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Abstract

We tackle the problem of identifying

metaphors in text, treated as a sequence tag-

ging task. The pre-trained word embeddings

GloVe, ELMo and BERT have individu-

ally shown good performance on sequential

metaphor identification. These embeddings

are generated by different models, train-

ing targets and corpora, thus encoding dif-

ferent semantic and syntactic information.

We show that leveraging GloVe, ELMo

and feature-based BERT based on a multi-

channel CNN and a Bidirectional LSTM

model can significantly outperform any sin-

gle word embedding method and the com-

bination of the two embeddings. Incorpo-

rating linguistic features into our model can

further improve model performance, yield-

ing state-of-the-art performance on three

public metaphor datasets. We also provide

in-depth analysis on the effectiveness of

leveraging multiple word embeddings, in-

cluding analysing the spatial distribution of

different embedding methods for metaphors

and literals, and showing how well the em-

beddings complement each other in differ-

ent genres and parts of speech.

1 Introduction

Linguistically, metaphor is defined as a figurative

expression that uses one or several lexical units to

represent a different meaning in the context, where

there is a semantic contrast between the contex-

tual and basic meanings of the lexical units (Prag-

glejaz, 2007). Metaphors are widely found in

corpora, causing issues for natural language pro-

cessing (NLP) tasks, such as sentiment analysis

(Ghosh et al., 2015) and machine translation (Mao

et al., 2018). Traditionally, metaphors are iden-

tified from dependent word-pairs, e.g. adjective-

noun and verb-noun pairs (Turney et al., 2011;

Neuman et al., 2013; Rei et al., 2017). There is an

increasing trend to attempt metaphor identification

as an end-to-end sequence tagging task (Wu et al.,

2018; Gao et al., 2018; Mao et al., 2019), as the

settings of traditional approaches are not practical

in real-world applications. In contrast, a sequen-

tial metaphor identification model can predict the

metaphoricity of all words in a sentence, as a se-

quence labelling task, without needing to locate

word-pairs beforehand.

Pre-trained word embeddings have been shown

to provide significant improvements to the state of

the art for a wide range of NLP tasks (Young et al.,

2018). Currently, there are many choices of pre-

trained word embeddings, such as GLoVe (Pen-

nington et al., 2014), ELMo (Peters et al., 2018)

and BERT (Devlin et al., 2019). These word em-

beddings are based on different training targets,

training sets, and model frameworks. E.g., GloVe

is trained via token co-occurrence distributions,

whose vectors are independent of the context of

downstream tasks. ELMo is a BiLSTM based con-

text dependent representation, whose training tar-

get is training Language Models (LM) from two

directions. BERT is also context dependent, and

is trained to predict masked words and next sen-

tences via the Bidirectional Transformer (Vaswani

et al., 2017). All the aforementioned pre-trained

word embeddings have presented strong perfor-

mance on a variety of NLP tasks. Our hypoth-

esis is that different word embeddings may cap-

ture different semantics and syntax knowledge,

and thus metaphor identification models may ben-

efit from their combination by taking advantage of

their complementarity.

The motivation of this paper is to investigate

the utilities of different pre-trained word embed-

dings, e.g., GloVe, ELMo, feature-based BERT

and their combination (GEB) for metaphor iden-

tification. In particular, if we can combine exist-

ing word embeddings to take advantage of their

respective strengths, then we do not have to re-

train a supermodel on a multi-genre corpus for
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every technological breakthrough in word embed-

ding. To facilitate our investigation, we propose

a neural architecture consisting of a multi-channel

CNN layer and a BiLSTM layer, where each CNN

channel takes one embedding as input. Combining

CNN and BiLSTM also allows the model to cap-

ture local and long-term dependent information of

an input sequence.

We evaluate on three publicly available datasets,

namely VUA (Steen et al., 2010), MOH-X (Mo-

hammad et al., 2016) and TroFi (Birke and Sarkar,

2006) datasets. Experiments show that our GEB

model yields competitive performance for se-

quential metaphor identification compared to the

strongest baseline. Incorporating linguistic fea-

tures (i.e., PoS and word abstractness (Rabinovich

et al., 2018)) into the GEB model achieves further

gains, yielding the state-of-the-art performance for

sequential metaphor identification. In terms of the

effectiveness of different embeddings, using the

combination model GEB yields better results than

using each embedding individually or the combi-

nations of any two of them. In addition, it was

found that GloVe, ELMo and BERT have differ-

ent strengths in modelling metaphors from differ-

ent genres and in different parts of speech (PoS),

because they are trained on different corpora with

different algorithms. This explains why the com-

bination outperforms the individuals.

