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Abstract: This study investigates changes in fine particulate matter (PM2.5) concentration and air-
quality index (AQI) in Asia using nine different Coupled Model Inter-Comparison Project 6 (CMIP6)
climate model ensembles from historical and future scenarios under shared socioeconomic pathways
(SSPs). The results indicated that the estimated present-day PM2.5 concentrations were comparable
to satellite-derived data. Overall, the PM2.5 concentrations of the analyzed regions exceeded the
WHO air-quality guidelines, particularly in East Asia and South Asia. In future SSP scenarios that
consider the implementation of significant air-quality controls (SSP1-2.6, SSP5-8.5) and medium
air-quality controls (SSP2-4.5), the annual PM2.5 levels were predicted to substantially reduce (by
46% to around 66% of the present-day levels) in East Asia, resulting in a significant improvement in
the AQI values in the mid-future. Conversely, weak air pollution controls considered in the SSP3-7.0
scenario resulted in poor AQI values in China and India. Moreover, a predicted increase in the
percentage of aged populations (>65 years) in these regions, coupled with high AQI values, may
increase the risk of premature deaths in the future. This study also examined the regional impact of
PM2.5 mitigations on downward shortwave energy and surface air temperature. Our results revealed
that, although significant air pollution controls can reduce long-term exposure to PM2.5, it may also
contribute to the warming of near- and mid-future climates.

Keywords: CMIP6; SSP scenarios; PM2.5; air quality index; Asia; climate changes

1. Introduction

Air pollution has now emerged as a leading global environmental health risk factor.
In particular, long-term exposure to fine particulate matter, referred to as aerosols, is as-
sociated with increased rates of chronic bronchitis, reduced lung function, and increased
mortality from lung cancer and heart disease [1]. The World Health Organization (WHO)
reports that 92% of the world’s population resides in areas where the air-quality levels
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exceed the WHO’s ambient air-quality guidelines for the annual mean of particulate matter
with a diameter of less than 2.5 µm (PM2.5) [2]. Moreover, approximately three million
premature deaths occur annually as a result of long-term exposure to ambient air pollu-
tion [2,3]. Significantly high anthropogenic aerosol concentrations, especially recently in
Asian regions, are linked to population growth and rapid industrialization. A recent report
by the Organization for Economic Co–operation and Development (OECD) determined
that South Korea, China, and India will endure the most significant economic damage
and highest premature death rates in 2060 due to air pollution [4]. In addition, aerosols
influence global and regional climate characteristics by altering the Earth’s radiative bal-
ance [5–7]. Previous studies [8–10] estimated that the present-day effective radiative forcing
(ERF) by total aerosols is approximately −1 Wm−2, masking a considerable fraction of the
well-mixed greenhouse gases (GHGs) induced by warming since the pre-industrial period.

Extensive research in recent decades has confirmed that the increase in surface
PM2.5 concentrations in Asian regions, most notably since the middle 20th century, has
been caused by the emission of primary aerosols and their precursors from industrial
sources [7,11–13]. However, recent substantial efforts by the Chinese and Korean govern-
ments to mitigate anthropogenic emissions have resulted in a gradual decrease in the PM2.5
concentrations over East Asia [14,15]. Despite these efforts, current air pollution levels in
Asian countries remain substantially higher than those of the United States and Europe.
According to previous studies [16–21], the main cause of premature death in East Asia
in the future will be the long-term exposure to elevated concentrations of ambient PM2.5.
Moreover, regional changes in PM2.5 concentrations are greatly affected by local emissions
and the long/distant transport of aerosols [22–24]. In addition, significant temperature
variations in Asia during the 20th century may have been related to large regional historic
anthropogenic aerosol emissions and their radiative effects, which are more regionally
confined than those of GHGs due to their relatively short lifetimes [6,13]. Because of the
widespread environmental impacts such as visibility impairment and severe threats posed
to human health, understanding the effects of fine particulate matter on human health and
climate interactions have become critical to regional policymakers.

