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Abstract

Recognising dialogue acts (DA) is important

for many natural language processing tasks

such as dialogue generation and intention

recognition. In this paper, we propose a dual-

attention hierarchical recurrent neural network

for DA classification. Our model is partially

inspired by the observation that conversational

utterances are normally associated with both

a DA and a topic, where the former captures

the social act and the latter describes the sub-

ject matter. However, such a dependency be-

tween DAs and topics has not been utilised

by most existing systems for DA classifica-

tion. With a novel dual task-specific atten-

tion mechanism, our model is able, for utter-

ances, to capture information about both DAs

and topics, as well as information about the

interactions between them. Experimental re-

sults show that by modelling topic as an auxil-

iary task, our model can significantly improve

DA classification, yielding better or compara-

ble performance to the state-of-the-art method

on three public datasets.

1 Introduction

Dialogue Acts (DA) are semantic labels of utter-

ances, which are crucial to understanding com-

munication: much of a speaker’s intent is ex-

pressed, explicitly or implicitly, via social actions

(e.g., questions or requests) associated with utter-

ances (Searle, 1969). Recognising DA labels is

important for many natural language processing

tasks. For instance, in dialogue systems, know-

ing the DA label of an utterance supports its in-

terpretation as well as the generation of an appro-

priate response (Searle, 1969; Chen et al., 2018).

In the security domain, being able to detect inten-

tion in conversational texts can effectively support

the recognition of sensitive information exchanged

in emails or other communication channels, which

is critical to timely security intervention (Verma

et al., 2012).

A wide range of techniques have been inves-

tigated for DA classification. Early works on

DA classification are mostly based on general

machine learning techniques, framing the prob-

lem either as multi-class classification (e.g., us-

ing SVMs (Liu, 2006) and dynamic Bayesian net-

works (Dielmann and Renals, 2008)) or a struc-

tured prediction task (e.g., using Conditional Ran-

dom Fields (Kim et al., 2010; Chen et al., 2018;

Raheja and Tetreault, 2019, CRF)). Recent stud-

ies to the problem of DA classification have seen

an increasing uptake of deep learning techniques,

where promising results have been obtained. Deep

learning approaches typically model the depen-

dency between adjacent utterances (Ji et al., 2016;

Lee and Dernoncourt, 2016). Some researchers

further account for dependencies among both con-

secutive utterances and consecutive DAs, i.e.,

both are considered factors that influence natu-

ral dialogue (Kumar et al., 2018; Chen et al.,

2018). There is also work exploring different deep

learning architectures (e.g., hierarchical CNN or

RNN/LSTM) for incorporating context informa-

tion for DA classification (Liu et al., 2017).

It has been observed that conversational utter-

ances are normally associated with both a DA

and a topic, where the former captures the so-

cial act (e.g., promising) and the latter describes

the subject matter (Wallace et al., 2013). It is

also recognised that the types of DA associated

with a conversation are likely to be influenced by

the topic of the conversation (Searle, 1969; Wal-

lace et al., 2013). For instance, conversations

relating to topics about customer service might

be more frequently associated with DAs of type

Wh-question (e.g., Why my mobile is not work-

ing?) and a complaining statement (Bhuiyan et al.,

2018); whereas meetings covering administrative
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topics about resource allocation are likely to ex-

hibit significantly more defending statements and

floor grabbers (e.g., Well I mean - is the handheld

really any better?) (Wrede and Shriberg, 2003).

However, such a reasonable source of informa-

tion, surprisingly, has not been explored in the

deep learning literature for DA classification. We

assume that modelling the topics of utterances as

additional contextual information may effectively

support DA classification.

In this paper, we propose a dual-attention hi-

erarchical recurrent neural network with a CRF

(DAH-CRF) for DA classification. Our model is

able to account for rich context information with

the developed dual-attention mechanism, which,

in addition to accounting for the dependencies be-

tween utterances, can further capture, for utter-

ances, information about both topics and DAs.

