. J ), the first (sec-
ond) player chooses a randomised stopping time whose generating process is adapted to the
common filtration (Fp

t ). The resulting expected payoff can be written as

N(τ,σ) =

I∑

i=1

J∑

j=1

πi,jE
[
f i,j
τi I{τi<σj} + gi,jσj

I{σj<τi} + hi,jτi I{τi=σj}

]
.

3.2. Game with a single partially observed dynamics. Our second example generalises
the set-ups of [12] and [10] and reduces to those cases when J = 2, the time horizon is infinite
and the payoff processes are (particular) time-homogeneous functions of a (particular) one-
dimensional diffusion. Here the underlying dynamics of the game is a diffusion, whose drift
depends on the realisation of an independent random variable J ∈ {1, . . . , J}. Formally, on a
probability space (Ω,F ,P) we have a Brownian motion (Wt) on Rd, an independent random
variable J ∈ {1, . . . , J} with distribution πj = P(J = j), and a process (Xt) on Rd with the
dynamics

dXt =

J∑

j=1

I{J=j}µj(Xt)dt+ σ(Xt)dWt, X0 = x,

where σ, (µj)j=1,...J are given functions (known to both players) that guarantee existence of
a unique strong solution of the SDE for each j = 1, . . . J . The payoff processes are determin-
istic functions of the underlying process, i.e., ft = f(t,Xt), gt = g(t,Xt) and ht = h(t,Xt),
and they are known to both players. We assume that the payoff processes satisfy conditions
(A1)-(A4). It is worth to remark that in the specific setting of [12] the norms ‖f‖Lb

and ‖g‖Lb

are not finite so that our results cannot be directly applied. However, the overall structure of
the game in [12] is easier than ours so that some other special features of the payoff processes
can be used to determine existence of the value therein.

To draw a precise parallel with the notation from Section 2, here we take Ft =FW
t ∨σ(J ),

where (FW
t ) is the filtration generated by the Brownian sample paths and augmented with

P-null sets. Both players observe the dynamics of X , however they have partial/asymmetric
information on the value of J . In [12] neither of the two players knows the true value of J , so
we have (F1

t ) = (F2
t ) = (FX

t ), where (FX
t ) is generated by the sample paths of the process

X and it is augmented by the P-null sets (notice that FX
t ( Ft). In [10] instead, the first

player (minimiser) observes the true value of J . In that case (F1
t ) = (Ft) and (F2

t ) = (FX
t ),

so that F2
t ( F1

t . Using the notation XJ to emphasise the dependence of the underlying
dynamics on J , and given a choice of random times τ ∈ T R(F1

t ) and σ ∈ T R(F2
t ) for the

first and the second player, the game’s payoff reads

P(τ, σ) = f(τ,XJ
τ )I{τ<σ} + g(σ,XJ

σ )I{σ<τ} + h(τ,XJ
τ )I{τ=σ}.



10

Players assess the game by looking at the expected payoff as in (3). Finally, we remark that
under a number of (restrictive) technical assumptions and with infinite horizon [12] and [10]
show the existence of a value and of a saddle point in a smaller class of strategies. In [12]
both players use (FX

t )-stopping times, with no need for additional randomisation. In [10] the
uninformed player uses (FX

t )-stopping times but the informed player uses (Ft)-randomised
stopping times.

3.3. Game with two partially observed dynamics. Here we show how the setting of
[22] also fits in our framework. This example is conceptually different from the previous
two because the players observe two different stochastic processes. On a probability space
(Ω,F ,P) two processes (Xt) and (Yt) are defined (in [22] these are finite-state continuous-
time Markov chains). The first player only observes the process (Xt) while the second
player only observes the process (Yt). In the notation of Section 2, we have (F1

t ) = (FX
t ),

(F2
t ) = (FY

t ) and (Ft) = (FX
t ∨ FY

t ), where the filtration (FX
t ) is generated by the sam-

ple paths of (Xt) and (FY
t ) by those of (Yt) (both filtrations are augmented with P-null

sets). The payoff processes are deterministic functions of the underlying dynamics, i.e.,
ft = f(t,Xt, Yt), gt = g(t,Xt, Yt) and ht = h(t,Xt, Yt), and they satisfy conditions (A1)-
(A4). Given a choice of random times τ ∈ T R(F1

t ) and σ ∈ T R(F2
t ) for the first and the

second player, the game’s payoff reads

P(τ,σ) = f(τ,Xτ , Yτ )I{τ<σ} + g(σ,Xσ, Yσ)I{σ<τ} + h(τ,Xτ , , Yτ )I{τ=σ}.

Players assess the game by looking at the expected payoff as in (3). We remark that the
proof of existence of the value in [22] is based on variational inequalities and relies on the
finiteness of the state spaces of both underlying processes, and therefore cannot be extended
to our general non-Markovian framework.

3.4. Game with a random horizon. Here we consider a non-Markovian extension of the
framework of [31], where the time horizon of the game is exponentially distributed and in-
dependent of the payoff processes. On a probability space (Ω,F ,P) we have a filtration
(Gt)t∈[0,T ], augmented with P-null sets, and a positive random variable θ which is indepen-
dent of GT and has a continuous distribution. Let Λt := I{t≥θ} and take Ft = Gt ∨ σ(Λs, 0≤
s≤ t).

The players have asymmetric knowledge of the random variable θ. The first player ob-
serves the occurrence of θ, whereas the second player does not. We have (F1

t ) = (Ft) and
(F2

t ) = (Gt)( (F1
t ). Given a choice of random times τ ∈ T R(F1

t ) and σ ∈ T R(F2
t ) for the

first and the second player, the game’s payoff reads

P(τ,σ) = I{τ∧σ≤θ}

(
f0
τ I{τ<σ} + g0σI{σ<τ} + h0τI{τ=σ}

)
,(10)

where f0, g0 and h0 are (Gt)-adapted processes that satisfy conditions (A1)-(A4) and f0 ≥ 0.
Notice that the problem above does not fit directly into the framework of Section 2:

Assumption (A1) is indeed violated, because the processes (I{t≤θ}f
0
t ), (I{t≤θ}g

0
t ) are not

càdlàg. However, we now show that the game can be equivalently formulated as a game
satisfying conditions of our framework. The expected payoff can be rewritten as follows

N0(τ,σ) := E
[
P(τ,σ)

]
= E

[
I{τ≤θ}I{τ<σ}f

0
τ + I{σ≤θ}I{σ<τ}g

0
σ + I{σ≤θ}I{τ=σ}h

0
τ

]

= E
[
I{τ≤θ}I{τ<σ}f

0
τ + I{σ<θ}I{σ<τ}g

0
σ + I{σ<θ}I{τ=σ}h

0
τ

]
,

where the second equality holds because θ is continuously distributed and independent of
F2
T , so P(σ = θ) = 0 for any σ ∈ T R(F2

t ). Fix ε > 0 and set

f ε
t := f0

t I{t<θ+ε}, gt := g0t I{t<θ}, ht := h0t I{t<θ}, t ∈ [0, T ].
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We see that conditions (A1), (A3), (A4) hold for the processes (f ε
t ), (gt), (ht) (for condition

(A3) we use that f0 ≥ 0). Condition (A2) (regularity of payoffs f ε and g) is satisfied, because
θ has a continuous distribution, so it is a totally inaccessible stopping time for the filtration
(Ft) by [38, Example VI.14.4]. Therefore, by Theorem 2.5, the game with expected payoff

N ε(τ,σ) = E
[
Pε(τ, σ)

]
:= E

[
I{τ<σ}f

ε
τ + I{σ<τ}gσ + I{τ=σ}hτ

]

has a value and a pair of optimal strategies exists.
We now show that the game with expected payoff N0 has the same value as the one with

expected payoff N ε, for any ε > 0. First observe that

N ε(τ,σ)−N0(τ,σ) = E
[
I{τ<σ}I{θ<τ<θ+ε}f

0
τ

]
≥ 0

by the assumption that f0 ≥ 0. Hence,

(11) inf
τ∈T R(F1

t )
sup

σ∈T R(F2

t )
N ε(τ,σ)≥ inf

τ∈T R(F1

t )
sup

σ∈T R(F2

t )
N0(τ,σ).

To derive an opposite inequality for the lower values, fix σ ∈ T R(F2
t ). For τ ∈ T R(F1

t ),
define

τ̂ =

{
τ, τ ≤ θ,

T, τ > θ.

Then, using that Pε(τ,σ) = P(τ,σ) on {τ ≤ θ} and Pε(T,σ) = g0σI{σ<θ} = P(τ,σ) on
{τ > θ}, we have N ε(τ̂ , σ) =N0(τ,σ). It then follows that

inf
τ∈T R(F1

t )
N ε(τ,σ)≤ inf

τ∈T R(F1

t )
N0(τ,σ),

which implies

(12) sup
σ∈T R(F2

t )
inf

τ∈T R(F1

t )
N ε(τ,σ)≤ sup

σ∈T R(F2

t )
inf

τ∈T R(F1

t )
N0(τ,σ).

Since the value of the game with expected payoff N ε exists, combining (11) and (12) we
see that the value of the game with expected payoff N0 also exists. It should be noted, though,
that this does not imply that an optimal pair of strategies for N ε is optimal for N0.

It is worth noticing that in [31] the setting is Markovian with T = ∞, f0
t = h0t =

e−rtf̄(Xt), g0t = e−rtḡ(Xt), f̄ , ḡ deterministic functions, r ≥ 0, θ exponentially distributed
and (Xt) a one-dimensional linear diffusion. Under specific technical requirements on the
functions f̄ and ḡ the authors find that a pair of optimal strategies for the game (10) ex-
ists when the first player uses (F1

t )-stopping times and the second player uses (F2
t )-stopping

times (in the form of hitting times to thresholds), with no need for randomisation. Their meth-
ods rely on the theory of one-dimensional linear diffusions (using scale function and speed
measure) and free-boundary problems, hence do not admit an extension to a non-Markovian
case.

4. Reformulation as a game of (singular) controls. In order to integrate out the ran-
domisation devices for τ and σ and obtain a reformulation of the payoff functional N(τ,σ)
in terms of generating processes for randomised stopping times τ and σ, we need the fol-
lowing two auxiliary lemmata. We remark that if η is a (Gt)-randomised stopping time for
(Gt) ⊆ (Ft), then η is also an (Ft)-randomised stopping time. Therefore, the results below
are formulated for (Ft)-randomises stopping times.
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LEMMA 4.1. Let η ∈ T R(Ft) with the generating process (ρt). Then, for any FT -

measurable random variable κ with values in [0, T ],

E[I{η≤κ}|FT ] = ρκ, E[I{η>κ}|FT ] = 1− ρκ,(13)

E[I{η<κ}|FT ] = ρκ
−

, E[I{η≥κ}|FT ] = 1− ρκ
−

.(14)

PROOF. The proof of (13) follows the lines of [10, Proposition 3.1]. Let Z be the ran-
domisation device for η. Since ρ is right-continuous, non-decreasing and (5) holds, we have

{ρκ >Z} ⊆ {η ≤ κ} ⊆ {ρκ ≥ Z}.

Using that ρκ is FT -measurable, and Z is uniformly distributed and independent of FT , we
compute

E[I{η≤κ}|FT ]≥ E[I{ρκ>Z}|FT ] =

∫ 1

0
I{ρκ>y}dy = ρκ,

and

E[I{η≤κ}|FT ]≤ E[I{ρκ≥Z}|FT ] =

∫ 1

0
I{ρκ≥y}dy = ρκ.

This completes the proof of the first equality in (13). The other one is a direct consequence.
To prove (14), we observe that, by (13), for any ε > 0 we have

I{κ>0}E[I{η≤(κ−ε)∨(κ/2)}|FT ] = I{κ>0}ρ(κ−ε)∨(κ/2).

Dominated convergence theorem implies

E[I{η<κ}|FT ] = I{κ>0}E[I{η<κ}|FT ] = lim
ε↓0

I{κ>0}E[I{η≤(κ−ε)∨(κ/2)}|FT ]

= lim
ε↓0

I{κ>0} ρ(κ−ε)∨(κ/2) = I{κ>0} ρκ− = ρκ−,

where in the last equality we used that ρ0− = 0. This proves the first equality in (14). The
other one is a direct consequence.

LEMMA 4.2. Let η, θ ∈ T R(Ft) with generating processes (ρt), (χt) and independent

randomisation devices Zη , Zθ . For (Xt) measurable, adapted and such that ‖X‖Lb
< ∞

(but not necessarily càdlàg), we have

E
[
XηI{η≤θ}∩{η<T}

]
= E

[∫

[0,T )
Xt(1− χt−)dρt

]
,

E
[
XηI{η<θ}

]
= E

[∫

[0,T )
Xt(1− χt)dρt

]
,

where we use the notation
∫
[0,T ) for the (pathwise) Lebesgue-Stieltjes integral.

