
This is a repository copy of What is a Parasite? Defining reaction and network properties
in an open ended automata chemistry.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177007/

Version: Published Version

Proceedings Paper:
Stepney, Susan orcid.org/0000-0003-3146-5401 and Hickinbotham, Simon John
orcid.org/0000-0003-0880-4460 (2021) What is a Parasite? Defining reaction and network
properties in an open ended automata chemistry. In: Artificial Life Conference
Proceedings:The 2021 Conference on Artificial Life. ALife 2021, Prague, Czech Republic
(virtual), July 2021, 19-23 Jul 2021 MIT Press , pp. 598-606.

https://doi.org/10.1162/isal_a_00413

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

What is a Parasite?
Defining reaction and network properties in an open ended automata chemistry

Susan Stepney1,2, Simon Hickinbotham1,3

1York Cross-disciplinary Centre for Systems Analysis
2Department of Computer Science, University of York, YO10 5DD

3Department of Electronic Engineering, University of York, YO10 5DD

susan.stepney@york.ac.uk

Abstract

Open-ended novelty is one of the goals of ALife. This pro-
vides challenges for analysis as the system evolves. We pro-
vide definitions for several emergent properties, such as para-
sitism and hypercycles, observed to emerge in an RNA world
configuration of the Stringmol automata chemistry, and show
how these can simultaneously be mathematically simple, cap-
ture the complexity of the processes, and be readily imple-
mentable.

Introduction

An open-ended system exhibits continual novelty, eventu-

ally moving outside any model we build of it (Banzhaf et al.,

2016). This presents the challenge of how to detect when

and how this happens. It is therefore necessary to identify

features of the model that can be detected in the system, and

to monitor when these features change, become more com-

mon, or disappear. More challenging is to complete such

an analysis via the detection of new, emergent properties.

Typically this can only be done a posteriori, once forensic

interrogation of the system has indicated how to do so.

RNA world systems have similar initial properties,

whether in vitro (Koonin et al., 2017) or in silico (Bansho

et al., 2012): the process of replication happens when two

entities in the system combine, and one partner manufac-

tures a copy of the other partner. Replication is either ‘self-

self’ with two identical entities, or ‘self-other’ where non-

identical entities engage in replication. This copying pro-

cess can be imperfect, so mutants arise, which may be better

or worse at the task of replicating, or not have a facility to

replicate at all. The situation may arise where one entity

may never copy the other; that entity is labelled a parasite.

Stepney and Hickinbotham (2020) describe how an RNA

world configuration of the Stringmol automata chemistry,

with mutation that produces novel replicators and parasites,

moves outside its original model of mutual replication be-

tween identical molecule classes. In this configuration, the

strings resemble the RNA ‘replicases’ of the hypothesised

RNA world of prebiotic evolution (Takeuchi and Hogeweg,

2012). Novel agents, reactions, reaction networks, and prop-

erties emerge, which require an update to the model and its

meta-model to capture the changes. Here we describe the

definitions used to capture those particular properties and

changes observed.

The consensus has been that emergent parasitism drives

a well-mixed RNA world system through a process of ever

increasing efficiency of replication, which can be followed

by extinction as the proportion of parasites in the system

increases exponentially and the number of replicators avail-

able to support the population diminishes. Recently, how-

ever, Hickinbotham et al. (2021) have observed different

behaviours where spatial pattern formation, and thereby

higher order selection, prevents extinction as in Takeuchi

and Hogeweg (2012). Runs which survive early extinction

exhibit slower replication times concurrent with increases in

population size. These emergent changes need to be anal-

ysed in detail, yet the system model is changing as evolution

progresses: initially each agent in the system is classified

as a replicator, a parasite, or ‘other’, however, as evolution

proceeds, this classification becomes insufficient – different

methods of replication emerge that are not strictly pairwise;

a parasite on one replicator may be a replicator when paired

with a different one; and so-on. Classification needs to move

from the individual agent level to one of identifying proper-

ties of reactions, and later of reaction networks, in order to

capture and analyse the evolution of the system’s dynamics.

