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Abstract

Background: Accurate solutions for the estimation of physical activity and energy expenditure at scale are needed for a range
of medical and health research fields. Machine learning techniques show promise in research-grade accelerometers, and some
evidence indicates that these techniques can be applied to more scalable commercial devices.

Objective: This study aims to test the validity and out-of-sample generalizability of algorithms for the prediction of energy
expenditure in several wearables (ie, Fitbit Charge 2, ActiGraph GT3-x, SenseWear Armband Mini, and Polar H7) using two
laboratory data sets comprising different activities.

Methods: Two laboratory studies (study 1: n=59, age 44.4 years, weight 75.7 kg; study 2: n=30, age=31.9 years, weight=70.6
kg), in which adult participants performed a sequential lab-based activity protocol consisting of resting, household, ambulatory,
and nonambulatory tasks, were combined in this study. In both studies, accelerometer and physiological data were collected from
the wearables alongside energy expenditure using indirect calorimetry. Three regression algorithms were used to predict metabolic
equivalents (METs; ie, random forest, gradient boosting, and neural networks), and five classification algorithms (ie, k-nearest
neighbor, support vector machine, random forest, gradient boosting, and neural networks) were used for physical activity intensity
classification as sedentary, light, or moderate to vigorous. Algorithms were evaluated using leave-one-subject-out cross-validations
and out-of-sample validations.

Results: The root mean square error (RMSE) was lowest for gradient boosting applied to SenseWear and Polar H7 data (0.91
METs), and in the classification task, gradient boost applied to SenseWear and Polar H7 was the most accurate (85.5%). Fitbit
models achieved an RMSE of 1.36 METs and 78.2% accuracy for classification. Errors tended to increase in out-of-sample
validations with the SenseWear neural network achieving RMSE values of 1.22 METs in the regression tasks and the SenseWear
gradient boost and random forest achieving an accuracy of 80% in classification tasks.

Conclusions: Algorithms trained on combined data sets demonstrated high predictive accuracy, with a tendency for superior
performance of random forests and gradient boosting for most but not all wearable devices. Predictions were poorer in the
between-study validations, which creates uncertainty regarding the generalizability of the tested algorithms.

(JMIR Mhealth Uhealth 2021;9(8):e23938) doi: 10.2196/23938
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Introduction

Background
Participation in physical activity results in increased energy
expenditure [1] and represents a key modifiable risk factor for
cardiovascular disease, obesity, diabetes mellitus, cancer, and
mortality [2]. Thus, longitudinal, unobtrusive, and accurate
measurement of intraday physical activity energy expenditure
would be highly valuable for health research. Activity trackers
offer a scalable means for the continuous collection of physical
activity data in free-living environments and, by extension, the
measurement of energy expenditure. Unfortunately, the accuracy
of activity trackers varies greatly between devices and activities
[3,4], which limits their use when quantifying energy balance
and activity behaviors.

The potential of machine learning techniques to model the
complex interactions of accelerometer data, physiological
variables, and the rate of energy expenditure has been
recognized for some time. Rothney et al [5] trained an artificial
neural network using raw accelerometer data as input to predict
the energy expenditure in a whole-body calorimetry chamber.
Pober et al [6] used quadratic discriminant analysis and a hidden
Markov model to classify activity and subsequently estimated
the proportion of time performing different activities. Research
groups have built on these early findings and have reported
highly accurate algorithms for a variety of activities [7-11].
Researchers often take two broad approaches when modeling
physical activities: first, attempting to predict the rate of energy
expenditure, and second, classifying a minute as sedentary
activity, light physical activity, or moderate-to-vigorous physical
activity (MVPA), both of which are important for health
research. Regression approaches can be used to derive the total
energy expenditure for a subject and this can subsequently be
incorporated into energy balance models to calculate energy
intake [12]. Alternatively, accurately determining the time an
individual spends in broader categories of activity or the
intensity of that activity can be important for public health
guidance. For example, successful weight maintenance in the
National Weight Control Registry and weight management
recommendations are often defined based on the time an
individual spends in MVPA [13]. Machine learning algorithms
have the potential to enhance physical activity assessment
beyond that of traditional count-based methods, which despite
being more accessible, may not be sufficiently accurate for the
assessment of energy expenditure and intensity classifications
[14].

Recently, we demonstrated in a laboratory validation study that
accelerometer and physiological sensor outputs can be modeled
using random forests to predict the rate of energy expenditure
(as a multiple of resting energy expenditure) in commercial and
research-grade activity monitors. We demonstrated a low error
in the prediction of energy expenditure [15]. The number of
activities in which energy expenditure was measured in this
study was limited, and the generalizability of these algorithms

remains uncertain. A method for continued refinement of
predictive algorithms is to obtain more than one data set [16]
to provide larger, more diverse training data with more activities.
More data present a new optimization problem, which (because
of different assumptions made by different algorithms) means
that there is no guarantee that any algorithm will minimize error
on all problems [17]. For machine learning models to be used
in general health research settings, it is critical to evaluate the
generalizability of prediction algorithms. The extent to which
an algorithm will generalize is influenced by the characteristics
of the sample, activity types, size, and quality of the training
data. One approach that addresses each of these limitations is
to evaluate prediction algorithms on different samples using
data collected under different conditions. In addition to
generalizability, a combination of heterogeneous data sets
collected under different experimental conditions may help to
increase the accuracy of predictions [18].

