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Abstract: Estimating the 6D pose of objects is an essential part of a robot’s ability to perceive their environment. This

paper proposes a method for detecting a known object and estimating its 6D pose from a single RGB im-

age. Unlike most of the state-of-the-art methods that deploy PnP algorithms for estimating 6D pose, the

method here can output the 6D pose in one step. In order to obtain estimation accuracy that is comparable to

RGB-D based methods, an efficient refinement algorithm, called contour alignment (CA), is presented; this

can increase the predicted 6D pose accuracy significantly. We evaluate the new method in two widely used

benchmarks, LINEMOD for single object pose estimation and Occlusion-LINEMOD for multiple objects

pose estimation. The experiments show that the proposed method surpasses other state-of-the-art prediction

approaches.

1 INTRODUCTION

Accurate 6D pose estimation of objects is impor-

tant in many real-world applications of computer vi-

sion, including augmented reality, robot manipula-

tion and advanced autopilot operations on aerial and

ground vehicles. Currently the majority of accurate

6D pose estimation methods rely on RGB-D infor-

mation [Brachmann et al., 2014, Brachmann et al.,

2016, Michel et al., 2017, Xiang et al., 2017, Wang

et al., 2019]. However, the depth sensor exposes

several practical limitations such as high power con-

sumption, limited working range, and sensitivity to

the environmental effects. Such impediments mean

that accurate 6D detection is not normally deployed

on monocular cameras and mobile devices. The goal

of this paper is to present a precise 6D detection

method that works from a single RGB image and re-

lies on the use of deep neural networks.

Traditionally, the 6D pose estimation issue is ad-

dressed by pairing feature points between 2D images

and to obtain the corresponding 3D object models

[Lowe, 2004] from the resulting cloud point. How-

ever, such approaches have failed to address texture-

less targets. By contrast, the template-matching

method [Hinterstoisser et al., 2011, Hinterstoisser

et al., 2012] is more robust than feature-matching,
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but it leads to low pose detection accuracy in envi-

ronments full of occluded objects. Although dense

feature learning approaches [Kendall and Cipolla,

2017, Krull et al., 2017] present good performance in

occlusions, they fail to resolve the case of symmetric

objects.

The emergence of deep learning techniques, es-

pecially CNN-based category detectors, have shown

excellent outcomes for object detection [Krull et al.,

2017, Ren et al., 2015] and object segmentation [He

et al., 2017]. Recently, there is an increasing num-

ber of works [Kehl et al., 2017, Tekin et al., 2018, Hu

et al., 2019, Hodan et al., 2020], which employ deep

learning for 6D pose estimation. Most of these ap-

proaches follow a similar paradigm: first they use a

neural network to detect the eight 3D bounding box

vertices associated with the target objects, then they

perform an Perspective-n-Point (PnP) [Lepetit et al.,

2009] algorithm calculating the orientation and trans-

lation. However, this paradigm suffers from a severe

shortcoming in terms of low detection accuracy. The

reason is that the key points are often not on the sur-

face of the object, so there is some inaccuracy in the

detection. As the PnP algorithm continues to accu-

mulate these errors, an Iterative Closest Point (ICP)

processing is executed in several steps to refine the

pose.

The goal of this paper is to resolve the above lim-

itations by training a deep neural network that can ac-

curately predict 6D pose from an RGB image in a sin-



gle step. Compared with previous works, our method

can estimate the object pose directly without a PnP

iterative process. In addition, we design a contour

alignment (CA) refinement algorithm to replace the

ICP processing that requires depth information. Due

to the use of CA, our system only needs RGB infor-

mation to run.

In this paper, we propose a two-stage convolution

neural network inspired by Mask RCNN [He et al.,

2017]. This network takes a single RGB image as

an input and can output the object class, 2D bound-

ing box, the object mask and object rotation simulta-

neously. Following these, the lateral position of the

object is calculated by a reverse projection algorithm.

In order to obtain estimation accuracy comparable to

RGB-D, we propose an efficient algorithm to align the

object 2D projection and the object mask contour.