To automate analysis, we need a precise definition of the

relevant properties. These can often be defined only after

a kind of event has been observed ‘in the wild’. The prop-

erty then needs to be formalised, and added to the analysis

toolset. There are conflicting requirement in the formalisa-

tion: definitions should: (i) be simple, yet capture the prop-

erty with the intended meaning; (ii) capture the complexity

and intricacies of the emergent phenomenon; (iii) be read-

ily implementable. Here we describe the formalisation de-

veloped and implemented to analyse the results reported in

Hickinbotham et al. (2021). We meet the requirements by:

(i) having high level definitions that clearly state the prop-

erty, which are (ii) compositions of lower level definitions

that capture the complexities, and (iii) provably equivalent

definitions that are implementable. Although some lower

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/is

a
l/p

ro
c
e
e
d
in

g
s
-p

d
f/is

a
l/3

3
/8

0
/1

9
2
9
9
2
7
/is

a
l_

a
_
0
0
4
1
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

1
 A

u
g

u
s
t 2

0
2
1

level definitions pertain only to Stringmol, the higher level

definitions have analogues in RNA world that may be ap-

plied to other systems.

Stringmol overview

Stringmol (Hickinbotham et al., 2016, 2012) is an automata

chemistry (Dittrich et al., 2001) in which the ‘molecules’ are

programs encoded as strings of specially designed machine

code instructions (opcodes). The sequence composition de-

termines the bind probability, execution pathway, and prod-

uct(s) of the reaction. Details of the Stringmol language and

execution semantics are given in Hickinbotham et al. (2012).

Here we summarise the main features.

Binding between two strings to form reacting pairs is

probabilistic, based on the strength of string matching de-

termined by a Smith-Waterman (SW) algorithm. Any por-

tion of one string can bind to any portion of another – bind-

ing position is determined by sequence composition. The

bind regions are aligned (not concatenated) and the string-

mol reaction-program starts from the SW alignment posi-

tion. When two strings bind, one is designated as string1

(or the ‘first’ string) and the other as string2 (or the ‘second’

string), depending on the position of the bind.

Mutation happens stochastically with a fixed probability

when a program executes the “copy” opcode. On mutation,

a randomly chosen different symbol is written.

Decay also happens stochastically, removing strings from

the system with a fixed uniform probability each timestep.

This frees up space for new strings, and ensures species of

strings must be actively reproduced to maintain their pres-

ence in the arena. It is possible for the entire arena to ‘die’

if the community of strings is no longer self-maintaining.

Decay also ensures there are no non-terminating reactions.

Reactions between strings occur by executing the se-

quences of opcodes of strings in the reacting pair. The start

point of the reaction program is the end of the bind site on

string1. The program executes, with one opcode executed

per timestep, using opcodes of one or both strings, depend-

ing on the sequences. For a given reaction, one opcode is

executed each timestep, until either the reaction program ter-

minates (at which point the strings unbind), or probabilistic

decay occurs. If a product string is created during the re-

action, it is placed in any free site in the immediate neigh-

borhood around string1; if there is no free site, that product

string is discarded. Execution and effects are purely local

to the pair of strings in the reaction, and any product strings

that result.

Arena. A stringmol chemistry operates in an abstract

container, in which multiple bound pairs of strings can in-

teract with each other simultaneously. Early Stringmol ex-

periments use an aspatial (well-mixed) container, where any

two strings could potentially interact. More recently, spatial

Stringmol has been implemented in a 2D toroidal grid. Here,

strings can react only if they are the Moore neighbourhood,

and products are placed in free sites in the Moore neighbour-

hood. See Hickinbotham et al. (2021) for details.

Classifying reaction properties

An initial Stringmol system contains ‘seed replicators’ that

can copy strings, and can mutate. After many timesteps, new

strings with new properties, new reaction types, and new re-

action networks, emerge. These include emergent hyper-

cycles, emergent parasitism, and even emergent movement.

This list is by no means exhaustive: other properties are ob-

served, and further properties may still emerge as the runs

continue.

We classify certain behaviours of interest by examining

the reaction products. Rather than assigning a single classi-

fication label to a reaction, it is more informative to deter-

mine whether a reaction possesses one or more properties.

The different forms of the reaction products can be used to

assign the properties to each reaction.

Some properties can be assigned by examining single re-

actions, but some properties require mutual behaviour, so

they require examination of a network of multiple reactions.