Recent chemistry–climate modeling studies have attempted to account for the geo-
graphical variations in aerosol emissions and transportation and consider the effect of
these factors on the climate system [25–28]. In addition, experiments performed as part of
the Coupled Model Intercomparison Project Phase 6 (CMIP6) [29] and the Aerosol Chem-
istry Model Intercomparison Project (AerChemMIP) [30] have contributed significantly
to the multimodel (including interactive tropospheric chemistry and aerosols) evaluation
of historical and future changes in air pollutants [10,31–34]. Aerosol concentrations are
expected to reduce globally in the future, albeit at different paces over different regions,
with reductions initially expected to occur in developed countries in Western Europe and
North America. However, Asia, the world’s most populated and rapidly developing region,
has been the largest source of aerosols and their precursors over the last few decades [35,36].
Therefore, the changes in regional aerosol concentrations caused by future air pollution
mitigation could have important consequences for human health and climate change in the
global and Asian countries.

This study aimed to assess the annual mean surface PM2.5 concentration and air
quality in Asian regions (East Asia, South Asia, and Southeast Asia) and conduct future
projections using simulations from CMIP6 multimodel ensembles. Future scenarios have
been developed for the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6:
the shared socioeconomic pathways (SSP), which were combined with the Representative
Concentration Pathways (RCP) [29]. The qualitative and quantitative aspects of these new
scenarios have been extensively discussed in the literature [37–40]. In the SSP scenarios, the
level and speed of air pollution controls in each region are implemented differently. While
SSP3 (regional rivalry) and SSP4 (inequality) assume the slowest deployment of air pollu-
tion controls, SSP1 (sustainability) and SSP5 (conventional development) adopt the fastest
and widest implementations, as shown in Table 1 [41,42]. Moreover, the SSP2 scenario
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implements significant advances in air pollution control. Air pollution controls in the SSP
scenarios depend on the income levels of the countries. Therefore, each country in the Asian
region will implement air-pollution controls with various schedules according to their
individual institutional, financial, and technological capacities. Detailed information on air
pollution control per country according to the SSP scenarios can be found in Rao et al. [43].
This study was designed to explore the future changes in PM2.5 concentrations and regional
effects on air quality and climate using the new CMIP6 scenarios. A total of 38 simulations
were analyzed from nine CMIP6 climate models for historical and future SSP scenarios.
The CMIP6 models, experiments, and methodology are described in Section 2, followed by
an analysis of the model data in Section 3. Summaries and Discussions are presented in
Section 4.

Table 1. Shared socioeconomic pathways’ (SSPs) air pollution control levels (Based on [42]).

SSP Scenarios Emission Factors

SSP1 and SSP5 Strong decrease (fastest and widest implementation of air
pollution controls)

SSP2 Medium decrease (significant advancement in pollution control,
yet less than in SSP1 and SSP5)

SSP3 and SSP4 Weak decrease (slowest deployment of air pollution controls)

2. Data and Methodology
2.1. Simulation Data from CMIP6 Archive

In this study, we used 38 simulations from nine CMIP6 models (Table 2) for the first
realizations that were available at the time of this study (up to February 2021) from the
Earth System Grid Federation (ESGF). All the model outputs were bilinearly interpolated
onto a grid with a horizontal resolution of 1.875◦ × 1.25◦, which is also used by the UK
Earth System Model (UKESM1-0-LL) [44]. The bilinear interpolation method tends to
underestimate local maxima but does not create fictitious local peaks. The multimodel
ensemble (MME) was examined by using the arithmetic mean of the model output, with
the same weight assigned to each model. Six different experiments were selected for each
CMIP6 model: historical simulation (Historical) was forced by the observed history of
anthropogenic sources and natural forcing trends over a 164-year period, from 1850 to 2014.

Table 2. List of CMIP6 climate models used for historical and future scenario experiments in this study. Circles indicate that
the model was used, but asterisks indicate a lack of surface PM2.5 concentration data. Detailed descriptions of the CMIP6
models are provided in Supplementary Table S1.