Objectives
In this study, two distinct data sets of concurrent inputs from
multiple wearable devices (ie, Fitbit Charge 2, ActiGraph
GT3-x, SenseWear Armband Mini, and a polar chest strap) and
measured energy expenditure (indirect calorimetry) are
combined to develop predictive models of minute-level energy
expenditure and physical activity. We aim to evaluate
classification and regression algorithms to (1) predict the rate
of energy expenditure and (2) classify a single minute as
sedentary activity, light physical activity, or MVPA. Algorithms
were validated using leave-one-subject-out cross-validation
(LOSO) and out-of-sample validation. Concurrently, we
evaluated the SenseWear armband, a device that has been shown
to outperform accelerometer-based monitors when classifying
activity minutes [19] and is one of the most accurate wrist or
arm-based monitors for estimating energy expenditure [3].

Methods

Studies
This study aggregated the data collected as part of two separate
studies at the Human Appetite Research Unit, University of
Leeds. Participants were recruited from the local area using
word-of-mouth and recruitment emails. Participants must have
been at least 18 years of age, have been able to attend the
research laboratory at the required intervals, be able to ambulate
without assistance, they must not have been taking medications
known to alter metabolic rate, and participants must not have
had any cardiovascular, metabolic, renal disorders, illness, or
injury that would increase the risk of medical events during
physical activity. Both studies were approved by the University
of Leeds, School of Psychology Ethics Committee (PSC-407
and PSC-744 for study 1 and 2, respectively), and all participants
provided informed consent before participation in the study.
The participant information for the samples is shown in Table
1. Study 2 had proportionately more males, lower age, lower
average percentage of fat mass (FM), and a higher resting
metabolic rate (RMR) on average.
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Table 1. Characteristics of the included sample.

RMRd (kcal/d),
mean (SD)

FM (%),
mean (SD)

FMc (kg),
mean (SD)

FFMb (kg),
mean (SD)

Weighta (kg),
mean (SD)

Height (cm),
mean (SD)

Age (years),
mean (SD)

ParticipantsStudy

Female, n (%)Total

1581.8 (280.4)32.5 (10.3)24.8 (10.7)49.8 (8.9)75.7 (13.6)167.5 (8.9)44.4 (14.1)41 (69)591

1769.3 (435.8)21.7 (8.7)15.1 (7.1)55 (12.6)70.6 (12.9)171.9 (9.2)31.9 (10.2)13 (43)302a

aIn study 2, resting metabolic rate and body composition were estimated at a subsequent visit to the laboratory and therefore weight is not the sum of
fat mass and fat-free mass; in study 1, body composition was not available for all subjects and therefore weight is not the sum of fat mass and fat-free
mass.
bFFM: fat-free mass.
cFM: fat mass.
dRMR: resting metabolic rate.

Protocols

Study 1
The details of study 1 have been published previously [15]. The
protocol of study 1 consisted of 10 activities, each performed
for 5 minutes in the following order: sitting, standing, treadmill
walking and incline walking (4 km/h), jogging, and incline
jogging (6-8 km/h). Participants then rested for 3 minutes and
transitioned to a cycle ergometer for low- and moderate-intensity
cycling. After another period of recovery, participants performed
a folding and sweeping task. Owing to a variation in physical
fitness, the jogging task (n=49), incline jogging (n=30), and
moderate cycling tasks (n=58) were not performed by all
participants.

Study 2
In study 2 (total energy expenditure from wearable devices
study), participants visited the lab and refrained from eating or
consuming caffeine for at least 4 hours. This exercise visit is
the first of three visits to the laboratory conducted as part of a
wider project. Weight and height were obtained from a SECA
704s stadiometer and electronic scale (SECA, Germany), and
subsequently, an activity protocol was performed. All activities
were performed in 5-minute increments, and the order was
identical for all participants. First, resting tasks were performed
where participants lay supine, sat in a backed chair, and then
stood. Next, after a 2-minute unstructured transitional period,
participants performed seated typing, standing ironing, and
wiping surfaces while standing. After another 2-minute
transition, participants walked on a treadmill at 4 km/h, walked
at an incline of 5% at 4 km/h, and subsequently jogged at 7
km/h. The participants then rested for 10 minutes. After the
unstructured resting period, participants performed low-intensity
and moderate-intensity cycling, low-intensity and
moderate-intensity rowing, and low-intensity and
moderate-intensity cross-training (elliptical), with 1-minute
transitions between each, and the intensity of the tasks was
determined by a self-selected perceived exertion. In study 2,
one participant did not perform rowing or elliptical tasks.

Body Composition Assessment
In both studies, body composition was estimated using air
displacement plethysmography (BodPod, Life Measurement,
Inc), n=57 in study 1 and n=30 in study 2. Study 2 is part of a

wider study in which participants visited the laboratory three
times, the first of which was the laboratory validation reported
here. Body composition was measured at a subsequent visit to
the laboratory in a fasting state.

Energy Expenditure
This study used metabolic equivalents (METs) as the outcome
variable, which served to eliminate the proportion of energy
expenditure attributable to RMR. We first established the RMR
of each participant, which was measured in the fasting state,
before any exercise. In both studies, RMR was determined from
VO2 and VCO2 data collected through a ventilated hood indirect
calorimeter system (gas exchange measurement; Nutren
Technology Ltd). In study 1, RMR was measured before
exercise testing, and in study 2, which occurred on a subsequent
visit to the laboratory. After researchers explained the
procedures to the participants and an initial calibration process
(approximately 10 minutes), VO2 and VCO2 were measured
for 30 minutes in the supine position. The RMR was established
from the VO2 and VCO2 of the 5-minute block with the lowest
coefficient of variation [20]. If RMR data were unavailable (n=3
across both studies), we approximated the RMR with
BMI-specific equations [21]. During the activity sessions, energy
expenditure was obtained from a stationary metabolic cart
(Vyntus CPX, Jaeger-CareFusion), and these data were
expressed relative to the measured RMR of each subject to
derive METs. Definitions of METs are inconsistent [22] and
we took an individualized approach to METs calculations
because the standard definition of METs may have limited
applicability in some subjects [23].