We evaluate our approach on the LINEMOD

dataset [Hinterstoisser et al., 2012] (a single object

6D pose estimation dataset) and on the Occluded-

LINEMOD dataset [Brachmann et al., 2014] (a mul-

tiple objects dataset). Additionally, we compare our

result with some recent work. Furthermore, to com-

pletely evaluate our algorithm, we perform some tests

on objects in the real world.

In summary, the main contributions of this paper

are:

• We propose a novel 6D pose estimation method

which can detect objects, segment instances and

predict 6D pose simultaneously without any PnP

process.

• We introduce Contour-Alignment, an efficient al-

gorithm for pose refinement in an RGB image.

This paper consists of five sections. After describ-

ing the related prior work, the paper introduces the

new methodology. This is then followed by presenta-

tion of a range of experiments and finally conclusions

are drawn.

2 RELATED WORK

In this section, we review published 6D pose esti-

mation methods, ranging from traditional feature and

template matching approaches to state-of-art CNN-

based methods.

Early object 6D pose estimation approaches

mainly used feature matching [Lowe, 2004] and tem-

plate matching [Hinterstoisser et al., 2011, Hinter-

stoisser et al., 2012]. These works were primarily ap-

plicable to objects with rich texture However, many

objects are texture free in the real world and industry.

Consequently, these traditional approaches often fail

in severely occluded and cluttered environments.

In recent years, there are an increasing number of

6D pose estimation works which involve the use of

CNNs. CNN-based approaches can be classified in

terms of input data into RGB based methods [Kehl

et al., 2017,Tekin et al., 2018,Hu et al., 2019,Rad and

Lepetit, 2017] and RGB-D based methods [Michel

et al., 2017, Xiang et al., 2017, Wang et al., 2019].

As for the RGB-D inputs, a common strategy is to es-

tablish correspondences between 3D scene points and

3D model points [Park et al., 2019], and then estimate

the 6D pose of the object by solving a least-squares

problem. Some authors [Brachmann et al., 2014] pro-

posed a system to predict dense object coordinates

that can compute object pose from dense correspon-

dences, while others [Wang et al., 2019] embed and

fused RGB pixel and point clouds at a per-pixel level

as training data.

Methods for the RGB image pose detection can be

divided into two groups. Methods in the first group

detect 3D bounding box vertices for objects and then

compute 6D pose by solving the PnP problem [Kehl

et al., 2017,Tekin et al., 2018,Hu et al., 2020]. This is

currently the most popular computational paradigm.

The second type of RGB-based pose estimation treats

6D pose estimation as a regression issue [Do et al.,

2018]. However, the performance of these approaches

is not comparable to RGB-D based works owing to

the lack of an effective pose refinement procedure us-

ing RGB images only. Additionally, to make esti-

mation more precise, some researchers focus on re-

finement methods for pose correction after the initial

calculation. For example, Deep-IM [Li et al., 2018]

proposes an iterative matching network and Fabian et

al. [Manhardt et al., 2018] introduce ”visual loss” to

improve the initial pose.

In this paper we propose an end-to-end network,

which can not only detect and segment but also esti-

mate the 6D pose from an RGB image. We also in-

troduce a novel refinement technique, called contour-

alignment, which is applied as post-processing in the

presented RBG based 6D pose estimation method.

3 METHODOLOGY

In this section we will introduce our novel 6D pose es-

timation algorithm and refinement approach. We first

describe our network architecture, then we present

our method to estimate object pose. After that, we

detail our CA refinement algorithm before finally in-

troducing the set up for training and inference.



3.1 Network Architecture

We propose an architecture inspired by Mask-RCNN

and goes beyond Mask-RCNN in capability. Our

network contains two stages: i) it starts with the

ResNet101 [He et al., 2016] backbone that extracts

features over the entire image and then ii) the Re-

gion of Interest (ROI) is extracted by a Region Pro-

posal Network (RPN) that feeds its results to the head

branches. In our system we have five parallel head

branches as follows:

1. class regression branch

2. box regression branch

3. segmentation head branch

4. orientation head branch

5. corner head branch

The combined network with the Mask-RCNN can

achieve classification, segmentation, and estimation

of 6D pose of object instances simultaneously.