When running Stringmol experiments (analogous to in the

wild, or in vivo), there is probabilistic binding, mutation, and

decay, and strings may be discarded if there is no space in

the grid. When analysing Stringmol reactions (analogous

to in the lab, on in vitro), binding probability is set to one,

mutation is set to zero, and there is always space for product

strings. The definitions here refer to what happens in the

reactions during analysis, in a ‘perfect’ world; experimental

reactions may produce mutated variants, or discard products.

Basic components

Strings

A string is a non-empty sequence of opcodes. Here we do

not consider the specific sequence, so our basic type is the

set of all strings, denoted S . A distinguished character, ⊥ /∈
S , represents a ‘destroyed’ reagent string. It is possible to

determine this has occurred in spatial Stringmol, as the site

of the destroyed original reactant will become unoccupied at

the end of the reaction.

We define the set of all (possibly destroyed) strings:

S⊥ = {⊥} ∪ S (1)

We use uppercase letters, and primed variants, to

represent individual (possibly destroyed) strings1:

A,B,C, . . . , A′, B′, C ′, . . . ∈ S⊥. We use L ∈ S∗ to

represent a possibly empty list of (non-destroyed) strings.

1In the following definitions, there is no implication that differ-
ent names to refer to distinct strings, unless a constraint is stated
explicitly. In the examples of particular reactions, however, differ-
ent names do refer to distinct strings.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/is

a
l/p

ro
c
e
e
d
in

g
s
-p

d
f/is

a
l/3

3
/8

0
/1

9
2
9
9
2
7
/is

a
l_

a
_
0
0
4
1
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

1
 A

u
g

u
s
t 2

0
2
1

Binding

The binding strength for two strings is calculated using a

Smith-Waterman style algorithm. The strongest binding site

is chosen; if there are multiple equally strong sites discov-

ered, binding occurs at the site with this value that is nearest

the start of the program. The strings bind at the chosen site,

with a probability based on the strength.

The designation of string1 and string2 depends on the

lengths of the ends of the strings before the bind site. If the

bind is ‘asymmetric’ (a shorter end on one string than the

other), then the string with the shorter end before the bind

site is the first partner. If the bind is ‘symmetric’ (the same

length ends on both strings), then the first partner is chosen

randomly. This leads to three possibilities for the first part-

ner when attempting to bind strings A and B: (i) no bind, A
and B cannot react; (ii) binding site such that A is always

string1 and B is always string2; (iii) binding site such that

either A or B can be string1. However, it is more conve-

nient in terms of definitions to look at the binding part of a

reaction attempt from the perspective of a given one of the

pair being string1. The binding part of a reaction attempt

between strings A and B has different possibilities:

1. A bind happens, and a reaction occurs. We write A ⋗ B
to indicate a bound pair where A is the first partner and B
is the second partner.

2. A binding is not possible with A as the first partner; we

write A ◮ B to say that A cannot bind as first string.

3. No binding is possible, so no reaction occurs; we have

both A ◮ B and B ◮ A.

Reactions

Once string1 is determined the reaction starts, with first and

second reactant strings [A,B]. The program of string1 starts

to execute. Each timestep, one opcode is executed, until ei-

ther the reaction program terminates, or probabilistic decay

occurs. If the reaction terminates, we have a final state of

potentially changed or destroyed reactants, plus a possibly

empty list of product strings: [A,B] → [A′, B′] + L. Each

product string in L is placed in an unoccupied cell in A’s

Moore neighbourhood as it is produced, or, if there are no

free spaces at that time, it is discarded.

If the reaction decays, both reactant strings are destroyed;

any products produced up to that point have already been

placed in free locations: [A,B] → [⊥,⊥] + L.

We use the following notation:

⋗ : S × S → S2

⊥
× S∗ (2)

A⋗B → [A′, B′] + L (3)

A and B are the input reactants. A′ and B′ are the output

reactants; reactants may be changed by the reaction; L is the

list of reaction products2. We use the asymmetric operator

2How to read these definitions: Eqn.2 shows the type of the

⋗ as a visual indication that A is string1 and B is string2 in

such a definition.

The product list L may be empty (nothing produced) [], a

single string [C], or multiple strings [C,D, . . .]. In our ex-

periments, we observe only a few reactions that result in two

products, and a very few with three products. The majority

of reactions result in zero or one product strings.