Devices
Accelerometer and physiological data were collected using
various sensors in both protocols. The Polar H7 chest strap
(Polar Electro) was used to measure the heart rate. An ActiGraph
GT3-X accelerometer (ActiGraph) and a Fitbit Charge 2 (Fitbit
Inc) were attached securely to the nondominant wrist.
Participants also wore the SenseWear Armband Mini
(BodyMedia Inc) on the upper arm.

Data Aggregation
The sensor outputs were obtained from the device-specific
software and aggregated to the minute level and time matched
to the criterion energy expenditure data. Data loss attributable
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to device malfunction was as follows: in study 1, Fitbit data of
2 participants, ActiGraph data of 1 participant, and polar heart
rate data of 1 participant were lost. In study 2, 1 SenseWear and
1 Fitbit data set were lost because of device failure. Given the
slightly different data availability in each model, our results
report the number of minutes used and the number of
participants. All minutes in which energy expenditure data were
available (ie, face mask was not removed) were included in this
analysis, and the aggregation of the data sets by time was
conducted in Python 3.7.6 and R version 3.6.3 (R Core Team).

For activity-specific analyses, we grouped activities into broader
categories. Activities of daily living, which involved folding,
sweeping, typing, ironing, and wiping surfaces. Distinct
categories were assigned for cycling, elliptical, rowing, running,
and walking. The sedentary activities involved all sitting,
standing, and supine tasks. The transitional category refers to
unstructured resting or transitional minutes.

Features
Predictive models were built for Fitbit, ActiGraph, and
SenseWear, and the features used in each model are listed in
Table 2. Each device used a combination of subject-level
features, accelerometer features, and physiological features,
which have been related to the rate of energy expenditure in

previous studies [3,5,24-26]. The features varied depending on
the feature availability of each device. Where small (limit of 5
minutes) heart rate gaps existed (eg, loss of signal between the
respective heart rate sensor and the skin), we used linear
interpolation to fill gaps. As activity in the preceding minutes
influences the rate of energy expenditure at the measurement
point [27], some time-lagged features were computed: for steps
(Fitbit and SenseWear), vector magnitude (ActiGraph), Fitbit
heart rate (Fitbit), and polar heart rate (SenseWear and
ActiGraph), the change from t-1 minutes for each minute up to
t-5 minutes were included as predictive features. In addition,
the mean and SD of the current and last 5 minutes were used
as predictive features. If time-lagged variables could not be
computed due to missing data (ie, for the first minutes for each
subject), we imputed backward using the next available
observation.

As a constant variance is important for some of the algorithms
tested in this study, all numeric features were standardized
before training using the following formula:

z = (x – μ) / sd

(1)

where μ and sd refer to the variable mean and SD, respectively.
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Table 2. Predictive features used in each of the models.

FeaturesDevicea and category

Fitbit

Gender, age, height, weight, and sitting heart rateSubject features

Steps features:Acceleration features

steps mean, steps difference (t-1, t-2, t-3, t-4, and t-5 minutes); steps mean and SD of last 5 minutes

Fitbit heart rate features:Physiological features

Fitbit heart rate above sitting heart rate, Fitbit heart rate percentage of maximum heart rate, Fitbit heart rate mean,
Fitbit heart rate difference (t-1, t-2, t-3, t-4, and t-5 minutes), and Fitbit heart rate mean and SD of last 5 minutes

ActiGraph

Gender, age, height, and weightSubject features

X, Y, Z features:

minimum, maximum, mean, SD; median crossings; 10th, 25th, 50th, 75th, 90th percentiles; correlations (XY, XZ,
YZ); dominant frequency; dominant frequency magnitude

First order differential of X, Y, Z features:

minimum, maximum, mean, SD; median crossings; 10th, 25th, 50th, 75th, and 90th percentiles; correlations (XY,
XZ, YZ); dominant frequency; dominant frequency magnitude

Vector magnitude features:

vector magnitude mean; vector magnitude difference (t-1, t-2, t-3, t-4, and t-5 minutes); vector magnitude mean and
SD of last 5 minutes

Acceleration features

Polar heart rate features:

polar heart rate above sitting heart rate; polar heart rate percentage of maximum heart rate; polar heart rate mean;
polar heart rate difference (t-1, t-2, t-3, t-4, and t-5 minutes); polar heart rate mean and SD of last 5 minutes

Physiological features

SenseWear

Gender, age, height, and weightSubject features

X, Y, Z features:

peaks, mean of absolute differences, average;

Steps features:

steps mean; steps difference (t-1, t-2, t-3, t-4, and t-5 minutes); steps mean and SD of last 5 minutes

Acceleration features

Polar heart rate features:

polar heart rate above sitting heart rate; polar heart rate percentage of maximum heart rate; polar heart rate mean;
polar heart rate difference (t-1, t-2, t-3, t-4, and t-5 minutes); polar heart rate mean and SD of last 5 minutes; and
SenseWear sensors: near body temperature average, Galvanic skin response average, skin temperature average

Physiological features

aFor each device, the subject characteristics, acceleration features, and physiological features are listed.