Figure 1: The neural network architecture. The shape of
fully connected layers are two 4096× 1× 1 layer and the
size of convolutional layer is 7×7×512.

Our architecture in Fig.1, uses quaternions to rep-

resent rotation, so there is a normalization layer in

front of a rotation layer. We also use the fully-

convolutional layer to predict a pixel-wise instance

segmentation by up-sampling the feature map to 28×
28.

3.2 Pose Estimation

The object pose usually includes a rotation matrix and

a translation vector. The rotation matrix is estimated

using quaternion regression from the neural network.

As for the translation vector, instead of predicting it

from neural networks directly, we have designed a

fast and simple algorithm to calculate it. The reason

why we deprecate regression of translation is that the

neural network can’t handle camera intrinsic matrix

changes. It is impossible to train a network for each

type of camera. So our network predicts object rota-

tion and translations separately.

Figure 2: Illustrating the relationship between the object
coordinate system and the camera coordinate system. The
3D translation is calculated by a projection principle.

As shown in Fig.2, the translation vector T =
[Tx,Ty,Tz] defines the coordinates of the object center

in the camera coordinate system and the cat model is

under the current orientation. The crucial step to esti-

mate the 3D translation is calculating Tz. The camera

projection is a 3D-to-2D perspective projection and

we utilize the reverse projection principle to recover

the depth Tz. As illustrated in Fig.2, a 2D diagonal

(the blue line obtained from neural network) and a 3D

diagonal (the yellow line calculated from 3D model)

can be used to derive the Tz:

Tz =
3Ddiagonal

2Ddiagonal
∗ f (1)

where f denote the focal lengths of the camera. We

assume that the focal lengths in horizontal fx and ver-

tical fy directions are equivalent. The same procedure

can be easily adapted to obtain Tx and Ty:

[

Tx

Ty

]

=









u− cx

fx

∗Tz

v− cy

fy

∗Tz









(2)

where [u,v] is the object center that predicts from the

neural network, [cx,cy] expresses the principal point,

which would be theoretically in the centre of the im-

age.

3.3 Pose Refinement

Though the estimated object poses are already pre-

cise, they can still be improved by a further refine-

ment. For the RBG-D data, the detection usually fol-

lows by ICP processing. In this paper, we propose

an edge-based refinement algorithm by aligning the

object instance contours and 2D projection contours.



We call it a contours alignment (CA) algorithm. This

method can be adapted to any CNN-based 6D pose

estimation framework to improve accuracy.

Algorithm 1 Position Refinement

Input: Initialise object pose P0; Object mask M0 pre-

dicted by neural network; 3D-2D projection func-

tion f ; Object model;

Output: Refine object pose Pn

1: Calculate contour C0 for object mask M0.

2: Set C0 as reference points.

3: Compute 2D projection pro j with current pose

P0, pro j = f (P0)
4: Extract contour C1 from pro j.

5: Apply a closest point pairs algorithm between C0

and C1 to obtain C3.

6: Compute residual error: d f =C3 −C1.

7: Calculate Jacobian matrix J of f , so d f = Jdx.

8: Solve dx using pseudo inverse dx=(JT J)−1JT dy,

and update pose P0.

9: Repeat steps 3-8 until reach threshold; return P0.

In Algorithm 1, we extract contours by using the

”find contours” function from the skimage module

[Van der Walt et al., 2014], that is an image process-

ing module in python. The ”find contours” function

uses the “matching squares” and linearly interpolated

approach to obtaining the iso-valued contours of the

input 2D array for a specific value. The closest points

pairing process employs a kd-tree search from the

”sklearn.neighbors” module [Pedregosa et al., 2011].

The closest point pairs guarantee that two contour ar-

rays have the same shape so that we can perform ar-

rays subtraction.