Topic is a useful source of context information

which has not previously been explored in existing

deep learning models for DA classification. Sec-

ond, compared to the flat structure employed by

existing models (Khanpour et al., 2016; Ji et al.,

2016), our hierarchical recurrent neural network

can represent the input at the character, word, ut-

terance, and conversation levels, preserving the

natural hierarchical structure of a conversation. To

capture the topic information of conversations, we

propose a simple automatic utterance-level topic

labelling mechanism based on LDA (Blei et al.,

2003), which avoids expensive human annotation

and improves the generalisability of our model.

We evaluate our model against several strong

baselines (Wallace et al., 2013; Ji et al., 2016;

Kumar et al., 2018; Chen et al., 2018; Raheja

and Tetreault, 2019) on the task of DA classifica-

tion. Extensive experiments conducted on three

public datasets (i.e., Switchboard Dialog Act Cor-

pus (SWDA), DailyDialog (DyDA), and the Meet-

ing Recorder Dialogue Act corpus (MRDA)) show

that by modelling the topic information of utter-

ances as an auxiliary task, our model can signif-

icantly improve DA classification for all datasets

compared to a base model without modelling topic

information. Our model also yields better or com-

parable performance to state-of-the-art deep learn-

ing method (Raheja and Tetreault, 2019) in classi-

fication accuracy.

To summarise, the contributions of our paper

are three-fold: (1) we propose to leverage topic

information of utterances, a useful source of con-

textual information which has not previously been

explored in existing deep learning models for DA

classification; (2) we propose a dual-attention hi-

erarchical recurrent neural network with a CRF

which respects the natural hierarchical structure

of a conversation, and is able to incorporate rich

context information for DA classification, achiev-

ing better or comparable performance to the state-

of-the-art; (3) we develop a simple topic labelling

mechanism, showing that using the automatically

acquired topic information for utterances can ef-

fectively improve DA classification.

2 Related Work

Broadly speaking, methods for DA classifica-

tion can be divided into two categories: multi-

class classification (e.g., SVMs (Liu, 2006) and

dynamic Bayesian networks (Dielmann and Re-

nals, 2008)) and structured prediction tasks includ-

ing HMM (Stolcke et al., 2000) and CRF (Kim

et al., 2010). Recently, deep learning has been

widely applied in many NLP tasks, including

DA classification. Kalchbrenner and Blunsom

(2013) proposed to model a DA sequence with a

RNN where sentence representations were con-

structed by means of a convolutional neural net-

work (CNN). Lee and Dernoncourt (2016) tackled

DA classification with a model built upon RNNs

and CNNs. Specifically, their model can leverage

the information of preceding texts, which can ef-

fectively help improve the DA classification accu-

racy. A latent variable recurrent neural network

was developed for jointly modelling sequences of

words and discourse relations between adjacent

sentences (Ji et al., 2016). In their work, the shal-

low discourse structure is represented as a latent

variable and the contextual information from pre-

ceding utterances are modelled with a RNN.

Kumar et al. (2018) proposed a hierarchical Bi-

LSTM model with a CRF for DA classification,

where the inter-utterance and intra-utterance in-

formation are encoded by a hierarchical Bi-LSTM

and the dependency between DA labels is cap-

tured by a CRF. Chen et al. (2018) developed

a CRF-Attentive Structured Network (CRF-ASN)

for DA classification. They applied structured at-

tention network to the CRF layer in order to model

contextual utterances and corresponding DAs to-

gether. Raheja and Tetreault (2019) achieved the

state-of-the-art performance on the SWDA dataset

by employing a self-attention mechanism, a CRF



385

layer and character-level embeddings.