Algorithms
The SenseWear outputs a MET estimate that we evaluated in
this study (SenseWear manufacturer). We also tested several
machine learning algorithms for regression and classification
tasks, which are described below. In the regression tasks,
algorithms predicted a MET value for each minute, and in the
classification tasks, algorithms classified activity categories for
each minute. The activity classifications were as follows:
sedentary activity (≤1.5 METs), light physical activity (>1.5
and <3 METs), and MVPA (≥3.0 METs) [18,28,29]. For each
algorithm, the hyperparameters were informed by a random
search through a range of potential hyperparameters in the
preliminary tuning experiments. Random search iterates over
a grid of randomly selected combinations of hyperparameters,
rather than exploring every possible combination of features,
and therefore offers a significant computational advantage over
a grid-search approach [30]. Each random search was conducted

with the RandomizedSearchCV class in Scikit Learn [31], using
three-fold cross-validation. The specific parameters for each
algorithm are detailed in Multimedia Appendix 1, and except
for the neural network models (explained in the following
section), the scoring or loss criterion was the default loss or
scoring metrics within Scikit Learn. All algorithms were trained
using Keras-GPU [32] or Scikit Learn [31].

Random Forest
The random forest algorithm was used for regression and
classification tasks [33]. Random forests involve training of
multiple decision trees on data subsamples. Importantly, when
splitting these decision trees, only a subsample of the potential
predictors is used, which serves to decorrelate the trees. The
predictions of each tree can then be combined to produce a
majority vote (classification) or continuous prediction
(regression). The optimal hyperparameters of the algorithm
were estimated in the tuning experiments and included the

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 8 | e23938 | p. 5https://mhealth.jmir.org/2021/8/e23938
(page number not for citation purposes)

O'Driscoll et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


number of trees, number of samples required to split a tree,
number of samples per leaf, total predictors, and the depth of
trees. In regression, the quality of a split was assessed with mean
square error, and in classification, Gini impurity was used.
Algorithms were implemented using the
RandomForestClassifier and RandomForestRegressor classes
in Scikit Learn [31].

Gradient Boosting
For the regression and classification tasks, we used the gradient
boosting algorithm. Similar to random forests, this algorithm
is a tree-based ensemble method. However, where random
forests may be considered to use a bagging approach, gradient
boosting uses boosting to learn. Boosting involves the sequential
growth of small (weak) decision trees. Each tree is trained using
the residuals of the previous estimator and subsequently added
to the fitted function to update the residuals. In the boosting
phase, a learning rate parameter penalizes the contribution of
each tree to the overall model, thereby slowing the learning
[34]. The gradient boosting hyperparameters were tuned in the
random search experiments and included the number of boosting
stages, the maximum depth of the estimators, learning rate,
number of samples required to split a node, the number of
samples per leaf, and the maximum number of predictors. In
the regression, the loss function was least squares, and in
classification, deviance was used. Algorithms were implemented
using the GradientBoostingClassifier and
GradientBoostingRegressor classes in Scikit Learn [31].

Neural Networks
The third algorithm, used in both regression and classification
tasks, was artificial neural networks. Neural networks allow
complex, nonlinear functions to be modeled and comprise layers
of interconnected neurons. At each neuron, inputs are subjected
to a numerical activation function, and then passed through
subsequent hidden layers of neurons to an output layer [34,35].
In the training process, the interneuronal weights of the network
are refined relative to a loss function (ie, mean square error or
cross-entropy). Neural networks in the classification studies
used the sparse categorical cross-entropy loss function, and in
the regression setting, the loss was the mean square error. We
tuned the learning rate of each network, the number of layers,
and the number of neurons. Neural networks hidden layers used
the relu activation function, and classification models used a
softmax activation in the output layer, both classification and
regression networks used the Adam optimizer.

K-Nearest Neighbors
For classification tasks, we tested the k-nearest neighbor (KNN)
algorithm. This algorithm assigns a given point to a particular
class based on the majority class of the k nearest neighbors,
where the neighbors of a given point are defined by a distance
metric (ie, Euclidian, Minkowski, or Manhattan) [34].
Hyperparameters adjusted in the training process included the
number of neighbors in each neighborhood (k), distance metrics,
and the weight applied to each of the observations in a
neighborhood. KNN was implemented with Scikit Learn [31],
using the KNeighborsClassifier class.

Support Vector Machine
The final classification model tested was a support vector
machine classifier with a radial basis function [35]. A support
vector machine aims to find a separating hyperplane between
classes by maximizing the distance between the points and the
hyperplane. In this study, we tuned the regularization parameter
(C) and gamma, which defines the magnitude of the effect of
specific training examples. The support vector machine classifier
was implemented with the SVC class in Scikit Learn [31].