The contribution of this paper can be sum-

marised as follows: (1) we propose a 3-channel

CNN based model1 that can incorporate diverse

embeddings and features for sequential metaphor

identification, achieving state-of-the-art perfor-

mance; (2) we investigate the utilities of the

combinations of GloVe, ELMo and feature based

BERT across 24 layers, showing their complemen-

tarity in terms of different genres and PoS; (3)

we provide insight into the factors determining

which combinations of embeddings that are likely

to have good performance on a downstream task,

e.g., maintaining a balance between general and

task-specific features.

2 Related Work

Traditionally, metaphors are identified from de-

pendent word-pairs with various feature engineer-

ing methods. Psychological features such as ab-

stractness and concreteness have been widely ap-

plied in verb-noun and adjective-noun metaphor

1Our code will be released after blind review.

identification tasks (Turney et al., 2011; Neuman

et al., 2013; Assaf et al., 2013; Tsvetkov et al.,

2014). Their hypothesis is that metaphors nor-

mally are concrete, associated with an abstract de-

pendent word. Shutova et al. (2016, 2017) and Rei

et al. (2017) classified metaphors by modelling

word distribution features with supervised and un-

supervised models. Mao et al. (2018) extended the

word-pair approaches by identifying metaphors

from full sentences, taking the full context of a

sentence into account using input and output vec-

tors of word2vec (Mikolov et al., 2013). However,

these methods are based on a condition that the

position of a target word whose metaphoricity to

be identified in a sentence has been annotated in

advance. Such approaches are inconvenient in real

world applications.

Sequential metaphor identification takes one

step further because the metaphoricity of all words

in a sentence can be identified without knowing

the position of a target word in advance. Wu et al.

(2018) employed a one-channel CNN and BiL-

STM based framework for sequential metaphor

identification. Their model encodes concatenated

word2vec, word2vec cluster labels and PoS labels.

Then, the hidden states of BiLSMT are classi-

fied by a softmax classifier. This model with an

ensemble learning strategy achieved the best per-

formance on the NAACL-2018 Metaphor Shared

Task (Leong et al., 2018). Gao et al. (2018) used

a vanilla BiLSTM based sequence tagging model.

The concatenation of GloVe and ELMo is encoded

by BiLSTM and then classified by a softmax clas-

sifier to predict a sequence of metaphoricity la-

bels. Mao et al. (2019) proposed two linguistics

informed models. The first Metaphor Identifica-

tion Procedure (MIP) (Pragglejaz, 2007) inspired

model emphasised the contrast between contextual

and literal meanings of a target word. The sec-

ond Selectional Preference Violation (SPV) theory

(Wilks, 1975, 1978) inspired model highlighted

the contrast between a metaphor and its context.

Both models outperform the models of Wu et al.

(2018) and Gao et al. (2018), while the SPV in-

formed model is the state-of-the-art.

While Gao et al. (2018) and Mao et al. (2019)

have used more than one word embeddings for

metaphor identification, the number of embed-

dings was limited at two, and more importantly

they did not explore how and why combining pre-

trained embeddings is effective for the task. We



seek to answer this question by providing sys-

tematic evaluation on the efficiency of a variety

of embedding combinations as well as their com-

plementarity, leading to interesting findings re-

lating to genre and PoS types of the corpus for

training word embedding models. In addition,

linguistic features such as abstractness have only

been used in traditional machine learning based

verb-noun and adjective-noun pair metaphor iden-

tification (Turney et al., 2011; Neuman et al.,

2013; Tsvetkov et al., 2014). We examine the

use of abstractness and PoS features for sequen-

tial metaphor identification.

3 Methodology

We propose a CNN-BiLSTM framework for se-

quential metaphor identification, partially inspired

by the works of Kim (2014) and Wu et al. (2018).

One of the key differences between our model and

that of Wu et al. (2018) is that we use a multi-

channel CNN layer to incorporate different word

embedding features, whereas Wu et al. simply

used a single-channel CNN on word2vec. Note

that using a multi-channel CNN component allows

us to combine different pre-trained word embed-

dings in a simple way. Additionally, CNN has

shown its effectiveness on a variety of sequence

tagging tasks (Poria et al., 2016; Chen et al., 2017;

Xu et al., 2018), but these works have only ex-

plored using a single-channel CNN and a single

word embedding. We give the technical details of

our model in the following sections.

3.1 Framework

Figure 1 shows the overall architecture of our

model. We apply a CNN operation on the input

which has three channels for leveraging different

embeddings. The pre-trained contextual embed-

dings ELMo and BERT have the same dimension-

ality, which is 1024. However, GloVe only has 300

dimension, so we project GloVe into 1024 dimen-

sions with a linear layer to align the dimensional-

ity of all the input embeddings.