In order to achieve an appropriate balance be-

tween accuracy and efficiency, we only optimize the

translation because the error in translation is more

dominant than rotation. The Jacobian matrix J is:

J = [
∂ f

∂Tx

,

∂ f

∂Ty

,

∂ f

∂Ty

] (3)

we approximate the derivatives to obtain:

J ≈















f (T +[ε,0,0])− f (T )

ε
f (T +[0,ε,0])− f (T )

ε
f (T +[0,0,ε])− f (T )

ε















T

(4)

where T denotes the translation vector and ε is a tiny

number. In this paper we choose ε = 0.0000001 to

guarantee the size of projection points is constant.

Therefore, in Algorithm 1, the two contour arrays C1

and C3 can subtract.

(a) 2D Projection contour with-
out refinement.

(b) 2D Projection contour after
refinement.

(c) Translation error under dif-
ferent iteration times.

(d) Pixel error under different
iteration times.

Figure 3: Improvement of our refinement algorithm for 6D
pose estimation. In (a) and (b), green lines show the ground
truth contour, yellow lines present the predicted mask con-
tour and red lines indicate 2D projection using the current
pose.

In Fig. 3 one can observe that the projection con-

tour extracted by refinement of pose (red line) coin-

cides with the ground truth contour (green line). This

shows that our algorithm can improve pose accuracy

significantly. Furthermore, we can also see both the

translation error and the pixel error being reduced by

nearly 60% in the first refinement iteration and more-

over this tends to converge after the second refinement

iteration. Therefore, our algorithm can refine object

pose quickly and effectively.

3.4 Training and inference

We have implemented our system in Python3 using

the TensorFlow library [Abadi et al., 2016]. The input

to the neural network was an RGB image with size

640×480. Our training data consisted of three parts:

i) first is the RGB image; ii) second is a binary mask

image and iii) the third part is a label. Unlike other

approaches using eight corner annotations or 6D pose

annotations, we adopt a new annotation method based

on a quaternion and two corner points as shown in

the Fig.4, because such an annotation can fit our pose

estimation algorithm better.

In training, we define a multi-task loss to jointly

train the classification, bounding box regression, in-

stance segmentation, quaternion regression and cor-

ner point regression. Formally, the total loss function



Figure 4: Comparing with different annotation method

is defined as follows:

L = α1Lcls +α2Lbox +α3Lmask +α4Lquat +α5Lcor

(5)

where α1, α2, α3, α4, α5 are loss weights, which in-

dicate the importance of each loss component. In our

experiments, we set α1 = α2 = α5 = 1, α3 = 10 and

α4 = 2. Lcls is softmax loss, Lbox and Lcor are smooth

L1 loss, Lmask is binary cross-entropy loss, and Lquat

is a derivation of L2 Loss, defined as follows:

Lquat =

n

∑
i=1

(βri −βr̄)2

n
(6)

where ri denotes the predicted quaternion and r̄ is the

ground true quaternion. The four parameters of the

quaternion are all between 0 and 1, so we apply a

magnification factor β (β = 10 in our experiments).

We train our network on a Tesla V100 GPU for 90

epochs. The first 20 epochs train network heads with

a 0.002 learning rate. Then, using the same learning

rate, we fine tune the layers from ResNet stage 4 in

the next 10 epochs. After that, we train all layers for

30 epochs. In the following 10 epochs, the learning

rate is decreased by 10 until we train all the layers.

Lastly, we change the learning rate to 0.00002 to fine

tune all the layers in the final 10 epochs.

At the inference phase, we select object instances

which have their detection scores higher than 0.9. Our

pose estimation algorithm and refinement method are

then applied to the detected objects to obtain accurate

6D pose matrices.

4 Experiments

We conduct our experiments on two standard data sets

including a single object pose data set LINEMOD,

and a multiple objects pose data set Occlusion-

LINEMOD to evaluate our method for 6D pose es-

timation. We compare our work against some widely

used state-of-the-art 6D pose estimation approaches.