PROOF. For y ∈ [0,1), define a family of random variables

q(y) = inf{t ∈ [0, T ] : ρt > y}.

Then, η = q(Zη). Using that Zη ∼ U(0,1) and Fubini’s theorem, we see that

E
[
XηI{η≤θ}∩{η<T}

]
= E

[∫ 1

0
Xq(y)I{q(y)≤θ}∩{q(y)<T}dy

]

=

∫ 1

0
E
[
E
[
Xq(y)I{q(y)≤θ}∩{q(y)<T}|FT

]]
dy.
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Since Xq(y)I{q(y)<T} is FT -measurable and the randomization device Zθ is independent of
FT , we continue as follows:
∫ 1

0
E
[
E
[
Xq(y)I{q(y)≤θ}∩{q(y)<T}|FT

]]
dy =

∫ 1

0
E
[
Xq(y)I{q(y)<T}E[I{q(y)≤θ}|FT ]

]
dy

= E

[∫ 1

0
Xq(y)I{q(y)<T}(1− χq(y)−)dy

]

= E

[∫

[0,T )
Xt(1− χt−)dρt

]
,

where in the second equality we apply Lemma 4.1 with κ= q(y) and in the third equality we
change the variable of integration applying [36, Proposition 0.4.9] ω-wise and using the fact
that the function y 7→ q(y)(ω) is the generalized inverse of t 7→ ρt(ω). The first statement of
the lemma is now proved.

For the second statement, we adapt the arguments above to write

E
[
XηI{η<θ}

]
=

∫ 1

0
E
[
Xq(y)E[I{q(y)<θ}|FT ]

]
dy = E

[∫ 1

0
Xq(y)(1− χq(y))dy

]

= E

[∫

[0,T ]
Xt(1− χt)dρt

]
= E

[∫

[0,T )
Xt(1− χt)dρt

]
,

where in the last equality we used that χT = 1.

COROLLARY 4.3. Under the assumptions of Lemma 4.2, we have

E[XηI{η=θ}] = E

[ ∑

t∈[0,T ]

Xt∆ρt∆χt

]
,

where ∆ρt = ρt − ρt− and ∆χt = χt − χt−.

PROOF. From Lemma 4.2 we have

E[XηI{η=θ}∩{η<T}] =E
[
Xη

(
I{η≤θ}∩{η<T} − I{η<θ}

)]

=E

[∫

[0,T )
Xt∆χtdρt

]
= E

[ ∑

t∈[0,T )

Xt∆χt∆ρt

]
,

where the final equality is due to the fact that t 7→ χt(ω) has countably many jumps for each
ω ∈Ω and the continuous part of the measure dρt(ω) puts no mass there. Further, we notice
that

E
[
I{η=θ=T}|FT

]
= lim

n→∞
E
[
I{η>T−1/n}I{θ>T−1/n}|FT

]

= lim
n→∞

E
[
I{ρT−1/n≤Zη}I{χT−1/n≤Zθ}|FT

]

= lim
n→∞

(1− ρT−1/n)(1− χT−1/n) =∆ρT∆χT ,

where the second equality is by

{ρT−1/n <Zη} ⊆ {η > T − 1
n} ⊆ {ρT−1/n ≤ Zη},

and analogous inclusions for {θ>T− 1
n}. The third equality uses that ρT−1/n and χT−1/n

are FT -measurable, and Zη , Zθ are independent of FT . The final equality follows since
ρT = χT = 1. Combining the above gives the desired result.



14

Applying Lemma 4.2 and Corollary 4.3 to (2) and (3), we obtain the following reformula-
tion of the game.

PROPOSITION 4.4. For τ ∈ T R(F1
t ), σ ∈ T R(F2

t ),

(15) N(τ,σ) = E

[∫

[0,T )
ft(1− ζt)dξt +

∫

[0,T )
gt(1− ξt)dζt +

∑

t∈[0,T ]

ht∆ξt∆ζt

]
,

where (ξt) and (ζt) are the generating processes for τ and σ, respectively.

With a slight abuse of notation, we will denote the right-hand side of (15) by N(ξ, ζ).

REMARK 4.5. In the Definition 2.3 of the lower value, the infimum can always be re-
placed by infimum over pure stopping times (cf. [30]). Same holds for the supremum in the
definition of the upper value.

Let us look at the upper value: take arbitrary τ ∈ T R(F1
t ), σ ∈ T R(F2

t ), and define the
family of stopping times

q(y) = inf{t ∈ [0, T ] : ζt > y}, y ∈ [0,1),

similarly to the proof of Lemma 4.2 and with (ζt) the generating process of σ. Then,

N(τ,σ) =

∫ 1

0
N(τ, q(y))dy ≤ sup

y∈[0,1)
N(τ, q(y))≤ sup

σ∈T (F2

t )
N(τ,σ),

where T (F2
t ) denotes the set of pure (F2

t )-stopping times. Since T (F2
t )⊂ T R(F2

t ), we have

sup
σ∈T R(F2

t )
N(τ,σ) = sup

σ∈T (F2

t )
N(τ,σ),

and, consequently, the ‘inner’ optimisation can be done over pure stopping times:

inf
τ∈T R(F1

t )
sup

σ∈T R(F2

t )
N(τ,σ) = inf

τ∈T R(F1

t )
sup

σ∈T (F2

t )
N(τ,σ).

By the same argument one can show that

sup
σ∈T R(F2

t )
inf

τ∈T R(F1

t )
N(τ,σ) = sup

σ∈T R(F2

t )
inf

τ∈T (F1

t )
N(τ,σ).

However, in general an analogue result for the ‘outer’ optimisation does not hold, i.e.,

sup
σ∈T R(F2

t )
inf

τ∈T R(F1

t )
N(τ,σ) 6= sup

σ∈T (F2

t )
inf

τ∈T R(F1

t )
N(τ,σ)

as shown by an example in Section 6.

5. Sion’s theorem and existence of value. The proofs of Theorems 2.4 and 2.5, i.e.,
that the game with payoff (3) has a value in randomised strategies, utilises Sion’s min-max
theorem [41] (see also [28] for a simple proof). The idea of relying on Sion’s theorem comes
from [46] where the authors study zero-sum Dynkin games with full and symmetric informa-
tion. Here, however, we need different key technical arguments as explained in, e.g., Remark
5.17 below.

Let us start by recalling Sion’s theorem.
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THEOREM 5.1 (Sion’s theorem [41, Corollary 3.3]). Let A and B be convex subsets of

a linear topological space one of which is compact. Let ϕ(µ,ν) be a function A×B 7→ R
that is quasi-concave and upper semi-continuous in µ for each ν ∈B, and quasi-convex and

lower semi-continuous in ν for each µ ∈A. Then,

sup
µ∈A

inf
ν∈B

ϕ(µ,ν) = inf
ν∈B

sup
µ∈A

ϕ(µ,ν).

The key step in applying Sion’s theorem is to find a topology on the set of randomised
stopping times, or, equivalently, on the set of corresponding generating processes so that the
functional N(·, ·) satisfies the assumptions. We will use the weak topology of

S := L2
(
[0, T ]×Ω,B([0, T ])×F , λ× P

)
,

where λ denotes the Lebesgue measure on [0, T ]. Given a filtration (Gt)⊆ (Ft), in addition
to the class of increasing processes A◦(Gt) introduced in Section 2, here we also need

A◦
ac(Gt) :={ρ ∈A◦(G) : t 7→ ρt(ω) is absolutely continuous on [0, T ) for all ω ∈Ω}.

It is important to notice that ρ ∈A◦
ac(Gt) may have a jump at time T if

ρT−(ω) := lim
t↑T

∫ t

0

(
d
dtρs

)
(ω)ds < 1 = ρT (ω).

As with A◦(Gt), in the definition of A◦
ac(Gt) we require that the stated properties hold for all

ω ∈ Ω, which causes no loss of generality if G0 contains all P-null sets of Ω. It is clear that
A◦

ac(Gt)⊂A◦(Gt)⊂ S .
For reasons that will become clear later (e.g., see Lemma 5.16), we prefer to work with

slightly more general processes than those in A◦(Gt) and A◦
ac(Gt). Let us denote

A(Gt) :={ρ ∈ S : ∃ ρ̂ ∈A◦(Gt) such that ρ= ρ̂ for (λ× P)-a.e. (t,ω) ∈ [0, T ]×Ω},

Aac(Gt) :={ρ ∈ S : ∃ ρ̂ ∈A◦
ac(Gt) such that ρ= ρ̂ for (λ× P)-a.e. (t,ω) ∈ [0, T ]×Ω}.

We will call ρ̂ in the definition of the set A (and Aac) the càdlàg (and absolutely continuous)
representative of ρ. Although it is not unique, all càdlàg representatives are indistinguishable
(Lemma 5.6). Hence, all càdlàg representatives ρ̂ of ρ ∈A define the same positive measure
on [0, T ] for P-a.e. ω ∈Ω via a non-decreasing mapping t 7→ ρ̂t(ω). Then, given any bounded
measurable process (Xt) the stochastic process (Lebesgue-Stieltjes integral)

t 7→

∫

[0,t]
Xs dρ̂s, t ∈ [0, T ],

does not depend on the choice of the càdlàg representative ρ̂ in the sense that it is defined up
to indistinguishability.

The next definition connects the randomised stopping times that we use in the construction
of the game’s payoff (Proposition 4.4) with processes from the classes A(F1

t ) and A(F2
t ).

Note that A(Gt) ⊆ A(Ft) whenever (Gt) ⊆ (Ft), so the definition can be stated for A(Ft)
without any loss of generality.

DEFINITION 5.2. Let (Xt) be measurable and such that ‖X‖Lb
<∞ (not necessarily

càdlàg). For χ,ρ ∈A(Ft), we define the Lebesgue-Stieltjes integral processes

t 7→

∫

[0,t]
Xs dρs, t 7→

∫

[0,t]
Xs (1− χs)dρs, t 7→

∫

[0,t]
Xs (1− χs−)dρs, t ∈ [0, T ],

by

t 7→

∫

[0,t]
Xs dρ̂s, t 7→

∫

[0,t]
Xs (1− χ̂s)dρ̂s, t 7→

∫

[0,t]
Xs (1− χ̂s−)dρ̂s, t ∈ [0, T ],

for any choice of the càdlàg representatives ρ̂ and χ̂, uniquely up to indistinguishability.
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With a slight abuse of notation we define a functional N : A(F1
t )×A(F2

t )→ R by the
right-hand side of (15). It is immediate to verify using Definition 2.3 and Proposition 4.4 that
the lower and the upper value of our game satisfy

V∗ = sup
ζ∈A(F2

t )
inf

ξ∈A(F1

t )
N(ξ, ζ), V ∗ = inf

ξ∈A(F1

t )
sup

ζ∈A(F2

t )
N(ξ, ζ).(16)

Notice that even though according to Definition 2.2 the couple (ξ, ζ) should be taken in
A◦(F1

t )×A◦(F2
t ), in (16) we consider (ξ, ζ) ∈ A(F1

t )×A(F2
t ). This causes no inconsis-

tency thanks to the discussion above and Definition 5.2 for integrals.

REMARK 5.3. The mapping A(F1
t ) × A(F2

t ) ∋ (ξ, ζ) 7→ N(ξ, ζ) does not satisfy the
conditions of Sion’s theorem under the strong or the weak topology of S . Indeed, taking
ξnt = I{t≥T/2+1/n}, we have ξnt → I{t≥T/2} =: ξt for λ-a.e. t ∈ [0, T ], so that by the dom-
inated convergence theorem (ξn) also converges to ξ in S . Then, fixing ζt = I{t≥T/2} in
A(F2

t ) we have N(ξn, ζ) = E[gT/2] for all n≥ 1 whereas N(ξ, ζ) = E[hT/2]. So the lower
semicontinuity of ξ 7→N(ξ, ζ) cannot be ensured if, for example, P(hT/2 > gT/2)> 0.

Due to issues indicated in the above remark, as in [46], we ‘smoothen’ the control strategy
of one player in order to introduce additional regularity in the payoff. We will show that this
procedure does not change the value of the game (Proposition 5.5). We choose (arbitrarily
and with no loss of generality, thanks to Remark 2.1) to consider an auxiliary game in which
the first player can only use controls from Aac(F

1
t ). Let us define the associated upper/lower

values:

(17) W∗ = sup
ζ∈A(F2

t )
inf

ξ∈Aac(F1

t )
N(ξ, ζ) and W ∗ = inf

ξ∈Aac(F1

t )
sup

ζ∈A(F2

t )
N(ξ, ζ).