Model Name Historical SSP1–2.6 SSP2–4.5 SSP3–7.0 SSP3–7.0-lowNTCF SSP5–8.5

UKESM1-0-LL [44] # # # # # #
GFDL-ESM4 [45] # # # # # #

NorESM2-LM [46] # # # # # #
GISS-E2-1-G [47] # # # # # #

MIROC-ES2L [48] # # # # * #
MRI-ESM2-0 [49] # # *

CESM2-WACCM [50] # # #
BCC-ESM1 [51] #

MPI-ESM1.2-HAM [52] #

Total number of models 9 5 5 7 7 5

The future changes in air pollutants were then projected under different SSP scenarios
throughout the 21st century (Table 3). For CMIP6, the four SSPs were categorized as SSP1–
2.6 (SSP126), SSP2–4.5 (SSP245), SSP3–7.0 (SSP370), and SSP5–8.5 (SSP585) for the period
from 2015 to 2100. O’Neill et al. [37] provide a more detailed description of the CMIP6
simulation design for the future scenarios. CMIP6 model data for the SSP3-7.0-lowNTCF
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scenario (SSP370 with cleaner air-quality policies; SSP370-lowNTCF) over the 2015–2055
period, derived from AerChemMIP [30], was also used in this study. The baseline historical
simulation period of 1995–2014 was selected as present day (PD) in this study, whereas
the near-future period of 2021–2040 and mid-future period of 2041–2060 were selected for
the analysis of future changes in air pollution. Overall, regional analyses of three Asian
subregions (Figure 1) were selected for this study, following the domain of Iturbide et al.
(2020) [53] prepared for the IPCC sixth assessment report (AR6).

Table 3. List of CMIP6 experiments used in this study.

Experiment Information

Historical
(1850–2014)

The historical simulations use forcing due to both the natural
causes and human factors over the period 1850 to 2014. These

simulations were used to evaluate model performance.

SSP1-2.6
(2015–2100)

This scenario represents the low end of the range of plausible
future pathways, and depicts the best-case future scenario from a

sustainability perspective.
SSP2-4.5

(2015–2100)
This scenario represents the medium part of the range of

plausible future pathways.
SSP3-7.0

(2015–2100)
This scenario represents the medium to high end of plausible

future pathways.
SSP3-7.0-lowNTCF

(2015–2055)
This scenario represents the SSP3-7.0 scenario with the reduced
near-term climate forcer (NTCF) emissions, including aerosols.

SSP5-8.5
(2015–2100)

This scenario represents the high end of plausible future
pathways. SSP5 is the only SSP scenario with emissions high

enough to produce the 8.5 Wm−2 level of forcing in the year 2100.
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Figure 1. Three subregional Asian domains analyzed in this study, adopted from Iturbide et al.
(2020) [53]. Shaded colors indicate three major regions: East Asia (blue; EAS), South Asia (green;
SAS), and Southeast Asia (orange; SEA).

2.2. Satellite Data

This study used satellite-derived global annual mean surface PM2.5 concentration grid
data from the NASA Socioeconomic Data and Application Center (SEDAC) for evaluating
the simulated surface PM2.5 concentrations. These data were estimated using a combined
geophysical–statistical method with information from aerosol optical depth (AOD) re-
trievals from the NASA Moderate Resolution Imaging Spectro Radiometer (MODIS), Multi-
angle Imaging Spectro Radiometer (MISR), and the Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS) instruments with the GEOS–Chem chemical transport model. The data were then
calibrated to global ground-based measurements of PM2.5 concentrations for large-scale
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health and environmental research [54,55]. This high-resolution (0.01◦ × 0.01◦) dataset
is provided from the SEDAC website (available at https://sedac.ciesin.columbia.edu (ac-
cessed on 5 April 2021)) and covers the global land surface from 70◦ north to 55◦ south over
the 1998–2016 period. Surface PM2.5 observational data were re-gridded onto the same
resolution as the CMIP6 multimodel ensemble product (1.875◦ × 1.25◦) for evaluation pur-
poses. We focused on the 1998–2014 period to match the present-day (1995–2014) CMIP6
historical simulations.

2.3. Methodology

This study explored the impact of fine particulate matter on the air quality in Asia
using SSP scenarios from the CMIP6 archive. However, not enough models provided a
direct calculation of PM2.5 concentrations and as such we had to use an approximation
that accounts for all aerosol components that were consistent across all CMIP6 models.
Therefore, we calculated the PM2.5 concentrations using the offline method, as shown in
Equation (1). Here, BC, OC, NH4, SO4, NO3, DU, and SS represented black carbon (BC),
total organic carbon (OC), ammonium (NH4), sulfate (SO4), nitrate (NO3), dust (DU), and
sea-salt (SS) particles, respectively, from the lowest model level in the CMIP6 individual
model following previous studies [21,26,28,33,35,56]. The factors 0.1 and 0.25 indicated the
DU and SS PM2.5 size fraction. Note that only a few CMIP6 models include the simulation
of ammonium and nitrate particles in their aerosol-chemistry schemes (CESM2-WACCM
model included NH4 particle and the GFDL-ESM4, GISS-E2-1G models included both NH4
and NO3). The analysis area was divided into three subdomains: East Asia (EAS), South
Asia (SAS), and South East Asia (SEA) (Figure 1). The analyses of the regional annual mean
PM2.5 gridded data were conducted based on a multimodel ensemble (MME).