Statistical Analyses
We conducted two validation approaches for all the analyses
and algorithms. First, LOSO validations, where algorithms are
trained on all but the data of 1 participant, and the participant
is held back for validation. This process was repeated until all
participants had served as the validation participant once.
Second, we used an out-of-sample validation in which the entire
data set from one study was used as training data, and the second
study was used as an out-of-sample validation. Regression
algorithms were evaluated by root mean square error (RMSE),
mean absolute percentage error (MAPE) with the Metrics
package in R and concordance correlation coefficient (CCC)
with DescTools. Agreement statistics were calculated at the
minute level; however, for visualization purposes, we computed
the RMSE at the level of individuals and plotted these values.
Equivalence tests were used to determine if the true METs and
predicted METs were statistically equivalent; tests used
equivalence bounds of 10%, and to be considered equivalent,
the 90% CI must fall within the equivalence bounds. Finally,
linear mixed models with a random intercept of subject ID were
used to investigate differences in RMSE between the models.
Comparisons were conducted using the Lme4 [36] package in
R, with P values adjusted by the Bonferroni method in post hoc
comparisons. For classification tasks, we report the κ statistic,
which compares the accuracy of the predictions to that of a
random system. We also report accuracy, where accuracy is the
proportion of cases that were classified correctly and the F1
score. All classification statistics were calculated using the Caret
[37] package in R. A P value of <.05 was used to determine
statistical significance, where P values were reported.

Results

Regression
A total of 89 participant activity sessions were included in this
sample, and all models could be evaluated on at least 5448
minutes of data in the LOSO validations.

The regression algorithms predicting energy expenditure are
presented for minute-level data in Table 3 and are visually
displayed in Figure 1. Our results demonstrate that the greatest
error in METs was observed for the manufacturer-provided
SenseWear estimates, with MAPE and RMSE values of 34.54
and 1.86, respectively. For ActiGraph, the RMSE was lowest
for gradient boosting (0.93 METs), which also achieved the
lowest MAPE of any ActiGraph model (17.88%). Of the Fitbit
models, the random forest and gradient boosting had equal
RMSE (1.36 METs), but a slightly lower MAPE was achieved
by the random forest. For the SenseWear, the gradient boost
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had the lowest RMSE value (0.91 METs), and this was the
lowest RMSE of all those tested. The neural network models
were associated with a greater overall RMSE for the ActiGraph,
Fitbit, and SenseWear models.

Activity-specific MET predictions are presented in Multimedia
Appendix 2, and the RMSE is shown in Figure 2. For all
activities tested, tree-based models (gradient boost or random
forest) applied to ActiGraph or SenseWear data were superior,
as measured by RMSE. The manufacturer estimates of
SenseWear had the highest RMSE for all activities aside from
sedentary activities, in which only the ActiGraph gradient boost
and random forest had a lower RMSE. Notably, all Fitbit models

overestimated sedentary activities and had the highest RMSE
in this category. The pairwise comparisons between models are
presented in Multimedia Appendix 3 for each of the comparisons
shown in Figure 1 and Figure 2. An example of the model
predictions for a single subject is shown in Figure 3.

Table 4 shows the statistics for the between-study predictions.
Notably larger errors were observed relative to the LOSO
validations, with the Fitbit gradient boost reaching a RMSE of
1.92 METs (neural network) when study 1 was used as the
training data. To estimate the relative importance of each of the
features used in each model, permutation importance has been
reported in Multimedia Appendix 4.

Table 3. Leave-one-subject-out cross-validation results for each of the regression models.

EquivalenceCCCe (95% CI)RMSEdMAPEc
True (METs),
mean (SD)

Predicted (METsb),
mean (SD)

Participants, n
(%)MinutesaModel

—g0.73 (0.72-0.74)1.8634.544.04 (2.59)3.8 (2.49)88 (99)5533SWAf manufacturer

Equivalenti0.93 (0.93-0.93)0.9317.884.04 (2.59)4.04 (2.35)87 (98)5517AGh gradient boost

Equivalent0.9 (0.9-0.91)1.1421.654.04 (2.59)4.05 (2.55)87 (98)5517AG neural network

Equivalent0.93 (0.92-0.93)0.9418.364.04 (2.59)4.05 (2.32)87 (98)5517AG random forest

Equivalent0.84 (0.83-0.84)1.3630.224.01 (2.58)4.03 (2.19)86 (97)5448FBj gradient boost

Equivalent0.82 (0.82-0.83)1.4532.274.01 (2.58)4.02 (2.28)86 (97)5448FB neural network

Equivalent0.84 (0.83-0.84)1.3630.104.01 (2.58)4.03 (2.14)86 (97)5448FB random forest

Equivalent0.93 (0.93-0.94)0.9117.834.04 (2.6)4.04 (2.39)87 (98)5492SWA gradient boost

Equivalent0.93 (0.92-0.93)0.9619.564.04 (2.6)4.05 (2.47)87 (98)5492SWA neural network

Equivalent0.93 (0.93-0.93)0.9218.254.04 (2.6)4.05 (2.35)87 (98)5492SWA random forest

aMinutes refers to the number of minutes the algorithms are validated on.
bMETs: metabolic equivalents.
cMAPE: mean absolute percentage error.
dRMSE: root mean square error.
eCCC: concordance correlation coefficient CCC is presented with 95% CIs.
fSWA: SenseWear.
gThe model is not statistically equivalent to the criterion.
hAG: ActiGraph.
iEquivalent implies that the model is statistically equivalent to the criterion.
jFB: Fitbit.
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Figure 1. Boxplots demonstrating the root mean square error overall for each of the tested models. AG: ActiGraph; FB: Fitbit; RMSE: root mean square
error; SWA: SenseWear.