MG = W φ · GloVe + bφ (1)

Here W φ is the parameter matrix of the linear

layer, and bφ is its bias vector. We then stack

the input embedding matrices (i.e., the projected

GloVe, ELMo and BERT) which is used as input

for the subsequent feature map calculation.

I =
[

MG ME MB

]

(2)

Note that we pad zero vectors for I to make the

row dimensionality of the feature map matrix the

same as the length of the input sequence.

An alternative version of our model also in-

corporates external linguistic features for model

learning. In our study, we experimented with PoS

and word abstractness (Abst) features, which are

represented in one-hot encoding and real numbers

(∈ [0, 1]), respectively. We concatenate (⊕) the

linguistic feature representations with Glove

MGPA = GloVe⊕ PoS⊕ Abst. (3)

MGPA is then projected to 1024 dimension via

a linear layer (Eq. 1) to make an alternative ver-

sion of MG. Finally, the resulting representation

is combined with ELMo and BERT in a similar

way (Eq. 2) as previously described.

Given a 3-channel embedding input (I), a fea-

ture map (F ) is calculated as follows:

Fi,w =
∑

c

∑

w

∑

d

I(c,i+w−1,d)K(c,w,d), (4)

where Fi,w is the new representation of the ith

word of an input sentence obtained by applying

CNN operations on input embeddings for the cor-

responding word with kernel K and window size

w. c, d are channel size (c = 3) and the dimen-

sionality of input word embeddings (d = 1024),

respectively. In order to capture different local

contextual information, we use CNN kernels with

four types of window sizes w = {2, 3, 4, 5} and

for each window size 100 kernels. This results in

four different feature maps, each of which corre-

sponds to a particular window size. Finally, we

concatenate all the feature maps together

F = [Fw=2 ⊕ Fw=3 ⊕ Fw=4 ⊕ Fw=5]. (5)

We fed F with a Tanh activation function into a

BiLSTM layer as input. A BiLSTM is employed

for capturing long-term dependencies of F , be-

cause the CNN layer only encodes the contextual

information of a word in n-grams

hi = BiLSTM(Tanh(Fi),
−→
h i−1,

←−
h i+1), (6)

where h is a hidden state of BiLSTM. Finally, the

metaphoricity (yi) for a given word is predicted by

a softmax (σ) classifier

p(yi) = σ(Wψ
i · hi + b

ψ
i ), (7)
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Figure 1: Model framework. Grey boxes are embedding and computational layers. ⊕ denotes concatenating.

where Wψ and bψ are model parameters and bi-

ases estimated by optimising the following objec-

tive function based on weighted cross entropy loss.

L = −
∑

i

ωyiyi log(ŷi) (8)

Following Wu et al. (2018) and Mao et al. (2019),

we set the weight (ω) for metaphors and literals to

2 and 1, respectively.

3.2 Features

We select GloVe, ELMo and BERT because they

were trained on different corpora with different

genres and training targets, which may exhibit dis-

tinctive semantic and syntactic characteristics. For

instance, GloVe was trained on Common Crawl2,

from billions of web pages (840 billion tokens);

ELMo was trained on WMT 2011 News Crawl

data3 (800 million tokens); BERT was trained on

Wikipedia4 (2.5 billion tokens) and BookCorpus5

(800 million tokens) (Zhu et al., 2015), where sci-

entific articles and novels are included. We em-

ployed feature-based BERT rather than fine-tuned

BERT because the former allows us to investigate

the utility of each BERT layer of a fixed depth

neural network. We hypothesise that sequential

metaphor identification will benefit from the com-

plementarity of multiple word embeddings.

Apart from embedding features, we also ex-

plored linguistic features, i.e., PoS and abstract-

ness of words, in order to examine whether these

universal features can further improve our model

performance. The abstractness feature set (V) con-

tains 99,954 words with each word assigned with

2http://commoncrawl.org
3http://www.statmt.org/lm-benchmark/
4https://dumps.wikimedia.org/
5https://yknzhu.wixsite.com/mbweb

Dataset
# Tgt

token

%

M
# seq

Avg #

M/S
VUA_all 205,425 11.6 10,567 3.4

VUA_trn 116,622 11.2 6,323 3.3

VUA_dev 38,628 11.6 1,550 4.0

VUA_tst 50,175 12.4 2,694 3.4

VERB_tst 5,873 30.0 2,694 1.5

MOH-X 647 48.7 647 1.0

TroFi 3,737 57.6 3,737 1.0

Table 1: Dataset statistics (Mao et al., 2019). NB:

# Tgt token is the number of target tokens whose

metaphoricity is to be identified. % M is the percent-

age of metaphoric tokens among target tokens. # seq

is the number of sequences. Avg # M/S is the average

number of metaphors per metaphorical sentence.

an abstractness score ranging from 0 to 1 (Rabi-

novich et al., 2018), i.e., the higher the score, the

more abstract the corresponding word. For in-

stance, the abstractness score of purism is 0.97

(abstract), while abstractness of ski is 0.25 (con-

crete). For a word wo which is not listed in V , we

predict its abstractness by taking the abstractness

score of its most semantically similar word (ws)

in V , where the calculation is based on GloVe (g)

using cosine similarity.

ws = argmax
wi∈V

cosine(gwo
, gwi

)

Abstwo
= Abstws

(9)

In case wo is out of the vocabulary of GloVe, it

will be assigned with an abstractness score of 0.5.

4 Experiment

4.1 Dataset

We examine our model on three public datasets,

whose statistics are summarised in Table 1.

VUA VU Amsterdam Metaphor Corpus (Steen

et al., 2010) is the largest all-word annotated



Model
VUA ALL POS VUA VERB MOH-X (10-fold) TroFi (10-fold)

P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

Wu et al. 60.8 70.0 65.1 - 60.0 76.3 67.2 - 69.2 69.9 69.6 70.0 79.6 78.8 79.2 78.3

Gao et al. 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4 79.1 73.5 75.6 77.2 87.7 87.4 87.6 86.9

Mao et al.-SPV 73.0 75.7 74.3 93.8 66.3 75.2 70.5 81.8 77.5 83.1 80.0 79.8 89.8 88.1 88.9 88.0

GEB17 74.9 74.4 74.7*93.9 70.4 72.1 71.2*82.5 78.0 83.1 80.4*80.2 90.7 89.0 89.8*88.4

PoS+Abst+GEB17 72.5 77.4 74.9*94.0 68.8 74.5 71.5*82.4 77.9 83.8 80.7*80.3 89.3 91.0 90.2*88.6

Table 2: Model performance. * denotes p < 0.01 on a two-tailed t-test, against the best baseline with an underline.

metaphor dataset (Fleiss’ Kappa = 0.84), whose

sentences are sampled from the British National

Corpus (Leech, 1992). The dataset contains four

genres (i.e., academic, conversation, fiction, and

news) and has been used in the NAACL-2018

Metaphor Shared Task (Leong et al., 2018). Fol-

lowing the shared task, we construct two versions

of the datasets, i.e., VUA-all-PoS and VUA-verb.

VUA-all-PoS considers all words as target words,

whereas VUA-verb takes a subset of verbs in VUA

as target words. VUA is our main dataset for

the later breakdown analysis (§ 5.3) as it contains

metaphors from different genres and PoS.

MOH-X The dataset was formed by sampling ex-

ample sentences from WordNet (Fellbaum, 1998)

by Mohammad et al. (2016). A named target verb

for each sentence was annotated by 10 partici-

pants. In MOH-X, each metaphoricity label has

been agreed by at least 70% annotators. There are

453 unique target verbs in MOH-X.

TroFi The dataset was sampled from the 1987-

89 Wall Street Journal Corpus Release 1 (Charniak

et al., 2000), where target verbs of 3,737 sentences

were annotated by Birke and Sarkar (2006). We

sample these human annotated sentences of the

original TroFi dataset in our tests. There are 50

unique target verbs in TroFi.

For MOH-X and TroFi, we consider the rest of

words (non-targets) as literal for the model train-

ing, because only a single target word in a sen-

tence is annotated, which is in line with Gao et al.

(2018). Our model is evaluated on the target

words with 10-fold cross validation on these two

datasets.

4.2 Baselines

We compare our model against three strong base-

lines on the task of sequential metaphor identifica-

tion. Details of the baselines are given below.

Wu et al. (2018) proposed a CNN+BiLSTM

model, fitting word2vec, PoS, word2vec cluster

features to sequential metaphor identification tasks

with an ensemble learning strategy.

Gao et al. (2018) adopted a standard sequence tag-

ging model with a BiLSTM encoding layer. They

used ELMo and GloVe as input features.

Mao et al. (2019) proposed two models inspired

by linguistic theories (MIP and SPV), claiming

state-of-the-art performance across three bench

mark metaphor datasets using ELMo and GloVe.

4.3 Setup

We adopt 840B GloVe6, original ELMo7 and

cased BERT large pre-trained word embeddings.