In addition to modelling dependency between

utterances, various contexts have also been ex-

plored for improving DA classification or joint

modelling DA under multi-task learning. For in-

stance, Wallace et al. (2013) proposed a generative

joint sequential model to classify both DA and top-

ics of patient-doctor conversations. Their model

is similar to the factorial LDA model (Paul and

Dredze, 2012), which generalises LDA to assign

each token a K-dimensional vector of latent vari-

ables. We would like to emphasise that the model

of Wallace et al. (2013), only assumed that each

utterance is generated conditioned on the previous

and current topic/DA pairs. In contrast, our model

is able to model the dependencies of all preceding

utterances of a conversation, and hence can better

capture the effect between DAs and topics.

3 Methodology

Given a training corpus D = 〈(Cn, Yn, Zn)〉
N
n=1,

where Cn = 〈unt 〉
T
t=1 is a conversation contain-

ing a sequence of T utterances, Yn = 〈ynt 〉
T
t=1 and

Zn = 〈znt 〉
T
t=1 are the corresponding labels of DA

and topics for Cn, respectively. Each utterance

ut = 〈wi
t〉
K
i=1 of Cn is a sequence of K words.

Our goal is to learn a model from D, such that,

given an unseen conversation Cu, the model can

predict the DA labels of the utterances of Cu.

Figure 1 gives an overview of the proposed

Dual-Attention Hierarchical recurrent neural net-

work with a CRF (DAH-CRF). A shared utterance

encoder encodes each word wi
t of an utterance ut

into a vector hi
t. The DA attention and topic at-

tention mechanisms capture DA and topic infor-

mation as well as the interactions between them.

The outputs of the dual-attention are then encoded

in the conversation-level sequence taggers (i.e., gt
and st), based on the corresponding utterance rep-

resentations (i.e., lt and vt). Finally, the target la-

bels (i.e., yt and zt) are predicted in the CRF layer.

3.1 Shared Utterance Encoder

In our model, we adopt a shared utterance encoder

to encode the input utterances. Such a design

is based on the rationale that the shared encoder

can transfer parameters between two tasks and re-

duce the risk of overfitting (Ruder, 2017). Specifi-

cally, the shared utterance encoder is implemented

using the bidirectional gated recurrent unit (Cho

et al., 2014, BiGRU), which encodes each utter-

ance ut = 〈wi
t〉
K
i=1 of a conversation Cn as a se-

ries of hidden states 〈hi
t〉
K
i=1. Here, i indicates the

timestamp of a sequence, and we define hi
t as fol-

lows

hi
t =
−→
h i

t ⊕
←−
h i

t (1)

where ⊕ is an operation for concatenating two

vectors, and
−→
h i

t and
←−
h i

t are the i-th hidden state

of the forward gated recurrent unit (Cho et al.,

2014, GRU) and backward GRU for wi
t, respec-

tively. Formally, the forward GRU
−→
h i

t is com-

puted as follows

−→
h i

t = GRU(
−→
h i−1

t , eit) (2)

where eit is the concatenation of the word embed-

ding and the character embedding of word wi
t. Fi-

nally, the backward GRU encodes ut from the re-

verse direction (i.e. wK
t → w1

t ) and generates

〈
←−
hi
t〉

K
i=1 following the same formulation as the for-

ward GRU.

3.2 Task-specific Attention

Recall that one of the key challenges of our model

is to capture for each utterance, information about

both DAs and topics, as well as information about

the interactions between them. We address this

challenge by incorporating into our model a novel

task-specific dual-attention mechanism, which ac-

counts for both DA and topic information ex-

tracted from utterances. In addition, DAs and top-

ics are semantically relevant to different words in

an utterance. With the proposed attention mecha-

nism, our model can also assign different weights

to the words of an utterance by learning the degree

of importance of the words to the DA or topic la-

belling task, i.e., promoting the words which are

important to the task and reducing the noise intro-

duced by less important words.