Figure 2. Boxplots demonstrating the root mean square error for each of the tested models in specific activity categories. ADL: activities of daily living;
AG: ActiGraph; FB: Fitbit; RMSE: root mean square error; SWA: SenseWear.
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Figure 3. A time series plot showing metabolic equivalents predicted by the models tested in this study (colored solid line) and indirect calorimeter
(black dashed line), for a single subject in study 2. The x-axis represents the measurement time. Minutes 1-15=sedentary; minutes
16-17=transitional/unstructured; minutes 18-32=activities of daily living (typing, wiping surfaces, and ironing); minutes 33-34=transitional/unstructured;
minutes 35-44=walking; minutes 45-49=running; minutes 50-59=transitional/unstructured; minutes 60-69=cycling; minutes 71-80=rowing; and minutes
82-91=elliptical. Participants performed cycling, rowing, and elliptical tasks at self-selected low and moderate intensity for 5 minutes each. AG:
ActiGraph; FB: Fitbit; METs: metabolic equivalents; SWA: SenseWear.
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Table 4. Out-of-sample results for each of the regression models.

EquivalenceCCCe (95% CI)RMSEdMAPEc
True (METs),
mean (SD)

Predicted (METsb),
mean (SD)MinutesaTraining dataModel

Equivalentg0.82 (0.81-0.83)1.3736.353.93 (2.66)4.03 (1.9)2690Study 1AGf gradient boost

Equivalent0.87 (0.86-0.88)1.3329.753.93 (2.66)4.07 (2.48)2690Study 1AG neural network

Equivalent0.78 (0.77-0.79)1.5139.503.93 (2.66)3.97 (1.79)2690Study 1AG random forest

Equivalent0.64 (0.62-0.66)1.8947.553.88 (2.65)3.76 (1.7)2630Study 1FBh gradient boost

—i0.65 (0.63-0.67)1.9247.403.88 (2.65)3.65 (1.86)2630Study 1FB neural network

Equivalent0.64 (0.63-0.66)1.8747.453.88 (2.65)3.76 (1.66)2630Study 1FB random forest

Equivalent0.87 (0.86-0.88)1.2327.353.94 (2.68)3.92 (2.13)2633Study 1SWAj gradient boost

Equivalent0.88 (0.87-0.89)1.2227.073.94 (2.68)3.88 (2.26)2633Study 1SWA neural network

Equivalent0.86 (0.85-0.87)1.2829.543.94 (2.68)3.91 (2.07)2633Study 1SWA random forest

—0.83 (0.82-0.84)1.3631.494.15 (2.52)4.46 (2.14)2827Study 2AG gradient boost

Equivalent0.84 (0.83-0.85)1.4229.004.15 (2.52)4.24 (2.56)2827Study 2AG neural network

—0.82 (0.81-0.84)1.3831.474.15 (2.52)4.45 (2.1)2827Study 2AG random forest

Equivalent0.74 (0.72-0.75)1.6634.384.13 (2.51)4.11 (2.06)2818Study 2FB gradient boost

Equivalent0.77 (0.75-0.78)1.5633.104.13 (2.51)4.01 (2.04)2818Study 2FB neural network

Equivalent0.75 (0.73-0.77)1.6233.794.13 (2.51)4.21 (2.04)2818Study 2FB random forest

Equivalent0.86 (0.85-0.87)1.2524.904.14 (2.51)4.15 (2.13)2859Study 2SWA gradient boost

Equivalent0.87 (0.86-0.88)1.2525.654.14 (2.51)3.94 (2.36)2859Study 2SWA neural network

Equivalent0.85 (0.84-0.86)1.2625.724.14 (2.51)4.2 (2.13)2859Study 2SWA random forest

aMinutes refers to the number of minutes the algorithms are validated on.
bMETs: metabolic equivalents.
cMAPE: mean absolute percentage error.
dRMSE: root mean square error.
eCCC: concordance correlation coefficient CCC is presented with 95% CIs.
fAG: ActiGraph.
gEquivalent implies that the model is statistically equivalent to the criterion.
hFB: Fitbit.
iThe model is not statistically equivalent to the criterion.
jSWA: SenseWear.

Classification
Figure 4 presents the results of the LOSO classification
experiments for all classification algorithms and the SenseWear
manufacturer estimates. Classes were slightly imbalanced,
approximately 19.4% sedentary activity, 22.4% light physical
activity, and 58.2% MVPA with small differences between
devices due to data availability. The highest accuracy for Fitbit
models was the random forest (78.21%), for the ActiGraph
models, the random forest achieved the highest accuracy

(84.56%), and for the SenseWear models, the gradient boosting
algorithm (85.49%) was the most accurate.

Multimedia Appendix 5 provides class-specific statistics for
each model. Models tended to perform worse in light activity
with F1 scores ranging from 0.20 (SenseWear neural network)
to 0.66 (SenseWear gradient boost). In sedentary activities, the
F1 score was improved with a range of 0.54 (Actigraph support
vector machine) to 0.83 (four models). For MVPA, the F1 score
ranged from 0.80 (Actigraph support vector machine) to 0.93
(three models).
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Figure 4. A confusion matrix detailing the classification accuracies for each of the tested models. AG: ActiGraph; FB: Fitbit; SWA: SenseWear.

Between-Study Predictions
The between-study classification accuracies are listed in Table
5. In most cases, when study 1 served as the training data, lower
accuracy was observed. When study 1 served as the training

data, the accuracy ranged from 0.55 (ActiGraph support vector
machine) to 0.80 (two models). When study 2 served as the
training data, the accuracy ranged from 0.65 (ActiGraph support
vector machine) to 0.79 (three models).
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Table 5. Between-study classification results for each of the classification models.