Estimated PM2.5 = BC + OC + NH4 + SO4 + NO3 + (0.1 × DU) + (0.25 × SS) (1)

This study also attempted to estimate the effects of long-term exposure to fine par-
ticulate matter using the annual mean surface PM2.5 concentrations calculated from
Equation (1). The air-quality levels in the six categories were classified based on the annual
mean PM2.5 from the WHO air-quality guidelines and interim targets (Table 4), namely the
AQG (air-quality guideline), IT-3 (interim target 3), IT-2 (interim target 2), IT-1 (interim
target 1), OT (over target), and ST (significant target). The higher AQI values indicated a
greater level of air pollution and therefore pose a higher risk to health, which could lead to
the premature death of residents. For example, an AQI value of ‘AQG’ denoted a good
air-quality level with little or no potential to affect public health. However, an AQI value
of IT-1 suggests that air pollution may have contributed to an approximately 15% higher
premature mortality risk relative to the AQG level [57]. Therefore, the WHO guidelines
for outdoor particulate matter recommend that the annual average PM2.5 does not exceed
10 µg/m3. In this study, changes in the annual mean surface PM2.5 concentrations and AQI
index, and their effects on regional future climates were analyzed according to the SSP
scenarios from the CMIP6 simulated data.

Table 4. List of CMIP6 experiments used in this study.

Index PM2.5 (µg/m3) Basis for the Selected Level [57]

5 Significantly over target (ST) 53– Defined as a concentration that exceeds 150% of the interim target-1 level.

4 Over target (OT) 35–53 Defined as a concentration higher than the interim target and less than
150% of the interim target-1 level.

3 Interim target 1 (IT-1) 25–35 Approximately 15% higher long-term mortality risk relative to the
air-quality guideline level.

2 Interim target 2 (IT-2) 15–25 These levels lower the risk of premature mortality by approximately 6%
relative to the IT-1 level.

1 Interim target 3 (IT-3) 10–15 These levels reduce the mortality risk by approximately 6% relative to
the IT-2 level.

0 Air-Quality Guideline
(AQG) 0–10 Lower end of the range of significant effects on survival in response to

long-term exposure to PM2.5. [58]

https://sedac.ciesin.columbia.edu
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3. Results
3.1. Evaluating the Estimated PM2.5 from CMIP6 Models in the Present–Day Period

The performance of fine particulate matter was evaluated from the nine CMIP6 models
(Table 2). The annual mean surface PM2.5 concentrations for the globe and for the EAS,
SAS, and SEA domain regions were estimated using historical simulations in the individual
CMIP6 model and MME, and the results were compared with the available satellite-based
PM2.5 data for validation. The CMIP6 MME mean PM2.5 (black horizontal line in Figure 2)
showed good agreement with the satellite-derived PM2.5 (black open circle in Figure 2) for
the present-day period. For both the CMIP6 model-simulated and satellite-derived data,
annual mean surface PM2.5 concentrations in EAS and SAS were more than twice as high
than worldwide and in the SEA region. The CMIP6 MME for the present-day annual mean
surface PM2.5 was 9.6 ± 2.5 µg/m3 globally, 23.6 ± 5.3 µg/m3 in EAS, 23.7 ± 6.2 µg/m3 in
SAS, and 9.6 ± 2.8 µg/m3 in SEA. The simulated PM2.5 concentrations in EAS and SAS
were marginally underestimated compared to the satellite data. This might be because
only a few CMIP6 models account for nitrate aerosols as described in Section 2. And
the deviation between the individual CMIP6 models was also greater than those of the
global and SEA regions. The larger model diversity over the EAS and SAS regions was
consistent with a previous study [33] that demonstrated that the inter-model differences
might be attributed to different simulations of historical changes in the anthropogenic
aerosol components. The regional spatial distribution of the annual mean PM2.5, estimated
based on the CMIP6 MME, was compared to satellite-derived PM2.5 concentrations for the
present day (Figure 3). The results indicate that the industrialized and highly populated
countries of China and India are exposed to the highest regional PM2.5 concentrations. For
this reason, the annual mean concentration of PM2.5 in recent decades was the highest
in the Beijing and Zhangzhou regions of central China, with values exceeding 50 µg/m3