For each utterance ut, the DA attention calcu-

lates a weight vector 〈αi
t〉
K
i=1 for 〈hi

t〉
K
i=1, the hid-

den states of ut. ut can then be represented as an

attention vector lt computed as follows

lt =
K
∑

i=1

αi
th

i
t (3)

In contrast to the traditional attention mech-

anism (Bahdanau et al., 2015), which only de-

pends on one set of hidden vectors from the

Seq2Seq decoder, the DA attention of our model

relies on two sets of hidden vectors, i.e., gt−1 of
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Figure 1: Overview of the dual-attention hierarchical recurrent neural network with a CRF.

the conversation-level DA tagger and st−1 of the

conversation-level topic tagger, where dual atten-

tion mechanism can capture, for utterances, in-

formation about both DAs and topics as well as

the interaction between them. Specifically, the

weights 〈αi
t〉
K
i=1 for the DA attention are calcu-

lated as follows:

αi
t = softmax(oit) (4)

oit = w⊤
a tanh

(

W(act)(st−1 ⊕ gt−1 ⊕ hi
t) + b(act)

)

(5)

The topic attention layer has a similar architec-

ture to the DA attention layer, which takes as in-

put both st−1 and gt−1. The weight vector 〈βi
t〉

K
i=1

for the topic attention output vt can be calculated

similar to Eq. 3 and Eq. 4. Note that wa, W(act),

and b(act) are vectors of parameters that need to

be learned during training.

3.3 Conversational Sequence Tagger

CRF sequence tagger for DA. The conversa-

tional CRF sequence tagger for DA predicts the

next DA yt conditioned on the conversational hid-

den state gt and adjacent DAs (c.f. Figure 1). For-

mally, this conditional probability of the whole

conversation can be formulated as

p (y1:T |C; θ) =

∏T
t=1Ψ(yt−1, yt,gt; θ)

∑

Y

∏T
t=1Ψ(yt−1, yt,gt; θ)

(6)

Ψ(yt−1, yt,gt; θ) = Ψemi (yt,gt)Ψtran (yt−1, yt)

= gt [yt]Pyt,yt−1

(7)

Here the feature function Ψ(·) includes two score

potentials: emission and transition. The emission

potential Ψemi regards utterance representation gt
as the unary feature. The transition potential Ψtran

is a pairwise feature constructed from a T×T state

transition matrix P, where T is the number of DA

classes, and Pyt,yt−1
is the probability of transiting

from state yt−1 to yt. C = 〈ut〉
T
t=1 is the sequence

of all utterances seen so far, θ is the parameters of

the CRF layer. gt is calculated in a BiGRU similar

to Eq. 1 and Eq. 2:

gt =
−→g t ⊕

←−g t (8)
−→g t = GRU(−→g t−1, lt) (9)

CRF sequence tagger for topic. The conversa-

tional CRF sequence tagger for topic is designed

to predict topic zt conditioned on vt and adjacent

topics, which can be calculated similar to the for-

mulation of the CRF tagger for DA.

Training the model. Let Θ be all the model

parameters that need to be estimated for DAH-

CRF. Θ then is estimated based on D =
〈(Cn, Yn, Zn)〉

N
n=1 (i.e., a corpus with N conver-

sations) by maximising the following objective

function

L =
N
∑

n=1

[log (p (yn1:T |Cn; Θ))

+α log (p (zn1:T |Cn; Θ))] (10)

The hyper-parameter α controls the contribution

of the conversational topic tagger towards the ob-

jective function. In our experiments, α = 0.5 is

determined using the validation datasets. During
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Figure 2: Coherence score of LDA on three datasets.

the test, the optimal DA or topic sequence is calcu-

lated using the Viterbi algorithm (Viterbi, 1967).