PoS tags are parsed by spaCy. We adopt four ker-

nel sizes (2 × 1024, 3 × 1024, 4 × 1024, and

5 × 1024) with a stride of 1 in the convolution

layer. Concatenated feature maps are activated

by the Tanh function. The dimension of BiLSTM

hidden states is 256 × 2. We use SGD optimizer

with a learning rate of 0.2. Dropout is applied on

3-channel input and BiLSTM hidden states with

rates of 0.5 and 0.1, respectively.

5 Results and discussion

5.1 Overall performance

F1 score is our main measure, where metaphor is

the positive class. As shown in Table 2, our model

GEB17 (the subscript 17 denotes the 17th BERT

layer) achieves better performance than the state-

of-the-art baselines. By incorporating linguis-

tic features, our model PoS+Abst+GEB17 yields

extra performance gains, outperforming the best

baselines on all datasets significantly.

When comparing GEB17 against Wu et al.

(2018), the baseline model which has the most

similar architecture to ours, we see that using mul-

tiple CNN channels and word embeddings, espe-

cially contextual dependent word embeddings, can

substantially improve CNN-BiLSTM model per-

formance by an average of 8.8% in F1 across all

6http://nlp.stanford.edu/data/glove.

840B.300d.zip
7https://allennlp.org/elmo



VB ADJ NN ADV ALL

GEB17 69.4 57.8 61.3 57.6 72.5

PoS+GEB17 69.4 55.3 63.4 62.1 72.8

Abst+GEB17 69.1 55.2 61.7 59.8 72.3

PoS+Abst+GEB17 70.7 58.2 63.4 62.4 73.5

Table 3: Linguistic feature analysis on VUA-all-PoS

development set, measured by F1 score.

datasets. GEB17 also outperforms the models of

Gao et al. (2018) and Mao et al. (2019) which both

utilise GloVe and ELMo, with an average gain of

2.7% and 0.6% in F1, respectively. One may no-

tice that the gain of GEB17 over the SPV model

(Mao et al., 2019) is relatively small. This is likely

because SPV benefits from the use of extra multi-

head contextual attention mechanism whereas our

encoder is simpler with only BiLSTM. Overall,

the experimental results have clearly demonstrated

the effectiveness of employing multiple word em-

beddings for the task of metaphor identification.

In another set of experiments, we further ex-

plore whether universal linguistic features (e.g.,

word abstractness and PoS) that are not explic-

itly encoded by pre-trained word embeddings can

further improve deep learning models for sequen-

tial metaphor identification. Experimental results

show that incorporating word abstractness and

PoS features does help boosting model perfor-

mance but not substantially, where the gain of

PoS+Abst+GEB17 over GEB17 is around 0.3 F1

on average. This is probably because contextual

dependent word embeddings have already implic-

itly learnt linguistic features such as PoS from cor-

pora (Reif et al., 2019), resulting in the explicit

incorporation of linguistic features being less ef-

fective (see § 5.2.2 for detailed discussion).

We ran ablation experiments to test the utili-

ties of PoS and abstractness with GEB17 on VUA-

all-PoS development set. As seen in Table 3,

the gain of PoS+GEB17 over GEB17 is small (0.3

F1 on all PoS). Additionally, simply adding ab-

stractness features (Abst+GEB17) does not im-

prove the GEB17 model performance. This is

because the abstractness level is less distinctive

between metaphors and literals overall (see Ta-

ble 4). Although metaphorical verbs, adjectives

and nouns have lower abstractness scores than lit-

erals in terms of mean, first quartile and median,

adverbs hold the opposite. By combining PoS and

abstractness features, PoS+Abst+GEB17 yields a

gain of 1.0 F1 against GEB17 on VUA-all-PoS de-
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Figure 2: Model performance on VUA-all-PoS devel-

opment set given by different word embedding fea-

tures. BERT layer 1 is close to the input side, while

layer 24 is close to the output side.

velopment set, where the largest improvement ap-

pears in adverbs. This is somewhat unexpected as

using each of the linguistic features alone is not ef-

fective. A plausible explanation is that guided by

explicit PoS features, our model can better distin-

guish and make use of the more useful abstractness

features for metaphor identification.

5.2 Different BERT layer analysis

In this section, we explore which BERT layers are

more effective for the metaphor identification task.

We focus on BERT rather than ELMo because pre-

vious works have already discovered that the most

transferable layer of ELMo is the first layer as

tested across a number of semantic and syntactic

tasks (Liu et al., 2019; Schuster et al., 2019).

Figure 2 shows that both low BERT layers1:4
and top layers21:24 yield weak results (blue line),

while the middle layers9:11 are strong. This is

somewhat contradictory to the finding of Devlin

et al. (2019), where they proposed to use the con-

catenation of the last four feature-based BERT

layers21:24 as the input features for the NER task.