(Figure 3a). Moreover, significant variation was simulated between the CMIP6 individual
models in areas with large anthropogenic emission sources, such as Eastern China and
Northern India (Figure 3b). Conversely, the MME PM2.5 mean and standard deviation was
relatively low in southern India, Japan, and Indonesia. Overall, the PM2.5 concentrations in
most of the regions analyzed in this study, except for Japan, the Philippines, and eastern
Indonesia, exceeded the WHO air-quality guidelines (10 µg/m3 annual mean).
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In this study, we adopted the CMIP6 MME analysis to understand the uncertainty due
to differences in the physical process of various climate models. The spatial distribution
of the annual mean PM2.5 for the present-day period, calculated from CMIP6 historical
simulations, showed similar distribution patterns to those of satellite-derived PM2.5 data
(Figure 3a,c). However, the simulated-PM2.5 concentrations were underestimated com-
pared to the satellite-derived PM2.5 concentrations obtained for eastern China, northern
India, and Thailand (Figure 3d). Conversely, for western China, Pakistan, and Indonesia,
the CMIP6 model concentrations were overestimated relative to the satellite data. More-
over, the diversity between the CMIP6 models was large over eastern China and northern
India, which experience high levels of PM2.5. Despite model diversity and regional biases
(Figure 3b,d), the simulated PM2.5 concentrations from the CMIP6 MME showed reasonable
domain-averaged values in the present-day climate compared to the satellite-derived PM2.5
concentrations (Figure 2). Therefore, the historical CMIP6 MME simulations were used as
a reference period (1995–2014) for near- and mid-future climate changes for the remainder
of this study.

3.2. Future Changes in Simulated PM2.5 Concentrations and the Air-Quality Index

Figure 4 shows the projected global and regional changes in primary aerosols and
their precursor emissions relative to the present day. This data was used as the input data
for the CMIP6 models. Anthropogenic aerosol and precursor (organic carbon, black carbon,
and sulfur dioxide) emissions used in each CMIP6 model were obtained from the same
dataset. It is worth noting that the emissions of natural aerosol sources such as dust and



Int. J. Environ. Res. Public Health 2021, 18, 6817 8 of 17

sea-salt are different, depending on the physical configuration of the individual CMIP6
model (not shown).
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Figure 4. Future changes (unit: %) in the near future (2021–2040, left-top triangle; NF) and mid-future
(2041–2060, right–bottom triangle; MF) relative to the present day (1995–2014) for annual mean total
emissions of (a) SO2, (b) OC, and (c) BC worldwide and for the Asian regions (EAS, SAS, and SEA)
analyzed in this study under the various CMIP6 SSP scenarios.

Overall, except for the SSP3-7.0 scenario, the emissions of anthropogenic aerosols
and precursors for EAS, SEA, and worldwide showed a decreasing tendency in the near
and mid-future. In the SAS region, SO2 showed an increasing trend (up to 50%) in all
the near-future scenarios and a continuous increase in the mid-future for the SSP5-8.5,
SSP3-7.0, and SSP2-4.5 scenarios (Figure 4a). In addition, future OC and BC emissions in
SAS are also expected to increase in the near future (Figure 4b,c) for all the scenarios except
SSP1-2.6 and SSP5-8.5, which include the rapid implementation of air pollution controls.
For the SSP3-7.0 scenario, which specifies inadequate air pollution controls, anthropogenic
aerosols and precursor emissions are expected to increase or remain at the present-day
levels in all regions.