Here, we work under the regularity assumption on the payoff processes (A2). Relaxation
of this assumption is conducted in Section 5.4. The main results can be distilled into the
following theorems:

THEOREM 5.4. Under assumptions (A1)-(A5), the game (17) has a value, i.e.

W∗ =W ∗ :=W.

Moreover, the ζ-player (maximiser) has an optimal strategy, i.e. there exists ζ∗ ∈A(F2
t ) such

that

inf
ξ∈Aac(F1

t )
N(ξ, ζ∗) =W.

PROPOSITION 5.5. Under assumptions (A1)-(A5), for any ζ ∈ A(F2
t ) and ξ ∈ A(F1

t ),
there is a sequence ξn ∈Aac(F

1
t ) such that

limsup
n→∞

N(ξn, ζ)≤N(ξ, ζ).

The proofs of the above theorems will be conducted in the following subsections: Section
5.1 contains a series of technical results which we then use to prove Theorem 5.4 (in Section
5.2) and Proposition 5.5 (in Section 5.3). With the results from Theorem 5.4 and Proposition
5.5 in place we can provide a (simple) proof of Theorem 2.5.
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PROOF OF THEOREM 2.5. Obviously, V∗ ≤W∗ and V ∗ ≤W ∗. However, Proposition 5.5
implies that

inf
ξ∈Aac(F1

t )
N(ξ, ζ) = inf

ξ∈A(F1

t )
N(ξ, ζ) for any ζ ∈A(F2

t ),(18)

so V∗ ≥ W∗ and therefore V∗ = W∗. Then, thanks to Theorem 5.4, we have a sequence of
inequalities which completes the proof of existence of the value

W =W∗ = V∗ ≤ V ∗ ≤W ∗ =W.

In (18) we can choose ζ∗ which is optimal for W (its existence is guaranteed by Theorem
5.4). Then,

V = V∗ = inf
ξ∈A(F1

t )
N(ξ, ζ∗).

Thanks to Remark 2.1, we can repeat the same arguments above with the roles of the two
players swapped as in (4), i.e., the τ -player (ξ-player) is the maximiser and the σ-player (ζ-
player) is the minimiser. Thus, applying again Theorem 5.4 and Proposition 5.5 (with P ′ as
in Remark 2.1 in place of P) we arrive at

−V =: V ′ = inf
ζ∈A(F2

t )
E
[
P ′(ξ∗, ζ)

]
,

where ξ∗ ∈ A(F1
t ) is optimal for the maximiser in the game with value W ′ = −W . Hence

ξ∗ is optimal for the minimiser in the original game with value V and the couple (ξ∗, ζ∗) ∈
A(F1

t )×A(F2
t ) is a saddle point. The corresponding randomised stopping times, denoted

(τ∗, σ∗), are an optimal pair for the players.

5.1. Technical results. In this section we give a series of results concerning the conver-
gence of integrals when either the integrand or the integrator converge in a suitable sense. We
start by stating a technical lemma whose easy proof is omitted.

LEMMA 5.6. Let (Xt) and (Yt) be càdlàg measurable processes such that Xt = Yt,
P-a.s. for t ∈D ⊂ [0, T ) countable and dense, X0− = Y0− and XT = YT , P-a.s. Then (Xt)
is indistinguishable from (Yt).

DEFINITION 5.7. Given a càdlàg measurable process (Xt), for each ω ∈Ω we denote

CX(ω) := {t ∈ [0, T ] :Xt−(ω) =Xt(ω)}.

Our next result tells us that the convergence (λ×P)-a.e. of processes in A(Gt) can be lifted
to P-a.s. convergence at all points of continuity of the corresponding càdlàg representatives.

LEMMA 5.8. For a filtration (Gt)⊆ (Ft), let (ρn)n≥1 ⊂A(Gt) and ρ ∈A(Gt) with ρn →
ρ (λ× P)-a.e. as n→∞. Then for any càdlàg representatives ρ̂n and ρ̂ we have

(19) P
({

ω ∈Ω : lim
n→∞

ρ̂nt (ω) = ρ̂t(ω) for all t ∈Cρ̂(ω)
})

= 1.

PROOF. The (λ×P)-a.e. convergence of ρn to ρ means that the càdlàg representatives ρ̂n
converge to ρ̂ also (λ× P)-a.e.. Hence, there is a set D ⊂ [0, T ] with λ([0, T ] \D) = 0 such
that ρ̂nt → ρ̂t P-a.s. for t ∈D. Since λ([0, T ] \D) = 0, there is a countable subset D0 ⊂D
that is dense in [0, T ]. Define

Ω0 := {ω ∈Ω : ρ̂nt (ω)→ ρ̂t(ω) for all t ∈D0}.
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Then P(Ω0) = 1.
Now, fix ω ∈ Ω0 and let t ∈ Cρ̂(ω) ∩ (0, T ). Take an increasing sequence (t1k)k≥1 ⊂D0

and a decreasing one (t2k)k≥1 ⊂D0, both converging to t as k→∞. For each k ≥ 1 we have

(20) ρ̂t(ω) = lim
k→∞

ρ̂t2k(ω) = lim
k→∞

lim
n→∞

ρ̂nt2k(ω)≥ limsup
n→∞

ρ̂nt (ω),

where in the final inequality we use that ρ̂nt2k
(ω) ≥ ρ̂nt (ω) by monotonicity. By analogous

arguments we also obtain

ρ̂t(ω) = lim
k→∞

ρ̂t1k(ω) = lim
k→∞

lim
n→∞

ρ̂nt1k(ω)≤ lim inf
n→∞

ρ̂nt (ω),

where the first equality holds because t ∈ Cρ̂(ω). Combining the above we get (19) (apart
from t ∈ {0, T}) by recalling that ω ∈ Ω0 and P(Ω0) = 1. The convergence at t = T , ir-
respective of whether it belongs to Cρ̂(ω), is trivial as ρ̂nT (ω) = ρ̂T (ω) = 1. If 0 ∈ Cρ̂(ω),
then ρ̂0(ω) = ρ̂0−(ω) = 0. Inequality (20) reads 0 = ρ̂0(ω) ≥ limsupn→∞ ρ̂n0 (ω). Since
ρ̂n0 (ω)≥ 0, this proves that ρ̂n0 (ω)→ ρ̂0(ω) = 0.

LEMMA 5.9. For a filtration (Gt) ⊆ (Ft), let (ρn)n≥1 ⊂ A◦(Gt) and ρ ∈ A◦(Gt) with

ρn → ρ (λ × P)-a.e. as n → ∞. For any t ∈ [0, T ] and any random variable X ≥ 0 with

E[X]<∞, we have

limsup
n→∞

E[X∆ρnt ]≤ E[X∆ρt].

PROOF. Fix t ∈ (0, T ). Using (λ× P)-a.e. convergence of ρn to ρ, i.e., that
∫ T

0
P
(
lim
n→∞

ρnt = ρt
)
dt= T,

there is a decreasing sequence δm → 0 such that

lim
n→∞

ρnt−δm = ρt−δm , lim
n→∞

ρnt+δm = ρt+δm , P-a.s.

Then, by the dominated convergence theorem,

E[X∆ρt] = lim
m→∞

E[X(ρt+δm − ρt−δm)]

= lim
m→∞

lim
n→∞

E[X(ρnt+δm − ρnt−δm)]

= lim
m→∞

limsup
n→∞

E[X(ρnt+δm − ρnt−δm)]

= lim
m→∞

limsup
n→∞

E[X(ρnt+δm − ρnt + ρnt− − ρnt−δm +∆ρnt )]≥ limsup
n→∞

E[X∆ρnt ],

where the last inequality is due to t 7→ ρnt being non-decreasing. This finishes the proof for
t ∈ (0, T ). The proof for t ∈ {0, T} is a simplified version of the argument above, since
ρnT = ρT = 1 and ρn0− = ρ0− = 0, P-a.s.

We need to consider a slightly larger class of processes Ã◦(Gt)⊃A◦(Gt) defined by

Ã◦(Gt) :={ρ : ρ is (Gt)-adapted with t 7→ ρt(ω) càdlàg,

non-decreasing, ρ0−(ω) = 0 and ρT (ω)≤ 1 for all ω ∈Ω}.
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PROPOSITION 5.10. For a filtration (Gt)⊆ (Ft), let (ρn)n≥1 ⊂ Ã◦(Gt) and ρ ∈ Ã◦(Gt).
Assume

P
({

ω ∈Ω : lim
n→∞

ρnt (ω) = ρt(ω) for all t ∈Cρ(ω)∪ {T}
})

= 1.

Then for any X ∈ Lb that is also (Ft)-adapted and regular, we have

(21) lim
n→∞

E

[∫

[0,T ]
Xtdρ

n
t

]
= E

[∫

[0,T ]
Xtdρt

]
.

PROOF. Let us first assume that (Xt) ∈ Lb has continuous trajectories (but is not neces-
sarily adapted). If we prove that

(22) lim
n→∞

∫

[0,T ]
Xt(ω)dρ

n
t (ω) =

∫

[0,T ]
Xt(ω)dρt(ω), for P-a.e. ω ∈Ω,

then the result in (21) will follow by the dominated convergence theorem. By assumption
there is Ω0 ⊂ Ω with P(Ω0) = 1 and such that ρnt (ω)→ ρt(ω) at all points of continuity of
t 7→ ρt(ω) and at the terminal time T for all ω ∈Ω0. Since dρnt (ω) and dρt(ω) define positive
measures on [0, T ] for each ω ∈Ω0, the convergence of integrals in (22) can be deduced from
the weak convergence of finite measures, see [40, Remark III.1.2]. Indeed, if ω ∈Ω0 is such
that ρT (ω) = 0, the right-hand side of (22) is zero and we have

limsup
n→∞

∣∣∣∣∣

∫

[0,T ]
Xt(ω)dρ

n
t (ω)

∣∣∣∣∣≤ limsup
n→∞

sup
t∈[0,T ]

|Xt(ω)|ρ
n
T (ω) = 0,

where we use X ∈ Lb to ensure that supt∈[0,T ] |Xt(ω)|<∞. If instead, ω ∈ Ω0 is such that
ρT (ω) > 0, then for all sufficiently large n’s, we have ρnT (ω) > 0 and t 7→ ρnt (ω)/ρ

n
T (ω)

define cumulative distribution functions (cdfs) converging pointwise to ρt(ω)/ρT (ω) at the
points of continuity of ρt(ω). Since t 7→Xt(ω) is continuous, [40, Thm III.1.1] justifies

lim
n→∞

∫

[0,T ]
Xt(ω)dρ

n
t (ω) = lim

n→∞
ρnT (ω)

∫

[0,T ]
Xt(ω)d

(
ρnt (ω)

ρnT (ω)

)

=ρT (ω)

∫

[0,T ]
Xt(ω)d

(
ρt(ω)

ρT (ω)

)
=

∫

[0,T ]
Xt(ω)dρt(ω).

Now we drop the continuity assumption on X . We turn our attention to càdlàg, (Ft)-
adapted and regular (Xt) ∈ Lb. By [6, Theorem 3] there is (X̃t) ∈ Lb with continuous trajec-
tories (not necessarily adapted) such that (Xt) is an (Ft)-optional projection of (X̃t). From
the first part of the proof we know that (21) holds for (X̃t). To show that it holds for (Xt)
it is sufficient to notice that (ρnt ) and (ρt) are (Ft)-optional processes, and apply [13, Thm
VI.57] to obtain

E

[∫

[0,T ]
Xtdρ

n
t

]
= E

[∫

[0,T ]
X̃tdρ

n
t

]
and E

[∫

[0,T ]
Xtdρt

]
= E

[∫

[0,T ]
X̃tdρt

]
.

REMARK 5.11. The statement of Proposition 5.10 can be strengthened to include all
processes in Lb which are regular but not necessarily (Ft)-adapted. One can prove it by
adapting arguments of the proof of [33, Thm. 3].
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PROPOSITION 5.12. For a filtration (Gt) ⊆ (Ft), let χ ∈ A◦(Gt) and ρ ∈ Aac(Gt) and

consider X ∈ Lb which is (Ft)-adapted and regular. If (ρn)n≥1 ⊂Aac(Gt) converges (λ×
P)-a.e. to ρ as n→∞, then

(23) lim
n→∞

E

[∫

[0,T ]
Xt(1− χt−)dρ

n
t

]
= E

[∫

[0,T ]
Xt(1− χt−)dρt

]
.