This implies that which BERT layer works best

as a contextualised embedding is task dependent.

Although ELMo (orange dash line) significantly

outperforms GloVe (purple line), the combination

of them (GE, yellow line) still yields better per-

formance. Such a pattern can also be observed in

GB13:24 combinations (green line) compared with

BERT layer13:24 (blue line) and GloVe. Finally,

GEB17:20 (red line) outperform other word embed-



Verb Adjective Noun Adverb Overall

Meta Lite Meta Lite Meta Lite Meta Lite Meta Lite

Mean 0.26 0.28 0.27 0.34 0.33 0.36 0.25 0.22 0.29 0.30

Std. 0.18 0.16 0.19 0.22 0.21 0.21 0.21 0.18 0.21 0.19

1st Quart. 0.11 0.16 0.13 0.16 0.17 0.19 0.13 0.11 0.15 0.14

Median 0.21 0.29 0.22 0.26 0.28 0.33 0.18 0.18 0.21 0.24

3rd Quart. 0.32 0.30 0.35 0.50 0.48 0.51 0.31 0.23 0.43 0.43

Table 4: Abstractness statistics for metaphors and literals.

dings and their combinations across BERT layers,

where GEB17 is the best.

5.2.1 Probing BERT layer effectiveness via

word similarity

We hypothesise that the effectiveness of different

contextualised embedding layers for metaphor de-

tection can be probed by measuring how well the

embedding can distinguish metaphors and literals

that take the same word form. The underlying in-

tuition is that metaphoric meanings are strongly

context dependent, and hence the task provides a

natural challenging setting for testing the effec-

tiveness of contextualised embeddings for the task.

We conducted the experiment based on the

VUA-all-PoS training set8, which contains 1,516

unique words that have both metaphoric and literal

labels. For each of those words, we constructed a

metaphor-literal word-pair set. For instance, the

word-pair corresponding to “wash” contains a lit-

eral “wash” from “I’m supposed to wash up aren’t

I” (VUA_ID: kbw-fragment04-2697) and

a metaphorical “wash” from “Do we really wash

down a good meal with claret?” (VUA_ID:

a3c-fragment05-233). In the case where a

word associated with a particular label appears in

multiple sentences, we randomly sample one sen-

tence for that label for constructing the word-pair.

The total number of word-pairs is therefore 1,516.

To probe the effectiveness of different BERT

layers, we compute the average cosine similarity

between the words for all metaphor-literal word-

pairs by taking the embedding from each layer as

input. A lower average cosine similarity indicates

a BERT layer is more effective in distinguishing

metaphors from literals. The result is shown in the

red line in Figure 3. For comparison, we also show

the metaphor identification performance given by

a one-channel CNN+BiLSTM model using differ-

ent BERT layer as input (blue line in Figure 3).

8The biggest one in our experimental datasets in terms of

size.
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Figure 3: Correlation between model performance on

VUA-all-PoS development set and BERT layer effec-

tiveness on the training set. BERT layer effectiveness

is represented by the average cosine similarity between

metaphor-literal word-pairs (lower is better).

It can be observed from Figure 3 that there ex-

ists a negative correlation between the model per-

formance in metaphor identification and how well

the BERT embeddings can distinguish metaphors

from literals, i.e., in general the lower average

cosine similarity, the better model performance.

In particular, the correlation is much stronger for

the low level BERT layers (1:12; Pearson’s R =
−0.96) than the high level layers (13:24; R =
−0.51). It can also be observed that the bottom

BERT layers (1:4) mostly encoding general fea-

tures are more effective than the top layers (21:24)

which encode LM task-specific features. Thus,

layer 24 which is the closest to LM output during

BERT pre-training procedure does not yield the

highest performance on metaphor identification,

although layer 24 has the lowest cosine similar-

ity. The middle layers (9:11), which capture both

general and task-specific features, seem to work

best with layer 10 giving the best performance.

Such an observation is similar to the findings of

Liu et al. (2019), who argued that the difference in

the transferability across contextualiser layers on

downstream tasks is due to the trade-off between

embedded general and task-specific features.



Verb                  Adv.                  Noun                 Adj.

Figure 4: PCA-based 2D visualisations of BERT on

open class words of the VUA-all-PoS training set.

5.2.2 POS

We further visualise the distribution of word em-

beddings across different BERT layers to analyse

how syntactic information is captured. For each

BERT layer, we extract the embeddings for the

open class words in the VUA-all-PoS training set,

and then project the embeddings to a 2D space us-

ing Principal Component Analysis (PCA) (Jolliffe,

2011). We show in Figure 4 the distributions of the

most representative BERT layers, i.e., 1:4, 9:12,

and 21:24. Each point corresponds to a word and

the colour indicates the word class.