We also prove that our method can apply to real-world

custom objects.

4.1 Evaluation Metrics

Our work has been evaluated under the average dis-

tance (ADD) metric [Hinterstoisser et al., 2012]. The

average distance calculates the mean of pairwise dis-

tances between 2D projections of the 3D models, cal-

culated utilizing the estimated pose and ground truth

pose:

ADD =
1

m
∑

x∈M

min
M

‖(RRRxxx+TTT )− (R̄RRxxx+ T̄TT )‖ (7)

where RRR, TTT , R̄RR, and T̄TT are ground true rotation,

ground true translation, estimated rotation and esti-

mated translation, respectively. M denotes the vertex

set of the 3D model, and m means the number of 3D

points. Evaluation is based on the widely used metric

ADD-0.1d and REP-5px, where the estimated pose

is considered to be correct if the average distance is

below 10% of the object’s diameter or smaller than a

5 pixels threshold.

4.2 Single Object Pose Estimation

We first test our method on the LINEMOD data set,

which contains 15 objects with poor texture in a clut-

tered environment.In common with other papers in

the literature, we evaluate methods on 13 of these ob-

jects. We adopt similar settings with [Tekin et al.,

2018] to randomly select 30% of the images as train-

ing data and the rest of images as test data. Only RGB

images are however used in the training and testing

phase.

Table 1: Comparison of our method with state-of-the-art
work on LINEMOD data set in terms of ADD-0.1 met-
ric. We present percentages of correctly estimated pose and
highlight the best result among those by bold numbers.

Method

Object
Zhao Yolo-6D SSD-6D Our

Ape 35.1 21.62 0 42.29

Benchvise 23.9 81.8 0.18 77.64

Cam 33.2 36.57 0.41 66.78

Can 21.0 68.80 1.35 74.09

Cat 30.6 41.82 0.51 57.89

Driller 28.6 63.51 2.58 70.45

Duck 27.9 27.23 0 37.81

Eggbox 38.9 69.58 8.9 64.5

Glue 31.2 80.02 0 44.51

Holepuncher 13.4 42.63 0.30 62.40

Iron 37.8 74.97 8.86 78.01

Lamp 34.5 71.11 8.20 84.5

Phone 19.9 47.74 0.18 65.27

Average 28.9 55.95 2.42 63.59

We compare our method with the state-of-the-art

approaches Yolo-6D [Tekin et al., 2018], Zhan [Zhao

et al., 2020] and SSD-6D [Kehl et al., 2017], which

run under a similar setting. In TABLE 1, the com-

peting methods are presented results. On average, our

method outperforms all the considered competitors by

a margin of at least 7% or more. We also find that



Table 2: Comparison of our method with state-of-the-art work on Occluded LINEMOD dataset in terms of ADD-0.1 metric
and REP-5px metric. We present percentages of correctly estimated pose and highlight the best result among those by bold
numbers.’-’ denote the results not in the original paper.

Object

Method ADD-0.1 REP-5px

PoseCNN Heatmaps Seg-drive Our iPose Yolo-6D Our

Ape 9.6 16.5 12.1 18.87 24.2 7.0 54.69

Can 45.2 42.5 39.9 50.52 30.2 11.2 44.82

Cat 0.9 2.8 8.2 15.38 12.3 3.6 53.73

Driller 41.4 47.1 45.2 34.0 - 1.4 17.49

Duck 19.6 11.0 17.2 27.00 12.1 5.1 51.91

Eggbox 22.0 24.7 22 20.62 - - 41.37

Glue 38.5 39.5 38.5 26.43 25.9 6.5 43.72

Holepuncher 22.1 21.9 36.0 32.0 20.6 8.3 31.78

Average 24.9 25.8 27.0 28.1 20.8 6.2 42.43

our algorithm is more effective for small-size objects.

For example, with the camera model whose diameter

is 17.24 cm, the estimated pose accuracy increases by

nearly 30%. Even when compared with some RBG-D

based methods such as SSD-6d, for which the average

accuracy reaches 76.3%, our method is still competi-

tive.