PROOF. Define absolutely continuous adapted processes

Rn
t =

∫

[0,t]
(1− χs−)dρ

n
s and Rt =

∫

[0,t]
(1− χs−)dρs,

so that

(24)

∫

[0,T ]
Xt(1−χt−)dρ

n
t =

∫

[0,T ]
XtdR

n
t and

∫

[0,T ]
Xt(1−χt−)dρt =

∫

[0,T ]
XtdRt.

With no loss of generality we can consider the absolutely continuous representatives of ρ and
ρn from the class A◦

ac(Gt) in the definition of all the integrals above (which we still denote
by ρ and ρn for simplicity). In light of this observation it is clear that (Rn)n≥1 ⊂ Ã◦(Gt) and
R ∈ Ã◦(Gt). The idea is then to apply Proposition 5.10 to the integrals with Rn and R in
(24).

Thanks to Lemma 5.8 and recalling that ρnT = ρT = 1, the set

Ω0 =
{
ω ∈Ω : lim

n→∞
ρnt (ω) = ρt(ω) for all t ∈ [0, T ]

}

has full measure, i.e., P(Ω0) = 1. For any ω ∈ Ω0 and t ∈ [0, T ], integrating by parts (see,
e.g., [36, Prop. 4.5, Chapter 0]), using the dominated convergence theorem and then again
integrating by parts give
(25)

lim
n→∞

Rn
t = lim

n→∞

[
(1− χt)ρ

n
t −

∫

[0,t]
ρns d(1− χs)

]
= (1− χt)ρt −

∫

[0,t]
ρsd(1− χs) =Rt.

Hence Rn and R satisfy the assumptions of Proposition 5.10 and we can conclude that (23)
holds.

COROLLARY 5.13. Under the assumptions of Proposition 5.12, we have

lim
n→∞

E

[∫

[0,T )
Xt(1−χt)dρ

n
t +XT∆χT∆ρnT

]
= E

[∫

[0,T )
Xt(1−χt)dρt+XT∆χT∆ρT

]
.

PROOF. Recall that ρn and ρ are continuous everywhere apart from T . Hence, we can
rewrite the left- and right-hand side of (23) as

∫

[0,T ]
Xt(1− χt−)dρ

n
t =

∫

[0,T ]
Xt(1− χt)dρ

n
t +XT∆χT∆ρnT

and ∫

[0,T ]
Xt(1− χt−)dρt =

∫

[0,T ]
Xt(1− χt)dρt +XT∆χT∆ρT ,

respectively. It remains to note that
∫
[0,T ]Xt(1 − χt)dρ

n
t =

∫
[0,T )Xt(1 − χt)dρ

n
t because

χT = 1.
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We close this technical section with a similar result to the above but for approximations
which are needed for the proof of Proposition 5.5. The next proposition is tailored for our
specific type of regularisation of processes in A(F1

t ). Notice that the left hand side of (27)
features χt− while the right hand side has χt.

PROPOSITION 5.14. For a filtration (Gt) ⊆ (Ft), let χ,ρ ∈ A◦(Gt), (ρ
n)n≥1 ⊂ A◦(Gt)

and consider X ∈ Lb which is (Ft)-adapted and regular. Assume the sequence (ρn)n≥1 is

non-decreasing and for P-a.e. ω ∈Ω

lim
n→∞

ρnt (ω) = ρt−(ω) for all t ∈ [0, T ).(26)

Then

(27) lim
n→∞

E

[∫

[0,T )
Xt(1− χt−)dρ

n
t

]
= E

[∫

[0,T )
Xt(1− χt)dρt

]
,

and for P-a.e. ω ∈Ω

(28) lim
n→∞

ρnt−(ω) = ρt−(ω) for all t ∈ [0, T ].

PROOF. Denote by Ω0 the set on which the convergence (26) holds. The first observation
is that for all ω ∈Ω0 and t ∈ (0, T ]

lim
n→∞

ρnt−(ω) = lim
n→∞

lim
u↑t

ρnu(ω) = lim
u↑t

lim
n→∞

ρnu(ω) = lim
u↑t

ρu−(ω) = ρt−(ω),(29)

where the order of limits can be swapped by monotonicity of the process and of the sequence.
The convergence at t= 0 is obvious as ρn0− = ρ0− = 0. This proves (28).

Define for t ∈ [0, T ),

(30) Rn
t =

∫

[0,t]
(1− χs−)dρ

n
s , Rt =

∫

[0,t]
(1− χs)dρs,

and extend both processes to t = T in a continuous way by taking Rn
T := Rn

T− and RT :=

RT−. By construction we have (Rn)n≥1 ⊂ Ã◦(Gt) and R ∈ Ã◦(Gt) and the idea is to apply
Proposition 5.10. First we notice that for all ω ∈Ω and any t ∈ [0, T ) we have

∆Rt(ω) = (1− χt(ω))∆ρt(ω),

so that we can write the set of points of continuity of R as (recall Definition 5.7)

CR(ω) =Cρ(ω)∪ {t ∈ [0, T ] : χt(ω) = 1}.

For any t ∈ [0, T ) and all ω ∈ Ω0, integrating Rn
t (ω) by parts ([36, Prop. 4.5, Chapter 0])

and then taking limits as n→∞ we get

lim
n→∞

Rn
t (ω) = lim

n→∞

[
(1− χt(ω))ρ

n
t (ω)−

∫

[0,t]
ρns (ω)d(1− χs(ω))

]
(31)

=(1− χt(ω))ρt−(ω)−

∫

[0,t]
ρs−(ω)d(1− χs(ω))

=Rt(ω)− (1− χt(ω))∆ρt(ω) =Rt−(ω),

where the second equality uses dominated convergence and (26), and the third equality is
integration by parts. We can therefore conclude that

lim
n→∞

Rn
t (ω) =Rt(ω), for all t ∈CR(ω)∩ [0, T ) and all ω ∈Ω0.
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It remains to show the convergence at T which is in CR(ω) by our construction of R. Since
the function t 7→ ρt(ω) is non-decreasing and the sequence (ρn(ω))n is non-decreasing, the
sequence (Rn(ω))n is non-decreasing too (an easy proof of this fact involves integration by
parts and observing that t 7→ d(1−χt(ω)) defines a negative measure; notice also the link to
the first-order stochastic dominance). As in (29), we show that limn→∞Rn

T−(ω) =RT−(ω)
for ω ∈Ω0. By construction of Rn and R, this proves convergence of Rn

T to RT .
Then, the processes Rn and R fulfil all the assumptions of Proposition 5.10 whose appli-

cation allows us to obtain (27).

From the convergence (31), an identical argument as in (29) proves convergence of left-
limits of processes (Rn) at any t ∈ [0, T ]. The following corollary formalises this observation.
It will be used in Section 5.4.

COROLLARY 5.15. Consider the processes (Rn) and R defined in (30). For P-a.e. ω ∈Ω
we have

lim
n→∞

Rn
t−(ω) =Rt−(ω) for all t ∈ [0, T ].

5.2. Verification of the conditions of Sion’s theorem. For the application of Sion’s theo-
rem, we will consider a weak topology on Aac(F

1
t ) and A(F2

t ) inherited from the space S .
In our arguments, we will often use that for convex sets the weak and strong closedness are
equivalent [8, Theorem 3.7] (although weak and strong convergence are not equivalent, c.f.
[8, Corollary 3.8]).

LEMMA 5.16. For any filtration (Gt) ⊆ (Ft) satisfying the usual conditions, the set

A(Gt) is weakly compact in S .

PROOF. We write A for A(Gt) and A◦ for A◦(Gt). The set A is a subset of a ball in
S . Since S is a reflexive Banach space, this ball is weakly compact (Kakutani’s theorem,
[8, Theorem 3.17]). Therefore, we only need to show that A is weakly closed. Since A is
convex, it is enough to show that A is strongly closed [8, Theorem 3.7].

Take a sequence (ρn)n≥1 ⊂A that converges strongly in S to ρ. We will prove that ρ ∈A
by constructing a càdlàg non-decreasing adapted process (ρ̂t) such that ρ̂0− = 0, ρ̂T = 1,
and ρ̂= ρ (λ× P)-a.e. With no loss of generality we can pass to the càdlàg representatives
(ρ̂n)n≥1 ⊂A◦ which also converge to ρ in S . Then, there is a subsequence (nk)k≥1 such that
ρ̂nk → ρ (λ× P)-a.e. [8, Theorem 4.9].

Since
∫ t

0
P
(
lim
k→∞

ρ̂nk
s = ρs

)
ds= t, for all t ∈ [0, T ],

we can find D̂ ⊂ [0, T ] with λ([0, T ] \ D̂) = 0 such that P(Ωt) = 1 for all t ∈ D̂, where

Ωt := {ω ∈Ω : lim
k→∞

ρ̂nk

t (ω) = ρt(ω)}.

Then we can take a dense countable subset D ⊂ D̂ and define Ω0 := ∩t∈DΩt so that P(Ω0) =
1 and

lim
k→∞

ρ̂nk

t (ω) = ρt(ω), for all (t,ω) ∈D×Ω0.

Since ρ̂nk are non-decreasing, so is the mapping D ∋ t 7→ ρt(ω) for all ω ∈Ω0. Let us extend
this mapping to [0, T ] by defining ρ̂t(ω) := ρt(ω) for t ∈D and

ρ̂t(ω) := lim
s∈D:s↓t

ρs(ω), ρ̂0−(ω) := 0, ρ̂T (ω) := 1, for all ω ∈Ω0,
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where the limit exists due to monotonicity. For ω ∈N := Ω \Ω0, we set ρ̂t(ω) = 0 for t < T
and ρ̂T (ω) = 1. Notice that N ∈ G0 since P(N ) = 0 so that ρ̂t is Gt-measurable for t ∈D.
Moreover, ρ̂ is càdlàg by construction and ρ̂t is measurable with respect to ∩s∈D,s>tGs =
Gt+ = Gt for each t ∈ [0, T ] by the right-continuity of the filtration. Hence, ρ̂ is (Gt)-adapted
and ρ̂ ∈A◦.

It remains to show that ρ̂nk → ρ̂ in S so that ρ̂ = ρ (λ× P)-a.e. and therefore ρ ∈ A. It
suffices to show that ρ̂nk → ρ̂ (λ×P)-a.e. and then conclude by dominated convergence that
ρ̂nk → ρ̂ in S . For each ω ∈ Ω0 the process t 7→ ρ̂(ω) has at most countably many jumps
(on any bounded interval) by monotonicity, i.e., λ([0, T ] \Cρ̂(ω)) = 0 (recall Definition 5.7).
Moreover, arguing as in the proof of Lemma 5.8, we conclude

lim
k→∞

ρ̂nk

t (ω) = ρ̂t(ω), for all t ∈Cρ̂(ω) and all ω ∈Ω0.

Since (λ×P)({(t,ω):t ∈ Cρ̂(ω) ∩B,ω ∈ Ω0})=λ(B) for any bounded interval B ⊆ [0, T ]
then ρ̂nk→ρ̂ in S and A is strongly closed in S .

REMARK 5.17. Our space A(Gt) is the space of processes that generate randomised
stopping times and for any ρ ∈ A(Gt) we require that ρT (ω) = 1, for all ω ∈ Ω. In the finite
horizon problem, i.e., T <∞, such specification imposes a constraint that prevents a direct
use of the topology induced by the norm considered in [46]. Indeed, in [46] the space S is
that of (Gt)-adapted processes ρ with

‖ρ‖2 := E

[∫ T

0
(ρt)

2dt+ (∆ρT )
2

]
<∞, ∆ρT := ρT − lim inf

t↑T
ρt.

The space of generating processes A(Gt) is not closed in the topology induced by ‖ · ‖ above:
define a sequence (ρn)n≥1 ⊂A(Gt) by

ρnt = n

(
t− T +

1

n

)+

, t ∈ [0, T ].

Then ‖ρn‖→ 0 as n→∞ but ρ≡ 0 /∈ A(Gt) since it fails to be equal to one at T (and it is
not possible to select a representative from A(Gt) with the equivalence relation induced by
‖ · ‖).

It is of interest to explore the relationship between the topology on A(Gt) implied by the
weak topology on S (denote it by O2) and the topology introduced in [3, 33] (denote it by
O1). The topology O1 is the coarsest topology in which all functionals of the form

(32) A(Gt) ∋ ρ 7→ E
[∫

[0,T ]
Xt dρt

]

are continuous for any X ∈ Lb with continuous trajectories. Our topology O2, instead, is the
restriction to A(Gt) of the weak topology on S . That is, O2 is the coarsest topology for which
all functionals of the form

A(Gt) ∋ ρ 7→ E
[∫

[0,T ]
ρt Yt dt

]

are continuous for all Y ∈ S .