Y ′ = arg max
y1:T∈Y

p(y1:T |C,Θ) (11)

3.4 Automatically Acquiring Topic Labels

To avoid expensive human annotation and to im-

prove the generalisability of our model, we pro-

pose to label the topic of each utterance of the

datasets using LDA (Blei et al., 2003). While per-

plexity has been widely used for model selection

for LDA (Lin, 2011; He et al., 2012), we employ

a topic coherence measure proposed by (Röder

et al., 2015) to determine the optimal topic number

for each dataset, which combines the indirect co-

sine measure with the normalised pointwise mu-

tual information (Bouma, 2009, NPMI) and the

Boolean sliding window. Empirically, we found

the latter yields much better topic clusters than

perplexity for supporting DA classification.

We treat each conversation as a document and

train topic models using Gensim with topic num-

ber settings ranging from 10 to 100 (using an in-

crement step of 10). Gibbs sampling is used to es-

timate the model posterior and for each model we

run 1,000 iterations. For each trained model, we

calculate the averaged coherence score of the ex-

tracted topics using Gensim1, an implementation

following (Röder et al., 2015). Figure 2 shows

the topic coherence score for each topic number

setting for all datasets, from which we determine

that the optimal topic number setting for SWDA,

DyDA, and MRDA are 60, 30, and 30, respec-

tively.

Based on the optimal models (i.e., a trained

LDA model using the optimal topic number set-

ting), we assign topic labels to the datasets with

two different strategies, i.e., conversation-level la-

belling (conv) and utterance-level labelling (utt).

1https://radimrehurek.com/gensim/models/
coherencemodel.html

Dataset |C| |T | |V | Training Validation Testing

SWDA 42 66 20K 1003/193K 112/23K 19/5K

DyDA 4 10 22K 11K/92.7K 1K/8.5K 1K/8.2K

MRDA 5 - 15K 51/77.9K 11/15.8K 11/15.5K

Table 1: |C| is the number of DA classes, |T | is the

number of manually labelled conversation-level topic

classes, |V | is the vocabulary size. Training, Vali-

dation and Testing indicate the number of conversa-

tions/utterances in the respective splits.

For conversation-level labelling, we assign the

topic label with the highest marginal probabil-

ity to the conversation based on the correspond-

ing per-document topic proportion estimated by

LDA. Every utterance of the conversation then

shares the same topic label of the conversation.

For utterance-level labelling, there is an additional

step to perform inference on every utterance based

on corresponding optimal model (e.g., for every

utterance of SWDA, we do inference using the

LDA trained on SWDA with 60 topics), and assign

the topic label with the highest marginal probabil-

ity to the utterance. Therefore, the topic labels of

the utterances of the same conversation could be

different for utterance-level labelling.

4 Experimental Settings

4.1 Datasets

We evaluate the performance of our model on

three public DA datasets with different charac-

teristics, namely, Switchboard Dialog Act Cor-

pus (Jurafsky, 1997, SWDA), Dailydialog (Li

et al., 2017, DyDA), and the Meeting Recorder Di-

alogue Act corpus (Shriberg et al., 2004, MRDA).

SWDA2 consists of 1,155 two-sided tele-

phone conversations manually labelled with 66

conversation-level topics (e.g., taxes, music, etc.)

and 42 utterance-level DAs (e.g., statement-

opinion, statement-non-opinion, wh-question).

DyDA3 contains 13,118 human-written daily

conversations, manually labelled with 10

conversation-level topics (e.g., tourism, poli-

tics, finance) as well as four utterance-level DA

classes, i.e., inform, question, directive and com-

missive. The former two classes are information

transfer acts, while the latter two are action

discussion acts.

MRDA4 contains 75 meeting conversations anno-

2https://web.stanford.edu/∼jurafsky/ws97/manual.
august1.html

3http://yanran.li/dailydialog
4http://www1.icsi.berkeley.edu/∼ees/dadb/



388

tated with 5 DAs, i.e., Statement (S), Question

(Q), Floorgrabber (F), Backchannel (B), and Dis-

ruption (D). The average number of utterances per

conversation is 1,496. There are no manually an-

notated topic labels available for this dataset.