κAccuracyTraining data and model

Study 1

0.550.75AGa gradient boost

0.350.61AG k-nearest neighbors

0.520.72AG neural network

0.530.74AG random forest

0.060.55AG support vector machine

0.430.67FBb gradient boost

0.470.68FB k-nearest neighbors

0.470.67FB neural network

0.410.67FB random forest

0.450.67FB support vector machine

0.670.80SWAc gradient boost

0.570.74SWA k-nearest neighbors

0.660.79SWA neural network

0.660.80SWA random forest

0.430.68SWA support vector machine

Study 2

0.560.79AG gradient boost

0.480.72AG k-nearest neighbors

0.510.75AG neural network

0.570.79AG random forest

0.070.65AG support vector machine

0.480.73FB gradient boost

0.470.72FB k-nearest neighbors

0.440.71FB neural network

0.480.73FB random forest

0.480.73FB support vector machine

0.570.78SWA gradient boost

0.550.76SWA k-nearest neighbors

0.550.76SWA neural network

0.580.79SWA random forest

0.550.78SWA support vector machine

aAG: ActiGraph.
bFB: Fitbit.
cSWA: SenseWear.

Discussion

Principal Findings
This study aggregated two laboratory data sets to build on
previous work demonstrating the potential for machine learning
algorithms to produce accurate estimates of METs and intensity
classes in a diverse set of activities and participants. In both
regression and classification settings, we observed the smallest

errors in energy expenditure predictions when applying
tree-based algorithms (ie, random forest and gradient boosting)
to SenseWear and ActiGraph outputs with the RMSE and
classification errors generally being higher for Fitbit models.
In almost all cases, the error was smaller than the SenseWear
manufacturer estimates, and in out-of-sample generalizability
experiments, we observed greater error and lower accuracy
when compared with the LOSO validations. We believe that
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this is the first study to classify the intensity of activity using
machine learning algorithms in Fitbit devices. In Fitbit models,
we demonstrated accuracies up to approximately 78% (κ=0.6),
with superior performance observed for sedentary activity and
MVPA classifications, but these were generally less accurate
than ActiGraph and SenseWear models, where up to
approximately 85% accuracy (κ=0.74) was achieved. Taken
together, and if these results are verified in free-living,
ecologically valid examples, these findings imply that highly
accurate estimates of energy expenditure, sedentary activity,
and MVPA behaviors can be estimated by the wearables tested
here.

Algorithm Accuracy
We used neural networks, random forests, and gradient boosting
in regression tasks. In previous studies, neural networks and
random forests have been shown to be effective in modeling
energy expenditure [8,9], and our results confirm this to an
extent. The RMSE values observed in the trained models ranged
from 0.91 METs to 1.45 METs, which improve upon the
SenseWear manufacturer value of approximately 1.86 METs.
However, when the average METs in this study were considered
(approximately 4 METs), it was evident that the energy
expenditure prediction could be further improved. It is
noteworthy that neural networks resulted in the highest RMSE
for all 3 devices and performed particularly poorly for Fitbit
models. Similarly, Kate et al [38] showed that neural networks
resulted in bias significantly different from 0, compared with
bagged decision trees and numerous other algorithms, which
were not statistically different. Despite the utility of deep neural
networks to model highly nonlinear functions, in some use cases,
the no free lunch theorems broadly state that there will not be
an optimal algorithm for all tasks [17]. Indeed, for our data sets,
tree-based ensemble models are generally superior for both
learning tasks. It may be that a higher RMSE can be reduced
by larger training sets [39].

We generated lagged accelerometer and heart rate variables for
each model because the rate of energy expenditure depends on
the rate of work in preceding minutes [27], and the relative
importance of these metrics is evidenced in the variable
importance analyses. Including time-lagged features allows for
a clearer distinction between minutes that are relatively similar
in their accelerometer pattern but differ in their measured energy
expenditure, that is, sitting for a prolonged period versus sitting
immediately after running. Transitional minutes were on average
approximately 3 METs (largely attributable to the activity in
the preceding minutes), compared with sedentary minutes, which
averaged approximately 1.3 METs, yet the error statistics were
generally comparable with those observed in sedentary minutes,
indicating that algorithms could distinguish between those
minutes. More advanced neural network architectures (ie,
recurrent neural networks) [40] may further the ability of models
to capture the temporal dependencies of energy expenditure.

Generalization
Although many studies have reported low errors when using
machine learning approaches in the estimation of energy
expenditure or classification of activity, external (out-of-sample)
validations are rarer and the opportunity to identify cases of

overfitting has been limited. Therefore, we used an
out-of-sample validation between the two data sets. In all cases,
we observed performance degradation when compared with the
LOSO validations. Some of this reduction in accuracy is
probably attributable to differences in protocols, activities, and
participants, which means that algorithms do not have similar
minutes on which to train. In addition, it is possible that the
algorithms overfit the data. Overfitting occurs when a complex
model learns the noise in the training data, which does not
represent the true underlying function between the inputs and
the output [41]. Previous studies have used out-of-sample
validation or validation in free-living environments [10,42,43],
and when compared with laboratory validations, errors may
increase. Concerning the classification of physical activity
intensity in multiple samples, a previous study reported
reductions in out-of-sample accuracy relative to the
within-sample validated models, in some algorithm and data
set comparisons [44]. However, the machine learning models
still outperformed the Euclidean norm minus one GGIR
classification method in out-of-sample testing. In another
comprehensive generalizability study, five lab-based
heterogeneous data sets were used to predict exercise intensity.
This study found that when models were applied to a different
data set than those they were generated on, model accuracy
decreased from 72-95% to 41-60% [18]. These drops are notably
higher than those in this study, and this is probably attributable
to the greater differences in the accelerometer models, wear
position, and samples across the five data sets. However, caution
must be exercised in a comparison between studies, as the
balance of classes is likely to differ and therefore influence
some evaluation metrics.