LEMMA 5.18. Topologies O1 and O2 are identical.
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PROOF. Denoting

Xt =

∫

[0,t]
Yt dt(33)

and integrating by parts, we obtain for ρ ∈A(Gt)

E
[∫

[0,T ]
ρt Yt dt

]
= E

[
XTρT −X0ρ0− −

∫

[0,T ]
Xt dρt

]
= E

[
XT −

∫

[0,T ]
Xt dρt

]
,

where we used that ρT = 1 and ρ0− = 0, P-a.s. Hence, O2 is the coarsest topology on A(Gt)
for which functionals (32) are continuous for all processes X defined as in (33). Since these
processes X are continuous, we conclude that O2 ⊂O1.

The set A(Gt) is compact in the topologies O1 [33, Theorem 3] and O2 (see Lemma 5.16
above). The compact Hausdorff topology is the coarsest among Hausdorff topologies [20,
Cor. 3.1.14, p. 126]. Since O2 is Hausdorff by [8, Prop 3.3], so is O1 and we have O1 =O2.

REMARK 5.19. [33, Thm. 4] shows that if F is separable (i.e., countably generated) then
the topology O1 (hence O2) is metrizable. This could also be seen directly for the topology
O2 by [8, Thm. 3.29], because A(Gt) is bounded in S and O2 is the restriction to A(Gt) of
the weak topology on S . Indeed, it emerges from this argument for the metrizability of O2

that it is sufficient to require that only GT be separable.

LEMMA 5.20. Given any (ξ, ζ) ∈Aac(F
1
t )×A(F2

t ), the functionals N(ξ, ·) :A(F2
t )→

R and N(·, ζ) : Aac(F
1
t )→ R are, respectively, upper semicontinuous and lower semicon-

tinuous in the strong topology of S .

PROOF. Since ξ ∈ Aac(F
1
t ), we have from (15) that the contribution of simultaneous

jumps reduces to a single term:

(34) N(ξ, ζ) = E

[∫

[0,T )
ft(1− ζt)dξt +

∫

[0,T )
gt(1− ξt)dζt + hT∆ξT∆ζT

]
.

Upper semicontinuity of N(ξ, ·). Fix ξ ∈ Aac(F
1
t ) and consider a sequence (ζn)n≥1 ⊂

A(F2
t ) converging to ζ ∈A(F2

t ) strongly in S . We have to show that

limsup
n→∞

N(ξ, ζn)≤N(ξ, ζ).

Assume, by contradiction, that limsupn→∞N(ξ, ζn) > N(ξ, ζ). There is a subsequence
(nk) over which the limit on the left-hand side is attained. Along a further subsequence
we have (P × λ)-a.e. convergence of ζn to ζ [8, Theorem 4.9]. With an abuse of nota-
tion we will assume that the original sequence possesses those two properties, i.e., the limit
limn→∞N(ξ, ζn) exists, it strictly dominates N(ξ, ζ), and there is (P× λ)-a.e. convergence
of ζn to ζ .

Since ξ is absolutely continuous on [0, T ),

lim
n→∞

E

[∫

[0,T )
ft(1− ζnt )dξt

]
= E

[∫

[0,T )
ft(1− ζt)dξt

]

by the dominated convergence theorem. For the last two terms of N(ξ, ζn) in (34) we have

E

[∫

[0,T )
gt(1− ξt)dζ

n
t + hT∆ξT∆ζnT

]
= E

[∫

[0,T )
gt(1− ξt−)dζ

n
t + hT∆ξT∆ζnT

]

= E

[∫

[0,T ]
gt(1− ξt−)dζ

n
t + (hT − gT )∆ξT∆ζnT

]
,
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where the first equality is by the continuity of ξ and for the second one we use that 1− ξT− =
∆ξT . From Lemma 5.8 and the boundedness and continuity of (ξt) we verify the assumptions
of Proposition 5.10 (with Xt = gt(1− ξt−) therein since ξt− is continuous on [0, T ]), so

lim
n→∞

E

[∫

[0,T ]
gt(1− ξt−)dζ

n
t

]
= E

[∫

[0,T ]
gt(1− ξt−)dζt

]
.

Recalling that gT ≤ hT , we obtain from Lemma 5.9

limsup
n→∞

E
[
(hT − gT )∆ξT∆ζnT

]
≤ E

[
(hT − gT )∆ξT∆ζT

]
.

Combining above convergence results contradicts limn→∞N(ξ, ζn) > N(ξ, ζ), hence,
proves the upper semicontinuity.

Lower semicontinuity of N(·, ζ). Fix ζ ∈ A(F2
t ) and consider a sequence (ξn)n≥1 ⊂

Aac(F
1
t ) converging to ξ ∈ Aac(F

1
t ) strongly in S . Arguing by contradiction as above,

we assume that there is a subsequence of ξn, which we denote the same, such that ξn → ξ
(P× λ)-a.e. and

(35) lim
n→∞

N(ξn, ζ)<N(ξ, ζ).

By Lemma 5.8 and the continuity of (ξt) we have for P-a.e. ω ∈Ω

lim
n→∞

ξnt (ω) = ξt(ω) for all t ∈ [0, T ).

Then by dominated convergence for the second term of N(ξn, ζ) in (34) we get

lim
n→∞

E

[∫

[0,T )
gt(1− ξnt )dζt

]
= E

[∫

[0,T )
gt(1− ξt)dζt

]
.

For the remaining terms of N(ξn, ζ), we have

E

[∫

[0,T )
ft(1− ζt)dξ

n
t + hT∆ξnT∆ζT

]

= E

[∫

[0,T )
ft(1− ζt)dξ

n
t + fT∆ξnT∆ζT + (hT − fT )∆ξnT∆ζT

]
.

Observe that, by Lemma 5.9,

lim inf
n→∞

E
[
(hT − fT )∆ξnT∆ζT

]
≥ E

[
(hT − fT )∆ξT∆ζT

]
,

because hT − fT ≤ 0. Further,

lim
n→∞

E

[∫

[0,T )
ft(1− ζt)dξ

n
t + fT∆ξnT∆ζT

]
= E

[∫

[0,T )
ft(1− ζt)dξt + fT∆ξT∆ζT

]

by Corollary 5.13. The above results contradict (35), therefore, proving the lower semiconti-
nuity.

We are now ready to prove that the game with continuous randomisation for the first player
(τ -player) has a value.

PROOF OF THEOREM 5.4. We will show that the conditions of Sion’s theorem hold (re-
call the notation in Theorem 5.1) with (A,B) = (A(F2

t ),Aac(F
1
t )) on the space S × S

equipped with its weak topology. For the sake of compactness of notation, we will write A
for A(F2

t ) and Aac for Aac(F
1
t ). It is straightforward to verify that the sets A and Aac are
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convex. Compactness of A in the weak topology of S follows from Lemma 5.16. It remains
to prove the convexity and semi-continuity properties of N with respect to the weak topology
of S . This is equivalent to showing that for any a ∈R, ξ̂ ∈Aac and ζ̂ ∈A the level sets

K(ζ̂ , a) = {ξ ∈Aac :N(ξ, ζ̂)≤ a} and Z(ξ̂, a) = {ζ ∈A :N(ξ̂, ζ)≥ a}

are convex and closed in Aac and A, respectively, with respect to the weak topology of S .
For any λ ∈ [0,1] and ξ1, ξ2 ∈ Aac, ζ1, ζ2 ∈ A, using the expression in (15) it is immediate
(by linearity) that

N(λξ1 + (1− λ)ξ2, ζ̂) = λN(ξ1, ζ̂) + (1− λ)N(ξ2, ζ̂),

N(ξ̂, λζ1 + (1− λ)ζ2) = λN(ξ̂, ζ1) + (1− λ)N(ξ̂, ζ2).

This proves the convexity of the level sets. Their closedness in the strong topology of S is
established in Lemma 5.20. The latter two properties imply, by [8, Theorem 3.7], that the
level sets are closed in the weak topology of S . Sion’s theorem (Theorem 5.1) yields the
existence of the value of the game: W∗ =W ∗.

The second part of the statement results from using a version of Sion’s theorem proved in
[28] which allows to write max instead of sup in (17), i.e.,

sup
ζ∈A

inf
ξ∈Aac

N(ξ, ζ) =max
ζ∈A

inf
ξ∈Aac

N(ξ, ζ) = inf
ξ∈Aac

N(ξ, ζ∗),

where ζ∗ ∈A delivers the maximum.

5.3. Approximation with continuous controls. We now prove Proposition 5.5 by con-
structing a sequence (ξn) of Lipschitz continuous processes with the Lipschitz constant for
each process bounded by n for all ω. This uniform bound on the Lipschitz constant is not
used in this paper as we only need that each of the processes (ξnt ) has absolutely continuous
trajectories with respect to the Lebesgue measure on [0, T ) so that it belongs to Aac(F

1
t ).

PROOF OF PROPOSITION 5.5. Fix ζ ∈A(F2
t ). We need to show that for any ξ ∈A(F1

t ),
there exists a sequence (ξn)n≥1 ⊂Aac(F

1
t ) such that

(36) limsup
n→∞

N(ξn, ζ)≤N(ξ, ζ).

We will explicitly construct absolutely continuous ξn that approximate ξ in a suitable
sense. As N(ξ, ζ) does not depend on the choice of càdlàg representatives, by Definition 5.2,
without loss of generality we assume that ξ ∈ A◦(F1

t ) and ζ ∈ A◦(F2
t ). Define a function

φn
t = (nt) ∧ 1 ∨ 0. Let ξnt =

∫
[0,t] φ

n
t−sdξs for t ∈ [0, T ), and ξnT = 1. We shall show that

(ξnt ) is n-Lipschitz, hence absolutely continuous on [0, T ). Note that φn
t ≡ 0 for t ≤ 0, and

therefore ξnt =
∫
[0,T ] φ

n
t−sdξs for t ∈ [0, T ). For arbitrary t1, t2 ∈ [0, T ) we have

|ξnt1 − ξnt2 |=

∣∣∣∣∣

∫

[0,T ]
(φn

t1−s − φn
t2−s)dξs

∣∣∣∣∣≤
∫

[0,T ]
|φn

t1−s − φn
t2−s|dξs

≤

∫

[0,T ]
n|(t1 − s)− (t2 − s)|dξs =

∫

[0,T ]
n|t1 − t2|dξs = n|t1 − t2|,

where the first inequality is Jensen’s inequality (which is applicable since ξ(ω) is a cumu-
lative distribution function on [0, T ] for each ω), and the second inequality follows by the
definition of φn.

We will verify the assumptions of Proposition 5.14. Clearly the sequence (ξn) is non-
decreasing in n, as the measure dξ(ω) is positive for each ω ∈ Ω and the sequence φn is
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non-decreasing. By the construction of ξn we have ξn0 = 0→ ξ0− as n→∞. Moreover, for
any t ∈ (0, T ) and n > 1/t

ξnt =

∫

[0,t)
φn
t−sdξs = ξ

t−
1
n
+

∫

(t−
1
n ,t)

n(t− s)dξs,

where the first equality uses that φn
0 = 0, so that jumps of ξ at time t give zero contribution,

and the second one uses the definition of φn. Letting n → ∞ we obtain ξnt → ξt− as the
second term above vanishes since

0≤

∫

(t−
1
n ,t)

n(t− s)dξs ≤ ξt− − ξ
t−

1
n
→ 0.

The continuity of ξn on [0, T ) and Proposition 5.14 imply that

lim
n→∞

E

[∫

[0,T )
ft(1− ζt)dξ

n
t

]
= lim

n→∞
E

[∫

[0,T )
ft(1− ζt−)dξ

n
t

]
= E

[∫

[0,T )
ft(1− ζt)dξt

]
,

and limn→∞ ξnT− = ξT− so that

lim
n→∞

∆ξnT =∆ξT ,

since ξnT = 1 for all n≥ 1. The dominated convergence theorem (applied to the second inte-
gral below) also yields

(37)

lim
n→∞

N(ξn, ζ) = lim
n→∞

E

[∫

[0,T )
ft(1− ζt)dξ

n
t +

∫

[0,T )
gt(1− ξnt )dζt + hT∆ξnT∆ζT

]

= E

[∫

[0,T )
ft(1− ζt)dξt +

∫

[0,T )
gt(1− ξt−)dζt + hT∆ξT∆ζT

]
.

Note that

(38)

N(ξ, ζ) = E

[∫

[0,T )
ft(1− ζt)dξt +

∫

[0,T )
gt(1− ξt)dζt +

∑

t∈[0,T ]

ht∆ξt∆ζt

]

= E

[∫

[0,T )
ft(1− ζt)dξt +

∫

[0,T )
gt(1− ξt−)dζt

+
∑

t∈[0,T )

(ht − gt)∆ξt∆ζt + hT∆ξT∆ζT

]

≥ E

[∫

[0,T )
ft(1− ζt)dξt +

∫

[0,T )
gt(1− ξt−)dζt + hT∆ξT∆ζT

]
,

where the last inequality is due to Assumption (A3). Combining this with (37) completes the
proof of (36).