4.2 Implementation Details

For all experimental datasets, the top 85% high-

est frequency words were indexed. For SWDA

and MRDA, we split training/validation/testing

datasets following (Stolcke et al., 2000; Lee

and Dernoncourt, 2016). For DyDA, we used

the standard split from the original dataset (Li

et al., 2017). The statistics of the experimen-

tal datasets are summarised in Table 1. We rep-

resented input data with 300-dimensional Glove

word embeddings (Pennington et al., 2014) and

50-dimensional character embeddings (Ma and

Hovy, 2016). We set the dimension of the hid-

den layers (i.e., hi
t, gt and st) to 256 and applied

a dropout layer to both the shared encoder and the

sequence tagger at a rate of 0.2. The Adam opti-

miser (Kingma and Ba, 2015) was used for train-

ing with an initial learning rate of 0.001 and a

weight decay of 0.0001. Each utterance in a mini-

batch was padded to the maximum length for that

batch, and the maximum batch-size allowed was

50.

4.3 Baselines

We compare the proposed DAH-CRF model in-

corporating utterance-level topic labels extracted

by LDA (denoted as DAH-CRF+LDAutt) against

five strong baselines and two variants of our own

models:

JAS5: A generative joint, additive, sequential

model of topics and speech acts in patient-doctor

communication (Wallace et al., 2013);

DRLM-Cond6: A latent variable recurrent neural

network for DA classification (Ji et al., 2016);

Bi-LSTM-CRF7: A hierarchical Bi-LSTM with a

CRF to classify DAs (Kumar et al., 2018);

CRF-ASN: An attentive structured network with

a CRF for DA classification (Chen et al., 2018);

SelfAtt-CRF: A hierarchical Bi-GRU with self-

attention and CRF (Raheja and Tetreault, 2019);

DAH-CRF+MANUALconv: Use the manually

annotated conversation-level topic labels (i.e.,

each utterance of the conversation shares the same

5https://github.com/bwallace/JAS
6https://github.com/jiyfeng/drlm
7https://github.com/YanWenqiang/HBLSTM-CRF

Model SWDA MRDA DyDA

B
as

el
in

es

JAS 71.2 81.3 75.9

DRLM-Cond 77.0† 88.4 81.1

Bi-LSTM-CRF 79.2† 90.9† 83.6

CRF-ASN 80.8† 91.4† -

SelfAtt-CRF 82.9† 91.1† -

O
u

rs

DAH-CRF + MANUALconv 80.9 - 86.5

DAH-CRF + LDAconv 80.7 91.2 86.4

DAH-CRF + LDAutt 82.3 92.2 88.1

Human Agreement 84.0 - -

Table 2: DA classification accuracy. † indicates the re-

sults which are reported from the prior publications.

topic) for DAH-CRF model training rather than

the topic labels automatically acquired from LDA;

DAH-CRF+LDAconv: Use conversation-level

topic labels automatically acquired from LDA for

DAH-CRF model training.

Note that only JAS (a non-deep-learning model)

has attempted to model both DAs and topics,

whereas all the deep learning baselines do not

model topic information as a source of context

for DA classification. All the baselines mentioned

above use the same test dataset as our models for

all experimental datasets.

5 Experimental Results

5.1 Dialogue Acts Classification

Table 2 shows the DA classification accuracy of

our models and the baselines on three experi-

mental datasets. We fine-tuned the model pa-

rameters for JAS, DRLM-Cond and Bi-LSTM-

CRF in order to make the comparison as fair as

possible. The implementation of CRF-ASN and

SelfAtt-CRF are not available so we can only re-

port their results for SWDA and MRDA based on

the original papers (Chen et al., 2018; Raheja and

Tetreault, 2019).