Note that the reaction operation in Stringmol is non-

commutative: A ⋗ B 6= B ⋗ A; which string is the des-

ignated first string3 matters, as the program execution starts

on that string (the execution path may move back and forth

between strings as the program executes, but it starts on the

first string). This leads to some difference and subtleties in

the definition of various Stringmol reaction properties that

do not occur in natural chemistry, since here definitions have

to include the concept of first and second string.

Additionally, in spatial Stringmol, we can distinguish out-

put reactants from products in the after state, because strings

are located in particular grid positions, and reactants do not

move. This leads to some distinctions in the following defi-

nitions that are not made in the earlier aspatial Stringmol.

Properties

We use the following notation to define some properties of

reactions.

We define properties of single reactions:

prop-name(A⋗B) , A⋗B → [A′, B′] + L (4)

This can be read as: ‘the reaction of string1 A with string2 B
establishes the property prop-name(A ⋗ B)’. The property

holds (is true) if the reaction produces the strings [A′, B′] +
L. It is false either if the result is other than [A′, B′] + L, or

if A cannot bind as first string to B (that is, if A ◮ B).

We also define properties of two or more reactions involv-

ing two strings, some with one string as the first string, some

with the other as first string. Basic properties are combined

reaction function ⋗. It is an infix function [⋗] that takes two
arguments [S × S]; these are the reactant stringmols comprising
the first stringmol and the second stringmol. It returns two lists
(sometimes written as one concatenated list); the first of which has
two stringmols [S2

⊥], either of which might be ‘destroyed’ (these
are the resulting reactant stringmols), the second of which [S∗] is
a list of product stringmols (which may be empty). Eqn.3 shows a
generic instance of the reaction: the reactants are first string A and
second string B; the result is the (possibly changed or destroyed)
output reactants A′ and B′ and the (possibly empty) list of products
L.

3The terms ‘first’ and ‘second’ are used, because the code starts
executing on the first partner, string1. The original hand-designed
replicator string has all the executing code on the first partner,
which was therefore called ‘active’, and all the copied code on the
second partner partner, which was therefore called ‘passive’. As
the system evolves, code may execute on either or both strings; we
have changed the original terminology, which had become unhelp-
ful.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/is

a
l/p

ro
c
e
e
d
in

g
s
-p

d
f/is

a
l/3

3
/8

0
/1

9
2
9
9
2
7
/is

a
l_

a
_
0
0
4
1
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

1
 A

u
g

u
s
t 2

0
2
1

to produce more complex properties, by using prop-name as

a predicate in further definitions. For these, we write:

prop-name(A ♦B) , Φ (5)

where Φ is a combination of other reaction properties. This

can be read as: ‘the reaction of A and B (in one of

possibly multiple different ways) establishes the property

prop-name(A♦B)’. The property holds (is true) if the com-

bination of properties Φ on the RHS is true. We use the

symmetric operator ♦ as a visual indication that sometimes

A and sometimes B is string1 in the components of such a

definition.

The definition of a property here does not imply that it

need be observed in experiments; some are defined to be

helpful in other definitions; some are counterfactual proper-

ties, explicitly required not to (be able to) occur in certain

classification cases.

Properties of individual reactions

Some properties can be identified by studying a single reac-

tion only. They are used as the building-blocks to identifying

more complex properties formed from networks of molecu-

lar interactions.

React and no-bind properties

For convenience, we define the two binding possibilites as

properties.

Definition – react: a reaction occurs with A as string1:

react(A⋗B) , A⋗B → [A′, B′] + L (6)

Definition – no-bind: a reaction cannot occur as A cannot

bind as string1:

no-bind(A ◮ B) , A ◮ B (7)

These two cases exhaust the possibilities: either A can bind

as string1 with B and react, or it cannot bind as string1:

react(A⋗B) ≡ ¬ no-bind(A ◮ B) (8)

Self-preserving and self-modifying properties

The hand-designed replicator in Stringmol simply copies

string B, not changing either of the reactants. As evolution

proceeds, program execution gets more complicated, and the

reactants may be modified during program execution (self

modifying code), even during analysis where the mutation-

on-copy rate is set to zero. We define the cases where the

reactants are preserved or changed.