5.4. Relaxation of Assumption (A2). Assumption (A2) which requires that the payoff
processes be regular can be relaxed to allow for a class of jumps including predictable ones
with nonzero conditional mean (i.e., violating regularity, see Eq. (1)). In this section we
extend Theorem 5.4 and Proposition 5.5 to the case of Assumption (A2’) with (ĝt) from the
decomposition of the payoff process g being non-decreasing. In this case we must ‘smoothen’
the generating process ξ of the minimiser in order to guarantee the desired semi-continuity
properties of the game’s expected payoff (see Remark 5.25). Arguments when (f̂t) from
the decomposition of f in Assumption (A2’) is non-increasing are analogous thanks to the
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symmetry of the set-up pointed out in Remark 2.1. However, in that case we restrict strategies
of the maximiser to absolutely continuous generating processes ζ ∈ Aac(F

2
t ) and the first

player (minimiser) picks ξ ∈A(F1
t ).

THEOREM 5.21. Under assumptions (A1), (A2’), (A3)-(A5), (with ĝ non-decreasing) the

game (17) has a value, i.e.

W∗ =W ∗ :=W.

Moreover, the ζ-player (maximiser) has an optimal strategy, i.e. there exists ζ∗ ∈A(F2
t ) such

that

inf
ξ∈Aac(F1

t )
N(ξ, ζ∗) =W.

PROPOSITION 5.22. Under assumptions (A1), (A2’), (A3)-(A5), (with ĝ non-decreasing)

for any ζ ∈A(F2
t ) and ξ ∈A(F1

t ), there is a sequence ξn ∈Aac(F
1
t ) such that

limsup
n→∞

N(ξn, ζ)≤N(ξ, ζ).

PROOF OF THEOREM 2.4. The proof of the existence of the value is identical to the proof
Theorem 2.5 but with references to Theorem 5.4 and Proposition 5.5 replaced by the above
results.

For the existence of the saddle point, the additional requirement that ĝ be non-decreasing
and f̂ be non-increasing guarantees the complete symmetry of the problem when swapping
the roles of the two players as in Remark 2.1. Thus, the same proof as in Theorem 2.5 can be
repeated verbatim.

In the rest of the section we prove Theorem 5.21 and Proposition 5.22. Processes f̂ , ĝ have
the following decomposition according to Theorem VI.52 in [13] and remarks thereafter:
there are (Ft)-stopping times (ηfk )k≥1 and (ηgk)k≥1, non-negative Fηf

k
-measurable random

variables Xf
k , k ≥ 1, and non-negative Fηg

k
-measurable random variables Xg

k , k ≥ 1, such
that

(39) f̂t =

∞∑

k=1

(−1)kXf
k I{t≥ηf

k}
, ĝt =

∞∑

k=1

Xg
kI{t≥ηg

k}
.

The alternating terms in the sum for (f̂t) come from interweaving sequences for the two
non-decreasing processes (f̂+

t ) and (f̂−
t ) from Lb arising from the decomposition of the

integrable variation process (f̂t) (recall f̂t = f̂+
t − f̂−

t ). This is for notational convenience
and resulting in no mathematical complications as the infinite sum is absolutely convergent.
Recall that ĝ is assumed non-decreasing.

The condition that f̂0 = ĝ0 = 0 means that ηfk , η
g
k > 0 for all k ≥ 1. Since f̂ , ĝ have inte-

grable variation (in the sense of [13, p. 115]), the infinite sequences in (39) are dominated by
integrable random variables Xf and Xg: for any t ∈ [0, T ]

|f̂t| ≤Xf :=

∞∑

k=1

Xf
k , and ĝt ≤Xg :=

∞∑

k=1

Xg
k .(40)

To handle convergence of integrals with piecewise-constant processes, we need to extend
the results of Proposition 5.10.
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PROPOSITION 5.23. For a filtration (Gt) ⊆ (Ft), consider (ρn)n≥1 ⊂ Ã◦(Gt) and ρ ∈

Ã◦(Gt) with

P
({

ω ∈Ω : lim
n→∞

ρnt (ω) = ρt(ω), for all t ∈Cρ(ω)∪ {T}
})

= 1.

Then for any F -measurable random variables θ ∈ (0, T ] and X ∈ [0,∞) with E[X]<∞ we

have

(41) limsup
n→∞

E
[∫

[0,T ]
I{t≥θ}Xdρnt

]
≤ E

[∫

[0,T ]
I{t≥θ}Xdρt

]
.

Furthermore, if P({ω : θ(ω) ∈Cρ(ω) or X(ω) = 0}) = 1, then

(42) lim
n→∞

E
[∫

[0,T ]
I{t≥θ}Xdρnt

]
= E

[∫

[0,T ]
I{t≥θ}Xdρt

]
.

PROOF. Let Ω0 be the set of ω ∈Ω for which ρnt (ω)→ ρt(ω) for all t ∈Cρ(ω)∪{T}. Fix
ω ∈ Ω0. For any t such that t ∈ Cρ(ω) and t < θ(ω) (such t always exists as θ(ω)> 0 and ρ
has at most countably many jumps on any bounded interval) we have ρnt (ω)≤ ρnθ(ω)−(ω) so
that by assumption

lim inf
n→∞

ρnθ(ω)−(ω)≥ ρt(ω).

Since Cρ(ω) is dense in (0, T ), by arbitrariness of t < θ(ω) we have

(43) lim inf
n→∞

ρnθ(ω)−(ω)≥ ρθ(ω)−(ω).

We rewrite the integral as follows:
∫
[0,T ] I{t≥θ}Xdρnt =X(ρnT − ρnθ−). Therefore,

limsup
n→∞

E
[∫

[0,T ]
I{t≥θ}Xdρnt

]
= limsup

n→∞
E
[
X(ρnT − ρnθ−)

]

= limsup
n→∞

E[XρnT ]− lim inf
n→∞

E[Xρnθ−].

The dominated convergence theorem yields that limn→∞E[XρnT ] = E[XρT ], while applying
Fubini’s theorem gives

lim inf
n→∞

E[Xρnθ−]≥ E[lim inf
n→∞

Xρnθ−]≥ E[Xρθ−],

where the last inequality is by (43). Combining the above estimates completes the proof of
(41).

Assume now that θ(ω) ∈ Cρ(ω) or X(ω) = 0 for P-a.e. ω ∈ Ω0. This and the dominated
convergence theorem yield

E[X(ρT − ρθ−)] = E[X(ρT − ρθ)] = lim
n→∞

E[X(ρnT − ρnθ )]≤ limsup
n→∞

E[X(ρnT − ρnθ−)],

where the last inequality follows from the monotonicity of ρn. This estimate and (41) prove
(42).

REMARK 5.24. The inequality (41) in Proposition 5.23 can be strict even if ρnt → ρt
for all t ∈ [0, T ] because this condition does not imply that ρnt− → ρt−. One needs further
continuity assumptions on (ρt) to establish equality (42).
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PROOF OF THEOREM 5.21. Compared to the proof of the analogue result under the more
stringent condition (A2) (i.e., Theorem 5.4), we only need to establish lower and upper semi-
continuity of the functional N , while all other remaining arguments stay valid. For the semi-
continuity, we extend arguments of Lemma 5.20.

Upper semicontinuity of N(ξ, ·). Fix ξ ∈ Aac(F
1
t ) and consider a sequence (ζn)n≥1 ∈

A(F2
t ) converging to ζ ∈ A(F2

t ) strongly in S . Arguing by contradiction, we assume that
there is a subsequence of (ζn)n≥1 denoted the same with an abuse of notation, that converges
(P× λ)-a.e. to ζ and such that

lim
n→∞

N(ξ, ζn)>N(ξ, ζ).

Without loss of generality, we can further require that (ζn)n≥1 ⊂A◦(F2
t ) and ζ ∈ A◦(F2

t ).
Since ξ is absolutely continuous on [0, T ),

(44) lim
n→∞

E

[∫

[0,T )
ft(1− ζnt )dξt

]
= E

[∫

[0,T )
ft(1− ζt)dξt

]

by the dominated convergence theorem. For the last two terms of N(ξ, ζn) (recall (34)) we
have

E

[∫

[0,T )
gt(1− ξt)dζ

n
t + hT∆ξT∆ζnT

]
= E

[∫

[0,T ]
gt(1− ξt−)dζ

n
t + (hT − gT )∆ξT∆ζnT

]
.

As in the proof of Lemma 5.20, for the regular part g̃ of the process g we have

(45) lim
n→∞

E

[∫

[0,T ]
g̃t(1− ξt−)dζ

n
t

]
= E

[∫

[0,T ]
g̃t(1− ξt−)dζt

]
.

For the pure jump part ĝ of the process g, we will prove that

(46) limsup
n→∞

E

[∫

[0,T ]
ĝt(1− ξt−)dζ

n
t

]
≤ E

[∫

[0,T ]
ĝt(1− ξt−)dζt

]
.

To this end, let us define

Rn
t =

∫

[0,t]
(1− ξs−)dζ

n
s , Rt =

∫

[0,t]
(1− ξs−)dζs, for t ∈ [0, T ],

with Rn
0− = R0− = 0 and then we are going to apply Proposition 5.23 with Rn and R in-

stead of ρn and ρ. We need Rn
t (ω) → Rt(ω) as n → ∞ for t ∈ CR(ω) = Cζ(ω) ∪ {t ∈

[0, T ] : ξt(ω) = 1}, for P-a.e. ω ∈ Ω. The latter is indeed true. Setting Ω0 = {ω ∈ Ω :
limn→∞ ζnt (ω) = ζt(ω) ∀ t ∈ Cζ(ω)}, we have P(Ω0) = 1 by Lemma 5.8. For any ω ∈ Ω0

and t ∈Cζ(ω), invoking the absolute continuity of (ξt), we obtain (omitting the dependence
on ω)

lim
n→∞

Rn
t = lim

n→∞

[
(1− ξt)ζ

n
t +

∫

[0,t]
ζns dξs

]
= (1− ξt)ζt +

∫

[0,t]
ζsdξs =Rt,

where the convergence of the second term is the consequence of the dominated convergence
theorem and the fact that λ([0, T ] \Cζ(ω)) = 0 and ζnT = ζT = 1.

For any k ≥ 1, since Xg
k ≥ 0, Proposition 5.23 gives (recall (39))

(47) limsup
n→∞

E

[∫

[0,T ]
Xg

kI{t≥ηg
k}
dRn

t

]
≤ E

[∫

[0,T ]
Xg

kI{t≥ηg
k}
dRt

]
.

We apply the decomposition of ĝ and then the monotone convergence theorem

E

[∫

[0,T ]
ĝt(1− ξt−)dζ

n
t

]
= E

[ ∞∑

k=1

∫

[0,T ]
Xg

kI{t≥ηg
k}
dRn

t

]
=

∞∑

k=1

E

[∫

[0,T ]
Xg

kI{t≥ηg
k}
dRn

t

]
.
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Since ĝ ∈ Lb we have the bound (recall (40))
∞∑

k=1

sup
n

E

[∫

[0,T ]
Xg

kI{t≥ηg
k}
dRn

t

]
≤

∞∑

k=1

E[Xg
k ]<∞.

Then we can apply (reverse) Fatou’s lemma (with respect to the counting measure on N)

limsup
n→∞

∞∑

k=1

E

[∫

[0,T ]
Xg

kI{t≥ηg
k}
dRn

t

]
≤

∞∑

k=1

limsup
n→∞

E

[∫

[0,T ]
Xg

kI{t≥ηg
k}
dRn

t

]

≤
∞∑

k=1

E

[∫

[0,T ]
Xg

kI{t≥ηg
k}
dRt

]

= E

[∫

[0,T ]
ĝt(1− ξt−)dζt

]
,

where the last inequality is due to (47) and the final equality follows by monotone conver-
gence and the decomposition of ĝ. This completes the proof of (46).

Recalling that gT ≤ hT , we obtain from Lemma 5.9

limsup
n→∞

E
[
(hT − gT )∆ξT∆ζnT

]
≤ E

[
(hT − gT )∆ξT∆ζT

]
,

and combining the latter with (45), (46) and (44) shows that

limsup
n→∞

N(ξ, ζn)≤N(ξ, ζ).(48)

Hence we have a contradiction with limn→∞N(ξ, ζn) > N(ξ, ζ), which proves the upper
semicontinuity.