Classification
Our LOSO validations demonstrated a relatively high predictive
accuracy (75-85%). However, research-grade device models
(ActiGraph and SenseWear) were superior. Fitbit devices
provide estimates of time in each category (ie, sedentary, light,
and MVPA), but the criteria and algorithms remain proprietary.
Feehan et al [45] compared estimates of time in intensities with
devices such as ActiGraph and Actical, and concluded that more
than 80% of studies reported errors >10% with mean differences
ranging between 44% and 632% for estimations of activity
above light intensity. Importantly, the devices used for
comparison in many studies have varying cut points and are not
necessarily gold standards. Our results indicate that the
application of machine learning to intensity classification can
refine the large errors observed in previous studies. Despite the
promising results, we emphasize that laboratory studies have
limited ecological validity, and future research should seek to
address this. Whole-room indirect calorimetry would likely
allow more realistic behaviors to be studied while providing a
gold standard comparator.

Strengths and Limitations
A strength of this study is the aggregation of two data sets to
provide a more comprehensive and variable data set on which
to train models, although the measures (sensors and indirect
calorimetry) were the same between studies. The tested cohorts
differed demographically, and the protocols were heterogeneous,
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which provides a good estimate of the applicability of the tested
models. Combining data sets also leads to a larger number of
participants (n=89), which is a larger sample size than much of
the previous literature [7,9,10,44,46,47]. In general, an increase
in training observations is considered a mechanism for
enhancing performance [41], and the results of this study provide
some evidence that this is the case in both commercial and
research-grade accelerometers.

Another strength of this study is the testing of numerous
algorithm and device combinations. A previous study developed
a multilayer neural network that was trained on a wearable
system including a vest for electrocardiogram measurements
and 4 accelerometers (one on each wrist and thigh) [47]. Despite
the small bias, this is unlikely to be a feasible means of assessing
free-living energy balance behaviors. Participant discomfort
and sensor removal present additional biases (ie, missing data),
which may require additional modeling approaches to address
[48-50]. The threshold of practicality varies depending on the
size, duration, computational resources, and specific aims of
the research study. Therefore, the development of three models
with varying requirements is a central advantage of this study.

Testing both classification and regression algorithms in the
same devices enhances the use of the results of this study. One
area of future work is to explore combined classification and
regression approaches, similar to the branched models of the
Actiheart [51] or stacked ensemble approaches. This may be
effective in producing refined estimates of total daily energy
expenditure in free-living subjects, given that most of a day
comprises resting or sedentary minutes and some of our models
slightly overestimate sedentary activities, although depending
on the classification or regression methods, this could incur
additional computational costs when applying this to larger data
sets. Future work in our lab will examine the application of such
models to free-living environments against a doubly labeled
water criterion.

A limitation of this study is the lack of a true testing set. Rather,
we attempt to develop an unbiased estimate of the true test error
by (1) testing on unseen participants and (2) testing on an unseen
data set. In the former, the within-subject data are generally
more correlated than the between-subject data, and this method
represents the closest approximation of how such a model would
perform in practice [8]. In the latter, this is extended so that the
training and testing sets comprised different participants and

protocols. Beyond these validation approaches, the ultimate test
of the results presented here is a free-living validation for energy
expenditure and intensity classes. The total daily energy
expenditure can be validated using the doubly labeled water
method over a 7- to 14-day period [52], and the results presented
in this paper are part of a wider project in which we aim to
validate model predictions in free-living. Although free-living
validations are critical, the resolution required to evaluate
activity-specific errors can only be obtained from indirect
calorimetry. Regarding activity categories, no gold standard
method exists to validate time in sedentary activity, light
physical activity, and MVPA outside of a controlled
environment, and the generalizability of classification models
to free-living studies is somewhat uncertain. The authors have
highlighted the limitations of accelerometer data collected within
a laboratory [53,54]; the activities performed in a free-living
environment are more diverse, which further necessitates the
need for more naturalistic (ie, free-living) validation studies or
at least validation studies conducted over several days using
diverse activity protocols in a residential facility. Next, to
replicate predictions made by the present algorithms in
free-living subjects, measured RMR may be required, which
increases the researcher and participant burden. A suitable
alternative in the absence of measured RMR would be prediction
equations derived from BMI, age, height, and gender, rather
than assuming a resting value of 3.5 ml O2/kg/min [55,56].
Finally, our use of the measured RMR to calculate METs may
contribute to differences between the tested algorithms and the
SenseWear manufacturer.

Conclusions
This study builds on previous work from our lab and others,
demonstrating that machine learning techniques can be used to
learn the complexities of human movement and physiological
data in the study of human energy expenditure. Classification
and regression errors were greater when comparisons were made
between studies. Single-sample, cross-sectional studies
generating energy expenditure models show acceptable
accuracy; however, it is likely that these models are overfitted
to a given sample, and thus, improving generalizability is
essential. To extend the utility of energy expenditure estimates
beyond lab conditions, more cross testing between data sets is
required, in addition to validation in free-living samples by
doubly labeled water.
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MVPA: moderate-to-vigorous physical activity
RMR: resting metabolic rate
RMSE: root mean square error
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