It can be observed from Figure 4 that the dis-

tribution of the top layers (21:24) is highly con-

centrated in a relatively small region (layer 23 in

particular), where words of different PoS classes

are heavily overlapped with each other. In con-

trast, the word distributions of layers 1:4 and 9:12

exhibit a distinctive pattern, where words are more

spread out and there are clear boundaries between

words of different classes, showing that syntac-

tic features like PoS are captured in those lay-

ers. These phenomena also explain why the ef-

fectiveness of explicitly incorporating PoS fea-

tures is small, i.e., recalling the marginal gain of

PoS+Abst+GEB17 over GEB17 discussed in § 5.1.

To sum up, which BERT layer is more transferable

for metaphor identification appears to depend on

the trade-off between the general and task-specific

features captured by the layer.

5.3 Effectiveness of combining multiple word

embeddings

In order to analyse the semantic and syntac-

tic complementarity between different pre-trained

word embeddings, we analyse the performance

of each feature based on different genres and

PoS. We examine their performance on VUA-

all-PoS development set because its sentences

were labelled with multiple genre categories, e.g.,

academic text, fiction, news and conversation.

Compared with MOH-X and TroFi whose anno-

tated target words focus on verbs, VUA provides

metaphor annotation to all word classes. Here,

we examine the model performance on open class

words (i.e., verbs, adjectives, adverbs, and nouns)

because they consist of the majority of metaphors

in the VUA dataset.

It can be seen from Table 5 that ELMo

slightly outperforms BERT17 on news (0.4%)

where BERT17 gives better performance on the

other three genres with the biggest difference on

the fiction category (2.9%), which could be ex-

plained by the fact that ELMo was trained on

the WMT 2011 News Crawl data whereas BERT

was trained on Wikipedia and BookCorpus. The

biggest advantage of BERT17 against ELMo ap-

pearing on fiction also supports such a hypothe-

ses, i.e., the BookCorpus provides good training

resources for BERT in the book domain, and hence

BERT can better handle the metaphors in fiction.

These observations show that that our model can

incorporate the strengths of different word embed-

dings in different domains, so that we do not have

to re-train a supermodel on a very large multi-

genre corpus.

It can be observed that contextualised embed-

dings i.e., ELMo and BERT outperform GloVe by

large margins of 5.6% and 6.6% on average, re-

spectively. This is somewhat unsurprising as the

task of metaphor identification is strongly context

dependent. There is also a clear pattern that the

combination of two embeddings works better than

individual embeddings, and the combination of

three embeddings works best. EB17, the best two-

embedding combination, outperforms the best sin-

gle embedding BERT by an average of 1.0% in

F1. Using the three embedding combination fur-

ther boosts the model performance where a gain of



Feature P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

Academic Conversation Fiction News

GloVe 65.2 67.5 66.3 92.1 58.4 62.6 60.4 94.1 60.1 55.6 57.8 91.4 69.3 64.9 67.0 90.1

ELMo 65.1 74.1 69.3 92.4 67.6 65.1 66.4 95.2 62.3 68.4 65.2 92.3 72.6 73.4 73.0 91.6

BERT17 67.3 71.7 69.4 92.7 70.9 63.0 67.7 95.7 70.3 65.9 68.1 93.5 74.0 71.1 72.6 91.6

GE 66.9 74.6 70.5 92.8 63.3 69.3 66.1 94.9 65.8 65.5 65.7 92.8 73.1 74.5 73.8 91.8

GB17 64.7 77.2 70.4 92.5 68.1 67.5 67.8 95.7 70.3 67.6 68.9 93.7 74.3 71.5 72.9 91.7

EB17 71.8 72.3 72.0 93.5 69.9 66.3 68.1 95.8 72.9 64.8 68.6 93.6 76.1 70.5 73.2 91.9

GEB17 72.7 72.0 72.3 93.8 74.0 64.9 69.1 95.9 75.9 67.1 71.2 94.3 77.7 71.4 74.4 92.4

Verb Adjective Noun Adverb

GloVe 60.2 57.2 58.7 84.9 54.9 42.2 47.7 90.1 59.1 50.5 54.5 88.6 49.4 49.4 49.4 93.0

ELMo 62.7 70.3 66.3 86.6 46.7 54.9 50.5 88.5 61.5 58.6 60.0 89.5 57.6 51.9 54.6 94.0