Definition – Self-preserving reaction: a reaction where

neither reactant is changed:

self-pres(A⋗B) , A⋗B → [A,B] + L (9)

Examples of the self-pres(A⋗B) property:

A⋗B → [A,B] (10)

A⋗B → [A,B,C] (11)

A self-preserving reaction makes no changes to the reac-

tants: it might produce no products (eqn.10), or a product

string (eqn.11).

Definition – Self-modifying reaction: a reaction where at

least one reactant is changed:

self-mod(A⋗B) , A⋗B → [A′, B′] + L

where A 6= A′ ∨B 6= B′ (12)

Examples of the self-mod(A⋗B) property:

A⋗B → [A′, B] (13)

A⋗B → [A,B′, C] (14)

A⋗B → [⊥, B,A] (15)

A⋗B → [⊥,⊥] (16)

A self-modifying reaction might modify string1

(eqns.13,15), string2 (eqn.14), or both reactant strings

(eqn.16). It might also produce a product (eqns.14,15),

which might contain a (copy of) the modified string

(eqn.15). Modifications include destruction of either or both

reactants (eqns.15,16).

Any given reaction is either self preserving or self modi-

fying, but not both:

react(A⋗B) ≡ self-pres(A⋗B) (17)

XOR self-mod(A⋗B)

Because the position of a string in spatial Stringmol is

explicit and unchanging, it is possible to detect the differ-

ence between two reactions with identical output reactants

and products, such as the following pair of a self-preserving

(eqn.18) and a self-modifying (eqn.19) reaction:

A⋗B → [A,B] + [C,D] (18)

A⋗B → [C,D] + [A,B] (19)

This distinguishability has consequences in a spatial

Stringmol system: the output reactants stay in the same lo-

cation, even if modified, whereas any newly created product

strings, the L, are placed in adjacent locations. So the posi-

tion of a string on the grid is fixed; a string can be changed

only via a reaction, and a particular string can ‘move’ only

if it is copied (or recreated in another way) into another grid

position. (In aspatial well-mixed Stringmol systems, the dif-

ference has no direct consequences.)

Properties of the products

Product. Most reactions of interest result in product

string(s); we call these product reactions.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/is

a
l/p

ro
c
e
e
d
in

g
s
-p

d
f/is

a
l/3

3
/8

0
/1

9
2
9
9
2
7
/is

a
l_

a
_
0
0
4
1
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

1
 A

u
g

u
s
t 2

0
2
1

Definition – product reaction: a reaction where at least

one product is formed:

product(A⋗B) , A⋗B → [A′, B′] + L

where L 6= [] (20)

No product. A few reactions of interest do not result in

any products. There may be a change to the reactants.

Definition – no product reaction: a reaction that yields no

product strings:

no-product(A⋗B) , A⋗B → [A′, B′] (21)

Any given reaction is either a product or no-product reac-

tion, but not both:

react(A⋗B) ≡ product(A⋗B) (22)

XOR no-product(A⋗B)

Null reaction. If a reaction is both self-preserving (hence

not self-modifying), and makes no-product, it doing nothing

except consuming execution time.

Definition – null reaction: a reaction where the reactants

do not change, and there are no products:

null(A⋗B) , self-pres(A⋗B)∧no-product(A⋗B) (23)

It is important for understanding the evolutionary dynamics

of an experimental run to include such cases where appar-

ently ‘nothing happens’. A no-bind occupies one timestep,

for the (failed) bind attempt. A null reaction occupies at least

two timesteps: one for the bind, and minimally, one to ex-

ecute the ‘end reaction’ opcode. It may occupy many more

timesteps, executing opcodes to no effect, and we see such

behaviour evolve as a response to parasites (Hickinbotham

et al., 2021). Bound strings are unavailable for binding to

other strings: this can prevent them from being copied and

reduce their ability to fix in the system.

Equivalently, we can say that a null reaction is a reaction

that is neither self-modifying, nor makes a product:

null(A⋗B) ≡ react(A⋗B) (24)

∧ ¬ self-mod(A⋗B)

∧ ¬ product(A⋗B)

New products. Products may be strings different from the

original reactants. Simply having A or B be changed by

the reaction is not considered to be a new product reaction,

rather, that is classed as a self-modifying reaction.