It can be observed that by jointly modelling

DA and topics, DAH-CRF+LDAutt outperforms

the two best baseline models SelfAtt-CRF and

CRF-ASN around 1% on the MRDA dataset. Our

model also gives similar performance to SelfAtt-

CRF, the baseline which achieved the state-of-

the-art performance on the SWDA dataset (i.e.,

82.3% vs. 82.9%). While both manually an-

notated and automatically acquired topic labels

are effective, we see that DAH-CRF+LDAutt

outperforms both DAH-CRF+MANUALconv and

DAH-CRF+LDAconv, i.e., with over 1.6% gain

on DyDA and over 1.4% on SWDA (signifi-

cant; paired t-test p < .01). It is also ob-
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Model SWDA MRDA DyDA

SAH 76.2 88.5 82.5

SAH-CRF 78.4 89.6 84.1

DAH + LDAutt 79.5 91.1 86.0

DAH-CRF + LDAutt

(without Dual-Att)

81.0 91.3 86.3

DAH-CRF + LDAutt 82.3 92.2 88.1

Table 3: Ablation studies of DA classification.

served that DAH-CRF+MANUALconv and DAH-

CRF+LDAconv perform very similar to each other.

5.2 Ablation Study Results

We conducted ablation studies (see Table 3) in or-

der to evaluate the contribution of the components

of our DAH-CRF+LDAutt model, and more im-

portantly, the effectiveness of leveraging topic in-

formation for supporting DA classification.

DAH-CRF+LDAutt (without Dual-Att) re-

moves the dual-attention component from DAH-

CRF+LDAutt, and DAH+LDAutt removes the

CRF from DAH-CRF+LDAutt but retaining the

dual-attention component. SAH is a Single-

Attention Hierarchical RNN model without a

CRF, i.e., a simplified version of DAH+LDAutt

that only models DAs with topical information

omitted. As can be seen in Table 3, DAH+LDAutt

achieves over 3% averaged gain on all datasets

when compared to SAH, which clearly shows that

leveraging topic information can effectively sup-

port DA classification. It is also observed that both

the dual-attention mechanism and the CRF com-

ponent are beneficial, but are more effective on the

SWDA and DyDA datasets than MRDA.

In summary, while all the analysed model com-

ponents are beneficial, the biggest gain is obtained

by jointly modelling DAs and topics.

5.3 Analysing the Effectiveness of Joint

Modelling Dialogue Act and Topic

In this section, we provide detailed analysis on

why DAH-CRF+LDAutt can yield better perfor-

mance than SAH-CRF by jointly modelling DAs

and topics. Due to the page limit, our discussion

focuses on SWDA and DyDA datasets.

Figure 4 shows the normalized confusion ma-

trix derived from 10 DA classes of SWDA for

both SAH-CRF and DAH-CRF+LDAutt models.

It can be observed that DAH-CRF+LDAutt yields

improvement on recall for many DA classes com-

pared to SAH-CRF, e.g., 23.8% improvement

Figure 3: We highlight the prominent topics for some

example DAs. The topic distribution of a topic k under

a DA label d is calculated by averaging the marginal

probability of topic k for all utterances with the DA

label d.

on bk and 11.7% on sv. For bk (Response

Acknowledge) which has the highest improve-

ment level, we see that the improvement largely

comes from the reduction of misclassifing bk to

b (Acknowledge Backchannel). The key

difference between bk and b is that an utter-

ance labelled with bk has to be produced within

a question-answer context, whereas b is a “con-

tinuer” simply representing a response to the

speaker (Jurafsky, 1997). It is not surprising that

SAH-CRF makes poor prediction on the utter-

ances of these two DAs: they share many syntac-

tic cues, e.g., indicator words such ‘okay’, ‘oh’,

and ‘uh-huh’, which can easily confuse the model.

When comparing the topic distribution of the ut-

terances under the bk and b categories (cf. Fig-

ure 3), we found topics relating to personal leisure

(e.g., buying cars, music, and exercise) are much

more prominent in bk than b. By leveraging the

topic information, DAH-CRF+LDAutt can better

handle the confusion cases and hence improve the

prediction for bk significantly.