4.3 Multiple object instance pose

estimation

The Occlusion-LINEMOD is a multi-objective esti-

mation benchmark which contains 8 objects and 1214

images. As its name shows, a few objects in the im-

ages are heavily occluded, which makes estimation

extremely difficult.

To create training data, we follow the same data

selection setting as in the previous evaluation. Due to

that every image contains several instances, we mod-

ify our training strategy: the training epoch increases

from 90 to 160. The first 20 epochs train network

heads with 0.004 learning rate. Then, using the same

learning rate, we fine tune layers from ResNet stage

4 and up during the next 10 epochs. After that, we

train all layers for 70 epochs. This initial learning

rate value can make training convergence quickly. In

the next 20 epochs, the learning rate is decreased by

10 in all layers. Finally, learning rate is set to 0.00004

in order to fine tune all layers in the final 20 epochs.

Through twice learning rate tuning, we can obtain a

minimize loss. This setting achieves excellent perfor-

mance in our experiments. In addition, the segmen-

tation loss weight α3 changes to 40 in order to over-

come excessive occlusion in the image.

As can be seen from the TABLE 2, our work out-

performs other methods, such as PoseCNN [Xiang

et al., 2017], Heatmaps [Oberweger et al., 2018], Seg-

drive [Hu et al., 2019], iPose [Jafari et al., 2018],

Yolo-6D [Tekin et al., 2018], in both ADD-0.1d met-

ric and REP-5px metric. In Fig.7, we can notice that

the estimated pose is still accurate with partial occlu-

sion. But if the visibility of the object is too low, the

estimation will fail.

4.4 Application to Real-World Object

(a) (b) (c)

(d) (e) (f)
Figure 5: The application in real world object: (a) Real ob-
ject. (b) Object model. (c) Synthesis mask. (d) Synthesis
RGB image. (e) Detected mask. (f) Estimated pose.

The object models in the standard data set are pre-

cise, and the annotations are accurate. However, in the

real world, it is hard to obtain a perfect object model

and annotate poses on authentic images. We consider

synthetic images to train so that this method can apply

our method on a broader range of objects.

In our experiment, the object model shown in the

Fig.5(b) is obtained by structure from motion (SFM)

[Wu et al., 2011] method, which can reconstruct an

object model using the object images capturied from

different angles. Then, utilising the NVIDIA Deep



Figure 6: Qualitative results on LINEMOD. First row : the original images. Second row: the predicted object class, 2D
bounding box and segmentation. Third row: 6D pose represented by 3D bounding boxes which green is the ground truth and
the red is estimated.

Figure 7: Qualitative results on Occluded LINEMOD. First row : the original images. Second row: the predicted object
class, 2D bounding box and instance segmentation(different color means different class). Third row: 6D pose represented by
2D projection contour which green is the ground truth and the other color is estimated. Forth row: Area screenshot, the first
three columns is success cases and the last three columns is fail cases.

learning Dataset Synthesizer (NDDS) tool [To et al.,

2018] generates synthetic training data. Finally, we

feed the training data into the neural network. In this

way, the pipeline of 6D object pose estimation can be

more generic.

5 CONCLUSIONS

We have introduced a new method to detect an ob-

ject class, segment instance and estimate object 6D

pose simultaneously from a single RGB image. Our

method can predict object orientation and calculate

translation without a PnP process. What’s more, we

propose a novel pose refinement algorithm Contour-

Align by aligning the mask contour and the 2D pro-

jection contour for the single RGB image. This refine-

ment technique can be applied to most of the post-

processing of RBG based 6D estimation. Further-

more, the evaluation shows our work surpasses cur-

rent state-of-the-art methods. Therefore, our work is

encouraging because it indicates that it is feasible to

accurately predict the 6D pose object pose in a clut-



tered environment using RGB data only. An interest-

ing future work is to improve the estimation accuracy

when the CAD model is unavailable.
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