Future changes in the annual mean surface PM2.5 concentrations in the Asian regions
were examined using the different CMIP6 SSP scenarios (Figure 5). For the significant air-
quality control scenarios, SSP1-2.6 and SSP5-8.5, a considerable decrease in the annual mean
surface PM2.5 was predicted for the near future in EAS (Figure 5a). The results indicated a
decrease in PM2.5 of more than 50% by the end of the 21st century compared to present-day
levels. These changes are driven by the large emission controls of anthropogenic aerosols
and their precursors (Figure 4). The decreasing trend in the SSP2-4.5 scenario was similar
to that in the SSP5-8.5 scenario; however, higher PM2.5 concentrations were simulated in
the near-future period. In the SSP3-7.0 scenario, which includes weak air-quality controls,
the annual mean PM2.5 concentrations increased until the mid-21st century, and then
subsequently decreased to levels similar to the present day by the end of the 21st century.

In the SAS region, future changes of the annual mean PM2.5 in the SSP1-2.6 and SSP3-
7.0 scenarios were similar to those in EAS. However, significantly large diversities were
simulated between the CMIP6 models (Figure 5b), particularly for the far future. Moreover,
unlike the predictions for EAS, changes in the annual mean PM2.5 for the SSP2-4.5 and
SSP5-8.5 scenarios were characterized by a marginal increase in the near-future period
(green and red solid lines in Figure 5b). It was also found that the future changes in
PM2.5 concentrations in SAS exceeded those in EAS, particularly for the SSP3-7.0 scenario,
which includes the weak implementation of air-quality controls. In the SEA region, both
the changes in the annual mean PM2.5 and the model diversity were smaller than in the
EAS and SAS regions (Figure 5c). However, a continuous increase (approximately 30%
in the far future) in the PM2.5 in the SEA region was found for the SSP3-7.0 scenario,
whereas the PM2.5 concentrations simulated for the EAS and SAS regions decreased after
the mid-future period.
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deviation of the mean. The MME regional mean value and ±1 standard deviation for the present day
is indicated in the bottom left corner.

In this study, we calculated the AQI index for the present-day and near-future periods
using the simulated annual surface mean PM2.5 concentrations obtained from the CMIP6
MME mean (Figure 6). Higher AQI values are an indicator of increasing long-term exposure
to PM2.5, which could pose a severe threat to human health and increase the risk of
premature death (Table 4). The present-day AQI values for the historical simulations in the
EAS and SAS regions were typically above the level of ’interim target 2′ (the cyan-colored
areas in Figure 6a). In particular, the AQI values over northern India and eastern China,
around mega cities such as Beijing, Shanghai, Delhi, and Kolkata were at ‘over target’
level (the orange-colored area in Figure 6a). Based on the simulated PM2.5 concentrations
for the present day, we determined that the PM2.5 levels for Japan, western China, and
eastern SEA, situated far from air pollution source regions, were below the specified WHO
AQG annual mean level of 10 µg/m3 (the indigo-colored area in Figure 6a). These results
are consistent with a WHO report published in 2016 on annual mean PM2.5 levels in the
relevant Asian regions [2].

In the SSP1-2.6 scenario, the AQI values in EAS are expected to improve substantially
in the near future. In particular, the AQI level in China was lowered to the interim target
range, and the AQI values for the Korean peninsula were below the specified WHO
AQG levels (Figure 6b). The ‘over target’ area in northern SAS also showed a decrease
compared to present-day levels. The spatial distributions of the AQI values showed
similar patterns for the SSP2-4.5 and SSP5-8.5 scenarios, with AQI levels showing slightly
improvement in EAS and worse in SAS compared to the present day (Figure 6c,e). These
results were attributed to increases in the annual mean PM2.5 concentrations in SAS due
to higher anthropogenic aerosol and precursor concentrations in the near-future period
(Figures 4 and 5b). In the SSP3-7.0 scenario, the AQI values were expected to increase
significantly in EAS, SAS, and northern SEA (Figure 6d). In particular, the AQI values over
the northern SAS and eastern EAS regions were calculated as ‘significantly over target’ (the
red-colored area in Figure 6d). We also estimated resident population in areas exceeding
the WHO interim target using the total population dataset from the Inter-Sectoral Impact
Model Inter-Comparison Project phase 2b (ISIMIP2b) [59]. In the SSP3 scenario, more than
1.6 billion people (around 1 billion in SAS and around 0.6 billion in EAS) will be exposed
to air pollution exceeding the IT levels of AQI in the near future. These changes of AQI
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values in the mid-future are much more pronounced than for the near future (Figure 7). In
the SSP1-2.6 scenario, the AQI values in EAS, excluding inland China, were expected to be
IT-3 (#1) or the lowest levels (AQG, #0) of AQI for the mid-future period. Conversely, in
the SSP3-7.0 scenario, it was found that the AQI values in more than 50% of SAS regions
were OT or ST levels.