Lower semicontinuity of N(·, ζ). The proof follows closely the argument of the proof of
Lemma 5.20: we fix ζ ∈ A(F2

t ), consider a sequence (ξn)n≥1 ⊂ Aac(F
1
t ) converging to

ξ ∈Aac(F
1
t ) strongly in S , assume that (35) holds and reach a contradiction. We only show

how to handle the convergence for (f̂t) as all other terms are handled by the proof of Lemma
5.20.

By Lemma 5.8 and the continuity of (ξt) we have P
(
limn→∞ ξnt (ω) = ξt(ω) ∀ t ∈

[0, T )
)
= 1. Let

Rn
t =

∫

[0,t]
(1− ζt−)dξ

n
t , Rt =

∫

[0,t]
(1− ζt−)dξt,

with Rn
0− = R0− = 0. Due to the continuity of (ξnt ) and (ξt) for t ∈ [0, T ), processes (Rn

t )
and (Rt) are continuous on [0, T ) with a possible jump at T . From (25) in the proof of
Proposition 5.12 we conclude that for P-a.e. ω ∈Ω

lim
n→∞

Rn
t (ω) =Rt(ω) for all t ∈ [0, T ].

Since ∆f̂T = 0 (see Assumption (A2’)), there is a decomposition such that Xf
k I{ηf

k=T} = 0

P-a.s. for all k. Recalling that (Rt) is continuous on [0, T ), we can apply (42) in Proposition
5.23: for any k ≥ 1

lim
n→∞

E

[∫

[0,T ]
Xf

k I{t≥ηf
k}
dRn

t

]
= E

[∫

[0,T ]
Xf

k I{t≥ηf
k}
dRt

]
.

Combining the latter with decomposition (39) and the dominated convergence theorem (with
the bound Xf ) we obtain

lim
n→∞

E

[∫

[0,T ]
f̂tdR

n
t

]
= E

[∫

[0,T ]
f̂tdRt

]
.
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Arguing as in the proof of Corollary 5.13, we have

lim
n→∞

E

[∫

[0,T )
f̂t(1− ζt)dξ

n
t + f̂T∆ζT∆ξnT

]
= E

[∫

[0,T )
f̂t(1− ζt)dξt + f̂T∆ζT∆ξT

]
.

Corollary 5.13 implies an analogous convergence for (f̃t) and the rest of the proof of lower
semicontinuity from Lemma 5.20 applies.

REMARK 5.25. In the arguments above, item (4) in Assumption (A2’) implies in par-
ticular that the payoff process (gt) does not have predictable jumps that are P-a.s. negative.
This assumption cannot be further relaxed as this may cause the proof of the upper semicon-
tinuity in Theorem 5.21 to fail. Recall that the process (gt) corresponds to the payoff of the
second player and her strategy (ζt) is not required to be absolutely continuous. For example,
fix t0 ∈ (0, T ) and take gt = 1− I{t≥t0}, ζt = I{t≥t0} and ξt = I{t=T}. Let us consider the
sequence ζnt = I{t≥t0−

1

n
}, which converges to ζ pointwise and also strongly in S . We have

∫

[0,T ]
gt(1− ξt−)dζ

n
t ≡ 1, for all n’s, but

∫

[0,T ]
gt(1− ξt−)dζt ≡ 0,

hence (46) fails and so does (48).

PROOF OF PROPOSITION 5.22. Here, we also only show how to extend the proof of
Proposition 5.5 to the more general setting. Fix ζ ∈ A◦(F2

t ) and ξ ∈ A◦(F1
t ). Construct a

sequence (ξn)⊂A◦
ac(F

1
t ) as in the proof of Proposition 5.5. It is sufficient to show that

(49) limsup
n→∞

N(ξn, ζ)≤N(ξ, ζ).

From the proof of Proposition 5.5 we have that

(50)

lim
n→∞

E

[∫

[0,T )
f̃t(1− ζt)dξ

n
t +

∫

[0,T )
g̃t(1− ξnt )dζt + hT∆ξnT∆ζT

]

= E

[∫

[0,T )
f̃t(1− ζt)dξt +

∫

[0,T )
g̃t(1− ξt−)dζt + hT∆ξT∆ζT

]
.

For t ∈ [0, T ], define

Rn
t =

∫

[0,t]
(1− ζs−)dξ

n
s , Rt =

∫

[0,t]
(1− ζs)dξs

with Rn
0− =R0− = 0. Corollary 5.15 implies that for P-a.e. ω ∈Ω

lim
n→∞

Rn
t−(ω) =Rt−(ω) for all t ∈ [0, T ].(51)

By the decomposition of (f̂t) in (39) and the dominated convergence theorem for the infinite
sum (recalling (40)) we obtain

E

[∫

[0,T )
f̂t(1− ζt)dξ

n
t

]
= E

[∫

[0,T )
f̂t(1− ζt−)dξ

n
t

]
=

∞∑

k=1

E

[
(−1)k

∫

[0,T )
Xf

k I{t≥ηf
k}
dRn

t

]

=

∞∑

k=1

E
[
(−1)kXf

k (R
n
T− −Rn

ηf
k−

)
]
,
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where the first equality follows from the continuity of (ξnt ) on [0, T ). We further apply dom-
inated convergence (with respect to the product of the counting measure on N and to the
measure P) to obtain
(52)

lim
n→∞

E

[∫

[0,T )
f̂t(1− ζt)dξ

n
t

]
=

∞∑

k=1

E
[
(−1)k lim

n→∞
Xf

k (R
n
T− −Rn

ηf
k−

)
]

=

∞∑

k=1

E
[
(−1)kXf

k (RT− −Rηf
k−

)
]
= E

[∫

[0,T )
f̂t(1− ζt)dξt

]
,

where the second equality uses (51) and the final one the decomposition of f̂ . Recalling that
ξnt → ξt− as n→∞ by construction, dominated convergence gives

(53) lim
n→∞

E

[∫

[0,T )
ĝt(1− ξnt )dζt

]
= E

[∫

[0,T )
ĝt(1− ξt−)dζt

]
.

Putting together (50), (52) and (53) shows

lim
n→∞

N(ξn, ζ) = E

[∫

[0,T )
ft(1− ζt)dξt +

∫

[0,T )
gt(1− ξt−)dζt + hT∆ξT∆ζT

]
.

It remains to notice that by (38) the right hand side is dominated by N(ξ, ζ), which completes
the proof of (49).

5.5. Proof of Theorem 2.6. Randomisation devices Zτ and Zσ associated to a pair
(τ,σ) ∈ T R(F1

t ) × T R(F2
t ) are independent of G. Denoting by (ξt) ∈ A◦(F1

t ) and (ζt) ∈
A◦(F2

t ) the generating processes for τ and σ, respectively, the statement of Proposition 4.4
can be extended to encompass the conditional functional (6):

(54) E
[
P(τ,σ)

∣∣G
]
= E

[∫

[0,T )
ft(1− ζt)dξt +

∫

[0,T )
gt(1− ξt)dζt +

∑

t∈[0,T ]

ht∆ξt∆ζt

∣∣∣∣G
]
.

We can also repeat the same argument as in Remark 4.5 to obtain that

V := ess sup
σ∈T R(F2

t )
ess inf

τ∈T R(F1

t )
E
[
P(τ,σ)

∣∣G
]
= ess sup

σ∈T R(F2

t )
ess inf
τ∈T (F1

t )
E
[
P(τ,σ)

∣∣G
]

and

V := ess inf
τ∈T R(F1

t )
ess sup

σ∈T R(F2

t )
E
[
P(τ,σ)

∣∣G
]
= ess inf

τ∈T R(F1

t )
ess sup
σ∈T (F2

t )
E
[
P(τ,σ)

∣∣G
]
.

Notice that V ≥ V , P-a.s. We will show that

E[V ] = E[V ],(55)

so that V = V , P-a.s. as needed.
In order to prove (55), let us define

M(τ) := ess sup
σ∈T (F2

t )
E
[
P(τ,σ)

∣∣G
]
, for τ ∈ T R(F1

t ),

and

M(σ) := ess inf
τ∈T (F1

t )
E
[
P(τ,σ)

∣∣G
]
, for σ ∈ T R(F2

t ).

These are two standard optimal stopping problems and the theory of Snell envelope applies
(see, e.g., [25, Appendix D] and [19]). We adapt some results from that theory to suit our
needs in the game setting.



34

LEMMA 5.26. The family {M(τ), τ ∈ T R(F1
t )} is downward directed and the family

{M(σ), σ ∈ T R(F2
t )} is upward directed.

PROOF. Let τ (1), τ (2) ∈ T R(F1
t ) and let ξ(1), ξ(2) ∈A◦(F1

t ) be the corresponding gener-
ating processes. Fix the G-measurable event B = {M(τ (1))≤M(τ (2))} and define another
(F1

t )-randomised stopping time as τ̂ = τ (1)IB + τ (2)IBc . We use G ⊂ F1
0 to ensure that

τ̂ ∈ T R(F1
t ). The generating process of τ̂ reads ξ̂t = ξ

(1)
t IB + ξ

(2)
t IBc for t ∈ [0, T ]. Using

the linear structure of ξ̂ and recalling (54), for any σ ∈ T (F2
t ), we have

E
[
P(τ̂ , σ)|G

]
= IBE

[∫

[0,σ)
fudξ

(1)
u + gσ(1− ξ(1)σ ) + hσ∆ξ(1)σ

∣∣∣∣G
]

+ IBcE

[∫

[0,σ)
fudξ

(2)
u + gσ(1− ξ(2)σ ) + hσ∆ξ(2)σ

∣∣∣∣G
]

= IBE
[
P(τ (1), σ)|G

]
+ IBcE

[
P(τ (2), σ)|G

]

≤ IBM(τ (1)) + IBcM(τ (2)) =M(τ (1))∧M(τ (2)),

where the inequality is by definition of essential supremum and the final equality by definition
of the event B. Thus, taking the supremum over σ ∈ T (F2

t ) we get

M(τ̂)≤M(τ (1))∧M(τ (2)),

hence the family {M(τ), τ ∈ T R(F1
t )} is downward directed. A symmetric argument proves

that the family {M(σ), σ ∈ T R(F2
t )} is upward directed.

An immediate consequence of the lemma and of the definition of essential supre-
mum/infimum is that (see, e.g., [35, Lemma I.1.3]) we can find sequences (σn)n≥1 ⊂
T R(F2

t ) and (τn)n≥1 ⊂ T R(F1
t ) such that P-a.s.

V = lim
n→∞

M(τn) and V = lim
n→∞

M(σn),(56)

where the convergence is monotone in both cases.
Analogous results hold for the optimisation problems defining M(τ) and M(σ). The proof

of the following lemma is similar to that of Lemma 5.26 and omitted.

LEMMA 5.27. The family {E
[
P(τ,σ)|G

]
, σ ∈ T (F2

t )} is upward directed for each

τ ∈ T R(F1
t ). The family {E

[
P(τ,σ)|G

]
, τ ∈ T (F1

t )} is downward directed for each σ ∈

T R(F2
t ).

It follows that for each τ ∈ T R(F1
t ) and σ ∈ T R(F2

t ), there are sequences (στ
n)n≥1 ⊂

T (F2
t ) and (τσn )n≥1 ⊂ T (F1

t ) such that

M(τ) = lim
n→∞

E
[
P(τ,στ

n)|G
]

and M(σ) = lim
n→∞

E
[
P(τσn , σ)|G

]
,(57)

where the convergence is monotone in both cases. Equipped with these results we can prove
the following lemma which will quickly lead to (55).

LEMMA 5.28. Recall V∗ and V ∗ as in Definition 2.3. We have

(58) E[V ] = V ∗, and E[V ] = V∗.
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PROOF. Fix τ ∈ T R(F1
t ). By (57) and the monotone convergence theorem

E[M(τ)] = lim
n→∞

E[P(τ,στ
n)]≤ sup

σ∈T (F2

t )
E[P(τ,σ)].

The opposite inequality follows from the fact that M(τ)≥ E[P(τ,σ)|G] for any σ ∈ T (F2
t )

by the definition of the essential supremum. Therefore, we have

(59) E[M(τ)] = sup
σ∈T (F2

t )
E[P(τ,σ)].

From (56), similar arguments as above prove that

(60) E[V ] = inf
τ∈T R(F1

t )
E[M(τ)].

Combining (59) and (60) completes the proof that E[V ] = V ∗. The second part of the state-
ment requires analogous arguments.

Finally, (58) and Theorem 2.4 imply (55), which concludes the proof of Theorem 2.6.

6. Counterexamples. In the three subsections below we show that: (a) relaxing condi-
tion (A3) may lead to a game without a value, (b) in situations where one player has all the
informational advantage, the use of randomised stopping times may still be beneficial also
for the uninformed player, and (c) Assumption (A2’) is tight in requiring that either (f̂t) is
non-increasing or (ĝt) is non-decreasing.