Definition – new product reaction: a reaction that yields a

product string that is different from either reactant string4:

new-prod(A⋗B) , A⋗B → [A′, B′] + L

where L \{A,B} 6= [] (25)

4The operator \ : S∗×PS → S∗ takes a list of strings (here,
L), and a set of strings (here, {A,B}), and results in a list that has

Examples of the new-prod(A⋗B) property :

A⋗B → [A,B,C] (26)

A⋗B → [A,B′, C,D] (27)

A⋗B → [A′, B,B,C] (28)

A new product reaction might make a single new prod-

uct (eqn.26), or multiple new products (eqn.27). It might

additionally make copies of reactants (eqn.28). It is self-

preserving (eqns.26) or self-modifying (eqn.27,28).

Replicator properties

Replication has occurred when there are more instances of

one (or both) of the reactant strings after the reaction than

before. This can happen if one of the reactant strings is

copied, and the original is not modified, or if one of the reac-

tant strings is copied multiple times, and the original modi-

fied, or even if one of the reactants is modified to be a copy

of the other with no product produced. The key property

is that there are more instances of the given reactant string

after the reaction than before.

We first define two cases, where string2 or string1 is the

string that is replicated.

Definition – string2 replication reaction: a reaction where

the second string is replicated: there are more copies of the

second string after the reaction than before5:

repl2(A⋗B) , A⋗B → [A′, B′] + L (29)

where #B in [A,B] < #B in [A′, B′] + L

Definition – string1 replication reaction: a reaction where

the first string is replicated: there are more copies of the first

string after the reaction than before.

repl1(A⋗B) , A⋗B → [A′, B′] + L (30)

where #A in [A,B] < #A in [A′, B′] + L

Examples of the repl2(A⋗B) property:

A⋗B → [A,B,B] (31)

A⋗B → [A,B′, B,B] (32)

A⋗B → [A′, B,B,B,B,C] (33)

A⋗B → [B,B′, B] (34)

A⋗B → [A,B,B,A] (35)

The repl2 reaction might make a single (eqns.31,32,34,35)

or multiple (eqn.33) copies of string2. It is self-preserving

(eqns.31,35) or self-modifying (eqns.32,33,34). It might

had all the elements in the set removed from it. It can be thought of
as a list version of set difference. So the definition says that there
is least one string in list L that is neither A nor B; hence, a ‘new’
product.

5The operator # in : S × S∗

⊥ → N counts the number of
times a string occurs in a list of strings.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/is

a
l/p

ro
c
e
e
d
in

g
s
-p

d
f/is

a
l/3

3
/8

0
/1

9
2
9
9
2
7
/is

a
l_

a
_
0
0
4
1
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

1
 A

u
g

u
s
t 2

0
2
1

also produce a new product (eqn.33). If might replicate both

reactants (eqn.35).

The hand-designed Stringmol replicator string is designed

to have the repl2(A⋗B) property where string2 B is repli-

cated as in example eqn.31.

The repl1(A ⋗ B) property, where the first string A is

replicated, means that A can replicate itself without needing

(to be able) to bind to itself, instead using some different

second partner, B, as a kind of catalyst. This partner may

be quite variable, if first string A carries the copying code

within itself; it may need to be a replicator if A hijacks the

copying code from its second partner.

A more classical ‘copying machine plus copied template’

model assumes all the code is located in the single ma-

chine string. In Stringmol, evolution not only allows, but

seems to encourage, code execution to flip back and forth

between strings, as a protection against parasites (Hickin-

botham et al., 2021). The generality of the repl1 and repl2

definitions is needed here to encompass the complexity of

these replication forms that arise in an evolving Stringmol

system.

We combine these two kinds to define a general replica-

tion reaction.

Definition – replication reaction: a reaction in which

string A replicates string B: there are more copies of B after

the reaction than before. String A is called the replicator.

repl(A ♦B) , repl2(A⋗B) ∨ repl1(B ⋗A) (36)

The property repl(A ♦ B) can be read as ‘A replicates B’.

Note the different order of A and B in the two properties

on the RHS of the definition. B might be the second string,

replicated by first string A (the term repl2(A ⋗ B)), or it

might be the first string, copying itself (a possible behaviour

giving the term repl1(B ⋗ A))6. We cannot tell where the

replication code lies in either case and the definition does not

require it to be known. Whether or not A is the first string,

whether or not A carries the copying code, it is the ‘catalyst’

for B’s replication. So, irrespective of which string is first,

we say ‘A replicates B’, and call A the replicator.