Figure 6. Spatial distribution of AQI based on WHO air-quality guidelines and interim targets for
long-term exposure of PM2.5 for (a) the present day from CMIP6 historical simulations, and for the
near future from the (b) SSP1-2.6, (c) SSP2-4.5, (d) SSP3-7.0, and (e) SSP5-8.5 scenarios. AQI value
classifications are defined in Table 4.

The annual mean PM2.5 concentrations and AQI levels in EAS were shown to improve
overall in the future with the implementation of air-quality controls (Figures 5 and 6).
However, the predicted AQI values remained above the level of ‘interim target 2′ and
‘interim target 1′ in eastern China. Moreover, our results indicated that the AQI values
for the northern region of SAS in the near future will exceed present-day levels. CMIP6
models simulated that most regions over China and India in the near-future period will
be exposed to levels of PM2.5 concentrations that exceed the WHO air-quality guideline
values. In addition, the proportion of populations over the age of 65 years old in China and
India is projected to increase significantly under the SSP scenarios (Figure 8). This ratio
could be as high as 35% by 2050, then increasing to up to 60% by 2100 (Figure 8a). Rapid
population ageing coupled with AQI levels higher than the WHO guidelines in the future
may increase the risk of premature mortality from the long-term exposure to PM2.5.
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3.3. Regional Response to Future Air Pollution Mitigation

From the middle of the 20th century to the present day, the annual mean surface PM2.5
concentrations across Asia have increased considerably due to industrialization (Figure 9).
The aerosol-radiative effects due to rapidly increasing anthropogenic aerosols have played
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a critical role in cooling in recent decades, partially offsetting the GHGs warming [13,60,61].
Aerosol can also affect the SW indirectly by altering cloud properties such as albedo and
lifetime, but have more uncertain effects. For this reason, regional PM2.5 concentrations in
CMIP6 historical simulations are closely correlated with changes in the clear-sky surface
downwelling shortwave radiative flux (SW). Particularly, clear-sky SW in EAS showed
a significant negative trend, decreasing from 260 to 240 Wm−2 (blue circles in Figure 9).
Therefore, the implementation of air pollution controls can accelerate global and regional
warming by recovering reduced surface radiation in the present day. According to previous
study [62], the warming in response to reduced anthropogenic aerosols in China is likely
already occurring recently.
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To understand the warming effects by anthropogenic aerosol reductions, we examined
the differences between the weak air-quality control simulations (SSP3-7.0) and the strong
air quality control simulations (SSP3-7.0-lowNTCF), which assumes the implementation of
stringent air-quality control policies under the same conditions as the SSP3-7.0 scenario
(Table 3, Figure 10). The significant difference in annual mean PM2.5 concentrations
between the SSP3-7.0 and SSP3-7.0-lowNTCF (the orange and cyan lines in Figure 5)
scenarios contributed to changes in the total aerosol optical depth (AOD) and clear-sky SW
in the middle of the 21st century (Figure 10a–f). The regional AODs were reduced and the
surface SW clear-sky increased considerably in SSP3-7.0-lowNTCF compared to SSP3-7.0
simulations. In particular, these changes in the EAS and SAS regions, which recorded high
levels of PM2.5, showed relatively large differences compared to those in SEA. Moreover,
warming trends (approximately +0.5 K in 2050) were simulated in response to increases in
the surface SW clear-sky (Figure 10g–i). However, significant model diversities were found
for the surface air temperature changes. Despite large model uncertainties of surface air
temperature in all regions, implementations of strong air-quality controls seem to contribute
to regional warming in the future. Therefore, reducing long-term exposure to PM2.5 can
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impact the rate of regional warming, so should be considered together when implementing
climate change mitigation initiatives. Detailed warming mechanisms involved in climate
sensitivity, aerosol-cloud interaction, and the temperature advections related to large-scale
circulation require further research to understand CMIP6 model uncertainty; however,
these factors are beyond the scope of this study.
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deviation of the mean. The MME regional mean value and ±1 standard deviation for the present day
is indicated near the horizontal lines.