BERT17 63.3 72.2 67.5 89.9 54.7 49.1 51.8 90.2 66.8 51.7 58.3 90.0 66.7 45.5 54.1 94.7

GE 62.4 68.9 65.5 86.4 56.9 58.7 57.8 90.8 62.4 59.9 61.1 90.1 53.7 56.5 55.1 93.6

GB17 64.7 69.1 66.8 87.1 58.4 53.8 56.0 90.9 65.0 57.7 61.1 90.1 61.3 49.4 54.7 94.3

EB17 66.9 69.0 67.9 87.8 53.7 53.2 53.4 90.1 73.4 49.5 59.1 90.8 63.3 49.4 55.5 94.5

GEB17 71.6 67.4 69.4 88.9 62.8 53.5 57.8 91.6 69.9 54.5 61.3 90.7 69.1 49.4 57.6 95.0

Table 5: The utilities of different word embeddings and combinations on different genres and PoS of VUA-all-PoS

development set.

2.3% over the best performing single embedding

BERT is achieved. This clearly shows the benefit

of using multiple embeddings for metaphor iden-

tification on different genres.

For PoS, similar patterns to the genre analysis

can be observed, where incorporating two embed-

dings gives better performance than each individ-

ual embedding and that incorporating three em-

beddings works best. For adjectives in particu-

lar, there is a big improvement of GE over ELMo

(7.3%) and GB17 over BERT17 (4.2%). Over-

all, the combination of different word embeddings

presents the strongest performance across differ-

ent genres and PoS, which is mainly due to the

difference in training algorithms and corpora be-

tween the three selected word embeddings.

5.4 Bad combination analysis

We demonstrate the difference in model perfor-

mance (∆ F1), given by different word embed-

ding setups in Figure 5. As seen, although GEB

outperforms most of the single word embedding

based models in Figure 5a in terms of F1 score,

we also observe that EB surpasses GEB before

BERT layer 11 in Figure 5b. An intuitive ques-

tion is what makes bad combinations across BERT

layers. Apart from the trade-off between general

and task-specific features (see § 5.2), we try to ex-

plain the bad combinations from spatial relations

between ELMo and BERT layers here.
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Figure 5: Model performance differences between

GEB and other word embedding setups on VUA-all-

PoS development set.

We analyse the combinations of ELMo and dif-

ferent BERT layers, because they are aligned in di-

mensionality. BERT vectors are rotated to ELMo

space with an orthogonal mapping approach (Xing

et al., 2015; Conneau et al., 2017).

W ∗ = argmin
W∈Od(R)

‖WB − E‖F = UV ⊤ (10)

with UΣV ⊤ = SVD(EB⊤), where Od(R) is

1024× 1024 dimension matrices of real numbers.

B and E are BERT and ELMo embedding ma-

trices of the VUA-all-PoS training set. W is the

learnt linear mapping matrix. SVD is Singular
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Figure 6: Correlation between EB model performance

on VUA-all-PoS development set and EB′ average L2
distance on the training set.

Value Decomposition. The rotated BERT (B′) is

given by WB. We compute the average L2 dis-

tance (L2) between E and each layer of B′ with

L2EB′ =
1

n

n
∑

i=1

√

√

√

√

d
∑

j=1

(Ei,j −B′
i,j)

2, (11)

where n is the total number of tokens in the train-

ing set (n = 116, 622); i is the position of a token;

j is the position of an element of vectors in E and

B′. We compare the L2 with F1 scores on VUA-

all-PoS development set.

As seen in Figure 6, there is a negative correla-

tion (R = −0.70) between L2 and model perfor-

mance9. The selected parallel word embeddings

are distant from each other in vector space, mean-

ing that the distribution patterns of the two em-

beddings are likely very different. A model may

struggle to combine distant word embeddings, as

they present less consistency in representing word

semantics and syntax.

6 Conclusion

We propose a model that can incorporate advanced

word embedding and linguistic features, achiev-

ing state-of-the-art performance on the sequential

metaphor identification task. We also examine

different combinations of GloVe, ELMo and dif-

ferent BERT layers. Our experiments show that

the output-side BERT layers do not distinguish

metaphors and literals well, which is different to

the finding of Devlin et al. (2019) where the last

four layers of BERT yielded strong performance

9Using non-rotated BERT instead of B
′ in Eq. 11 also

presents a negative correlation with the model performance,

whereas the correlation is weaker (R = −0.53).

on the NER task. In contrast, the middle layers of

BERT perform best for sequential metaphor iden-

tification. We also find that different word embed-

dings can complement each other, because they

may embed complementary semantics and syntax,

due to training on different corpora with differ-

ent algorithms. This offers opportunities for lever-

aging multiple existing pre-trained word embed-

dings for improving a variety of downstream tasks,

which we would like to explore in the future.
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