In order to keep the exposition simple we consider the framework of Section 3.1 with
I = 2, J = 1, and impose that (Fp

t ) be the trivial filtration (hence all payoff processes are
deterministic, since they are (Fp

t )-adapted). Furthermore we restrict our attention to the case
in which f1,1 = f2,1 = f , g1,1 = g2,1 = g and h1,1t I{t<T} = h2,1t I{t<T} = ftI{t<T}. Only the

terminal payoff depends on the scenario, i.e., h1,1T 6= h2,1T (both deterministic). For notational

simplicity we set h1 := h1,1T and h2 := h2,1T .
Notice that only the first player (minimiser) observes the true value of I , so she has a

strict informational advantage over the second player (maximiser). The second player will be
referred to as the uninformed player while the first player as the informed player.

We denote by T R the set of (Fp
t )-randomised stopping times. The informed player

chooses two randomised stopping times τ1, τ2 (one for each scenario, recall Lemma 3.1) with
the generating processes ξ1, ξ2 which, due to the triviality of the filtration (Fp

t ), are determin-
istic functions. Pure stopping times are constants in [0, T ]. Similarly, the uninformed player’s
randomised stopping time σ has the generating process ζ that is a deterministic function.

6.1. A game without a value when (A3) fails. Let us consider specific payoff functions

f ≡ 1, gt =
1

2
t, h1 = 2, h2 = 0,

and let us also set T = 1, π1 = π2 =
1
2 .

PROPOSITION 6.1. In the example of this subsection we have

V∗ ≤
1

2
and V ∗ >

1

2
,

so the game does not have a value.
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PROOF. First we show that V∗ ≤
1
2 . Recall that (c.f. Remark 4.5)

V∗ = sup
σ∈T R

inf
τ1,τ2∈T R

N((τ1, τ2), σ) = sup
σ∈T R

inf
τ1,τ2∈[0,1]

N((τ1, τ2), σ),

so we can take τ1, τ2 ∈ [0,1] deterministic in the arguments below. Take any σ ∈ T R and the
corresponding generating process (ζt) which is, due to the triviality of the filtration (Fp

t ), a
deterministic function. For τ1 ∈ [0,1), τ2 = 1 we obtain

N((τ1, τ2), σ) = E
[
(
1

2
σI{σ<τ1} + 1 · I{σ≥τ1})I{I=1} + (

1

2
σI{σ<1} + 0 · I{σ=1})I{I=2}

]

≤
1

2
(
1

2
ζτ1− + (1− ζτ1−)) +

1

4
ζ1− =

1

2
−

1

4
ζτ1− +

1

4
ζ1−,

where we used that σ is bounded above by 1 and that I is independent of σ with P(I = 1) =
P(I = 2) = 1

2 . In particular,

inf
τ1,τ2∈[0,1]

N((τ1, τ2), σ)≤ lim
τ1→1−

N((τ1,1), σ) =
1

2
.

This proves that V∗ ≤
1
2 .

Now we turn our attention to demonstrating that V ∗ > 1
2 . Noting again that

V ∗ = inf
τ1,τ2∈T R

sup
σ∈T R

N(τ1, τ2, σ) = inf
τ1,τ2∈T R

sup
σ∈[0,1]

N(τ1, τ2, σ),

we can restrict our attention to constant σ ∈ [0,1]. Take any τ1, τ2 ∈ T R and the correspond-
ing generating processes (ξ1t ), (ξ

2
t ) which are also deterministic functions.

Take any δ ∈ (0,1/2). If ξ11− > δ, then for any σ < 1 we have

N((τ1, τ2), σ)≥ E
[(
1 · I{τ1≤σ} +

1

2
σI{σ<τ1}

)
I{I=1} +

1

2
σI{I=2}

]

= E
[(
ξ1σ +

1

2
σ(1− ξ1σ)

)
I{I=1} +

1

2
σI{I=2}

]

=
1

2
ξ1σ −

1

4
σξ1σ +

1

2
σ =

1

2
ξ1σ(1−

1

2
σ) +

1

2
σ,

and, in particular,

sup
σ∈[0,1]

N((τ1, τ2), σ)≥ lim
σ→1−

N((τ1, τ2), σ)≥
1

4
ξ11− +

1

2
≥

1

2
+

1

4
δ >

1

2
.

On the other hand, if ξ11− ≤ δ, taking σ = 1 yields

sup
σ∈[0,1]

N((τ1, τ2), σ)≥N((τ1, τ2),1)≥ E[2 · I{τ1=1}I{I=1}] = 1− ξ11− ≥ 1− δ >
1

2
.

This completes the proof that V ∗ > 1
2 .

6.2. Necessity of randomization. Here we argue that randomisation is not only sufficient
in order to find the value in Dynkin games with asymmetric information but in many cases
it is also necessary. In [10] there is a rare example of explicit construction of optimal strate-
gies for a zero-sum Dynkin game with asymmetric information in a diffusive set-up (see
Section 3.2 above for details). The peculiarity of the solution in [10] lies in the fact that the
informed player uses a randomised stopping time whereas the uninformed player sticks to a
pure stopping time. An interpretation of that result suggests that the informed player uses ran-
domisation to ‘gradually reveal’ information about the scenario in which the game is being
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FIGURE 1. Payoff functions f in blue, g in orange.

played, in order to induce the uninformed player to act in a certain desirable way. Since the
uninformed player has ‘nothing to reveal’ one may be tempted to draw a general conclusion
that she should never use randomised stopping rules. However, Proposition 6.2 below shows
that such conclusion would be wrong in general and even the uninformed player may benefit
from randomisation of stopping times.

We consider specific payoff functions f and g plotted on Figure 1. Their analytic formulae
read

ft = (10t+ 4)I{t∈[0, 1

10
)} + 5I{t∈[ 1

10
,1]}, gt = (15t− 6)I{t∈[ 2

5
, 1
2
)} + (9− 15t)I{t∈[ 1

2
, 3
5
)}

with

h1 = 0= g1−, h2 = 5= f1−.

We also set T = 1, π1 = π2 =
1
2 . As above, we identify randomized strategies with their

generating processes. In particular, we denote by ζ the generating process for σ ∈ T R.
By Theorem 2.5, the game has a value in randomised strategies, i.e., V ∗ = V∗. Restriction

of the uninformed player’s (player 2) strategies to pure stopping times affects only the lower
value, see Remark 4.5. The lower value of the game in which player 2 is restricted to using
pure stopping times reads

V̂∗ := sup
σ∈[0,1]

inf
τ1,τ2∈T R

N((τ1, τ2), σ) = sup
σ∈[0,1]

inf
τ1,τ2∈[0,1]

N((τ1, τ2), σ),

where the equality is again due to Remark 4.5 (notice that here all pure stopping times are
(Fp

t )-stopping times hence deterministic, because (Fp
t ) is trivial). As the following proposi-

tion shows, V̂∗ < V∗, so the game in which the uninformed player does not randomise does
not have a value. This confirms that the randomisation can play a strategic role beyond ma-
nipulating information.

PROPOSITION 6.2. In the example of this subsection, we have

V∗ > V̂∗.

PROOF. First, notice that

V̂∗ ≤ sup
σ∈[0,1]

N(τ̂(σ), σ),
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where we take

τ̂(σ) = (τ1(σ), τ2(σ)) =

{
(1,1), for σ ∈ [0,1),

(1,0), for σ = 1.

It is easy to verify that supσ∈[0,1]N(τ̂(σ), σ) = 2.
We will show that the σ-player can ensure a strictly larger payoff by using a randomised

strategy. Define ζt = aI{t≥ 1

2
} + (1− a)I{t=1}, i.e., the corresponding σ ∈ T R prescribes to

‘stop at time 1
2 with probability a and at time 1 with probability 1 − a’. The value of the

parameter a ∈ [0,1] will be determined below. We claim that

(61) inf
τ1,τ2∈[0,1]

N((τ1, τ2), ζ) =N((1,0), ζ)∧N((1,1), ζ).

Assuming that the above is true, we calculate

N((1,0), ζ) = 2+
3

4
a, N((1,1), ζ) =

5

2
− a.

Picking a= 2
7 the above quantities are equal to 31

14 . Hence V∗ ≥
31
14 > 2.

It remains to prove (61). Recall that ζt = aI{t≥ 1

2
}+(1−a)I{t=1} is the generating process

of σ and the expected payoff reads

N((τ1, τ2), ζ) =

2∑

i=1

E
[
I{I=i}

(
fτiI{τi≤σ}∩{τi<1} + gσI{σ<τi}∩{σ<1} + hiI{τi=σ=1}

) ]
.

It is clear that on the event {I = 1} the infimum is attained for τ1 = 1, irrespective of the
choice of ζ . On the event {I = 2} the informed player would only stop either at time zero,
where the function f attains the minimum cost f0 = 4, or at time t > 1

2 since ζ only puts
mass at t= 1

2 and at t= 1 (the informed player knows her opponent may stop at t= 1
2 with

probability a). The latter strategy corresponds to a payoff 5− 7
2a and can also be achieved

by picking τ2 = 1. Then the informed player needs only to consider the expected payoff
associated to the strategies (τ1, τ2) = (1,0) and (τ1, τ2) = (1,1), so that (61) holds.

6.3. Necessity of Assumption (A2’). Our final counter-example shows that violating As-
sumption (A2’) by allowing both predictable upward jumps of f and predictable downward
jumps of g may also lead to a game without a value.

Consider the payoffs

ft = 1+ 2I{t≥ 1

2
}, gt =−I{t≥ 1

2
}, h1 = 3, h2 =−1,

so that h1 = f1− and h2 = g1− and let us also set T = 1, π1 = π2 =
1
2 . Assumption (A2’) is

violated as g has a predictable downward jump and f has a predictable upward jump at time
t= 1

2 .

PROPOSITION 6.3. In the example of this subsection we have

V∗ ≤ 0, and V ∗ > 0,

so the game does not have a value.

PROOF. First we show that V∗ ≤ 0. For this step, it is sufficient to restrict our attention
to pure stopping times τ1, τ2 ∈ [0,1] for the informed player (c.f. Remark 4.5). Let σ ∈ T R
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with a (deterministic) generating process (ζt) and fix ε ∈ (0, 12). For τ1 =
1
2 − ε and τ2 = 1

we obtain

N((τ1, τ2), σ) = E
[
I{I=1}(0 · I{σ<τ1} + 1 · I{σ≥τ1}) + I{I=2}(0 · I{σ< 1

2
} − 1 · I{σ≥ 1

2
})
]

=
1

2

(
1− ζ( 1

2
−ε)−

)
−

1

2

(
1− ζ 1

2
−

)
.

Therefore, using that (ζt) has càdlàg trajectories we have

inf
τ1,τ2∈[0,1]

N((τ1, τ2), σ)≤ lim
ε→0

1

2
· (ζ 1

2
− − ζ( 1

2
−ε)−) = 0.

Since the result holds for all σ ∈ T R we have V∗ ≤ 0.
Next, we demonstrate that V ∗ > 0. For this step it is sufficient to consider pure stopping

times σ ∈ [0,1] for the uninformed player (Remark 4.5). Let τ1, τ2 ∈ T R and let ξ1, ξ2 be the
associated (deterministic) generating processes. Consider first the case in which ξ11

2
−
+ξ21

2
−
>

δ for some δ ∈ (0,1) and fix ε ∈ (0, 12). For σ = 1
2 − ε we have

N((τ1, τ2), σ) = E
[
I{I=1}(1 · I{τ1≤σ} + 0 · I{σ<τ1}) + I{I=2}(1 · I{τ2≤σ} + 0 · I{σ<τ2})

]

=
1

2

(
ξ11

2
−ε + ξ21

2
−ε

)
,

thus implying

(62) sup
σ∈[0,1]

N((τ1, τ2), σ)≥ lim
σ→ 1

2
−
N((τ1, τ2), σ) =

1

2
(ξ11

2
− + ξ21

2
−)>

δ

2
> 0.

If, instead, ξ11
2
−
+ ξ21

2
−
≤ δ so that, in particular, ξ11

2
−
∨ ξ21

2
−
≤ δ, then

(63)

sup
σ∈[0,1]

N((τ1, τ2), σ)≥N((τ1, τ2),1)

≥ E
[
I{I=1}(1 · I{τ1< 1

2
} + 3 · I{τ1≥ 1

2
}) + I{I=2}(−1)

]

≥
1

2

(
ξ11

2
− + 3

(
1− ξ11

2
−

))
−

1

2
= 1− ξ11

2
− ≥ 1− δ > 0.

Combining (62) and (63) we have V ∗ > 0.
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