4. Conclusions

This study performed an initial analysis of the long-term changes in PM2.5, AQI,
and climate responses for three major regions in Asia under different future climate and
air pollution control scenarios. The regional PM2.5 concentrations were estimated using
simulations from nine CMIP6 models. The model performance of the estimated PM2.5
concentrations from historical simulations was evaluated against satellite-derived data
from NASA’s Socioeconomic Data and Application Center. Elevated annual mean PM2.5
concentrations (>50 µg/m3) were simulated for the EAS and SAS regions, which are heavily
industrialized and densely populated. Conversely, simulated present-day annual mean
PM2.5 concentrations in SEA were relatively lower than in EAS and SAS. Overall, the
simulated annual mean PM2.5 concentrations for all the analyzed regions except for Japan,
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the Philippines, and Indonesia exceeded the WHO’s recommended air-quality guidelines
(10 µg/m3) for the present day. Moreover, a comparison of the estimated PM2.5 levels from
the CMIP6 models with satellite data revealed an underestimation in the data for the three
Asian domains, and particularly for EAS and SAS. Despite model diversity and regional
biases, the simulated PM2.5 showed reasonable domain averaged values in the present day
compared to the satellite-derived PM2.5 concentrations.

Future changes in the simulated annual mean PM2.5 were also examined for the
various SSP scenarios. Rapid decreases in SSP1-2.6 and SSP5-8.5 for the scenarios assuming
strict air-quality control were shown across the Asian regions in the near future. Unlike for
EAS, the scenarios predicted an increase in PM2.5 concentrations in SAS in the near future.
The changes in the annual mean value and model diversity for SEA were smaller than in
the EAS and SAS regions. For the slowest deployment of air pollution controls (SSP3-7.0
scenario), annual mean PM2.5 showed an increase across all regions until the mid-21st
century. We also attempted to understand the long-term exposure risk to PM2.5 using the
AQI based on the WHO air-quality guidelines and interim targets. The present-day AQI
level in EAS and SAS typically exceeded ‘interim target 2′, and several regions exceeded
the range of the WHO interim target. In the SSP1-2.6, the CMIP6 models predicted a
substantial decrease in AQI values in EAS and SAS. Similar trends were simulated under
the SSP2-4.5 and SSP5-8.5 for EAS, whereas the AQI values in SAS were predicted to
increase due to increasing PM2.5 levels in the near future. In the SSP3-7.0, the number
of regions beyond interim target is expected to increase significantly. Moreover, the risk
of premature mortality from long-term exposure to PM2.5 could significantly increase in
China and India due to the rapid population ageing in the future.

This study is among a few climate-modeling studies that explored the impact of future
air quality in Asia under the SSP scenarios. Overall, our results indicated that the CMIP6 cli-
mate model simulations successfully reproduced the regional surface PM2.5 concentrations
for the present day. The results in this study were consistent with a previous study [33]
that demonstrated that the decreasing (increasing) trends of simulated regional PM2.5 are
related to the strong (weak) implementation of future air-quality controls. In addition, this
study analyzed the AQIs based on the WHO guidelines for the three major Asian regions
and investigated the regional impact of air pollution controls implementations on PM2.5
levels. An additional finding of this study was the potential acceleration of global warming
in Asia with future decreases in anthropogenic aerosol emissions reducing the radiative
cooling effect of aerosols.

Despite the significant findings of this study, several limitations were noted. We
adopted the CMIP6 multimodel ensemble analysis to understand the impact of fine PM on
regional air quality and their uncertainties. However, the estimated PM2.5 concentrations
from the CMIP6 models were underestimated compared to the satellite-derived data. Only
a few models consider ammonium nitrate as aerosol components in their schemes, which
may be one of the reasons for underestimation of PM2.5 concentrations. In addition, the
large model diversity may be attributed to the differences in the aerosol microphysical
processes among the CMIP6 individual models. Detailed causes of model uncertainties
should be explored in further studies; however, they are beyond the scope of this study.
This study also emphasized the effects of premature mortality due to increasing PM2.5
concentrations, coinciding with a rapidly ageing population. However, a more detailed
risk analysis with the available data from the CMIP6 simulations is required to verify this
conclusion. These shortcomings will be addressed in our future research.
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