There are also cases where DAH-CRF+LDAutt

performs worse than SAH-CRF. Take the

DA pair of qo (Open Question) and qw

(wh-questions) as an example. qo refers

to questions like ‘How about you?’ and its

variations (e.g., ‘What do you think?’), whereas

qw represents wh-questions which are much
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Figure 4: The normalized confusion matrix of DAs using SAH-CRF (left) and DAH-CRF+LDAutt (right) on

SWDA (a) and DyDA (b).

Figure 5: DA Attention visualisation using SAH-CRF and DAH-CRF+LDAutt on (a) SWDA and (b) DyDA

datasets. The true labels of the utterances above are sd (statement-non-opinion) and Directive, respectively. SAH-

CRF misclassified the DA as sv (statement-opinion) and Inform whereas DAH-CRF+LDAutt gives correct predic-

tion for both cases.

more specific in general (e.g. ‘What other long

range goals do you have?’). SAH-CRF gives

quite decent performance in distinguishing qw

and qo classes. This is somewhat reasonable, as

linguistically the utterances of these two classes

are quite different, i.e., the qw utterance expresses

very specific question and is relatively lengthy,

whereas qo utterances tends to be very brief. We

see that DAH-CRF+LDAutt performs worse than

SAH-CRF: a greater number of qw utterances

are misclassified by DAH-CRF+LDAutt as qo.

This might be attributed to the fact that topic

distributions of qw and qo are similar to each

other (see Figure 3), i.e., incorporating the topic

information into DAH-CRF may cause these two

DAs to be less distinguishable for the model.

We also conducted a similar analysis on the

DyDA dataset. As can be seen from the

confusion matrices shown in Figure 4, DAH-

CRF+LDAutt gives improvement over SAH-CRF

for all the four DA classes of DyDA. In partic-

ular, Directives and Commissive achieve

higher improvement margin compared to the other

two classes, where the improvement are largely

attributed to less number of instances of the

Directives and Commissive classes being

mis-classified into Inform and Questions.

Examining the topic distributions in Figure 3

reveals that Directives and Commissive

classes are more relevant to the topics such as

food, shopping, and credit card. In contrast, the

topics of Inform and Questions classes are

more about business, and weather.

Finally, Figure 5 shows the DA attention vi-

sualisation examples of SAH-CRF and DAH-

CRF+LDAutt for an utterance from SWDA and

DyDA. For SWDA, it can be seen that SAH-

CRF gives very high weight to the word “be-

cause” and de-emphasizes other words. However,

DAH-CRF+LDAutt can capture more important

words (e.g., “if”, “reasonable”, etc.) and cor-

rectly predicts the DA label as sd. For DyDA,

SAH-CRF only focuses on “me” and “your”, but

DAH-CRF+LDAutt captures more words relevant

to Directive, such as “please”, “tell”, etc. To

summarise, DAH-CRF+LDAutt can capture more

significant words related to the corresponding DA,

by modelling both DAs and topic information with
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the dual-attention mechanism.

6 Conclusion

In this paper, we developed a dual-attention hi-

erarchical recurrent neural network with a CRF

for DA classification. With the proposed task-

specific dual-attention mechanism, our model is

able to capture information about both DAs and

topics, as well as information about the interac-

tions between them. Moreover, our model is gen-

eralised by leveraging an unsupervised model to

automatically acquire topic labels. Experimental

results based on three public datasets show that

modelling utterance-level topic information as an

auxiliary task can effectively improve DA classifi-

cation, and that our model is able to achieve better

or comparable performance to the state-of-the-art

deep learning methods for DA classification.

We envisage that our idea of modelling topic

information for improving DA classification can

be adapted to other DNN models, e.g., to encode

topic labels into word embeddings and then con-

catenate with the utterance-level or conversation-

level hidden vectors of our baselines, e.g. SelfAtt-

CRF. It will also be interesting to explicitly take

into account speaker’s role in the future.
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