The property repl(A ♦ B) is the main property of inter-

est for replication. It is defined here in terms of the more

basic repl1 and repl2, reflecting the underlying features of

the Stringmol system. A different automata chemistry might

well have the same effective repl(A ♦ B) property, but be

based on some other replX, replY, replZ basic properties that

reflect the underlying mechanisms in that other system.

Jumper reactions

In a reaction that has the jumper property, at least one of the

reactants is changed, and the products include a copy of that

6This explains the reason for having separate definitions for
repl1 and repl2. It allows us to flip the order of the arguments
of repl1 in the definition of repl, so we can identify which reactant
string is the replicator, which may be either string1 or string2.

reactant. The effect is that the changed string has ‘jumped’

from its original place into a new place, resulting in an emer-

gent ‘movement’ of the string (much the way gliders ‘move’

in the Game of Life, despite the underlying static grid).

Definition – jumper2 reaction: a reaction in which string2

‘jumps’ to a new location (in string1’s Moore neighbour-

hood7): the original reactant is altered or destroyed, and a

new copy is made as a product:

jumper2(A⋗B) , A⋗B → [A′, B′] + L (37)

where B′ 6= B ∧B ∈ L

Definition – jumper1 reaction. a reaction in which string1

‘jumps’ to a new location (in its Moore neighbourhood): the

original reactant is altered or destroyed, and a new copy is

made as a product:

jumper1(A⋗B) , A⋗B → [A′, B′] + L (38)

where A′ 6= A ∧A ∈ L

Examples of the jumper2(A⋗B) property:

A⋗B → [A,⊥, B] (39)

A⋗B → [A,B′, A,B] (40)

A⋗B → [A,B′, B,B] (41)

In the simplest jumper2 reaction, B jumps to a new loca-

tion, and the original is destroyed (eqn.39). A might also be

replicated (eqn.40); B might also be replicated (eqn.41).

Definition – jumper reaction: a reaction in which B
‘jumps’ to a new location, either as a jumper1 or as a

jumper2:

jumper(A ♦B) ,

jumper1(B ⋗A) ∨ jumper2(A⋗B) (42)

Network properties

Here we define some observed properties of networks of re-

actions. The definition of these properties depends on the

properties of more than one reaction, including counterfac-

tual cases (reactions that do not occur).

Mutual replication

A simple network property that does not require counterfac-

tual properties is mutual replication.

Definition – mutual replication: the mutual replication

property holds where each string can replicate the other:

mutual-repl(A ♦B) , repl(A ♦B) ∧ repl(B ♦A) (43)

The property mutual-repl(A♦B) can be read as ‘A replicates

B and B replicates A’ .

7We define this as a jumper reaction only if B jumps away from
(A,B), so does not include the case where B ‘jumps’ to A’s posi-
tion.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/is

a
l/p

ro
c
e
e
d
in

g
s
-p

d
f/is

a
l/3

3
/8

0
/1

9
2
9
9
2
7
/is

a
l_

a
_
0
0
4
1
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

1
 A

u
g

u
s
t 2

0
2
1

Examples of the mutual-repl(A ♦B) property:

A⋗B → [A,B,B] ∧B ⋗A → [B,A,A] (44)

A⋗B → [A,B,A] ∧B ⋗A → [B,A,B] (45)

A⋗B → [A,B,A,B] ∧B ◮ A (46)

The classic case (eqn.44) is A replicates B, and B repli-

cates A, as case repl2(A ⋗ B) ∧ repl2(B ⋗ A). There are

other possibilities: each string might replicate itself, using

the other as a catalyst, as case repl1(A⋗B)∧ repl1(B⋗A)
(eqn.45); A might replicate B and replicate itself, as case

repl1(A⋗B) ∧ repl2(A⋗B) (eqn.46).

Hypercycle property

The definition of hypercycles8 requires a counterfactual

property, in that strings should not be able to replicate them-

selves, only each other.

Definition – hypercycle: the hypercycle property holds of

a pair of reactants if they are mutual replicators but are not

self replicators:

hypercycle(A ♦B) , mutual-repl(A ♦B) (47)

∧ ¬ repl(A ♦A) ∧ ¬ repl(B ♦B)

A and B depend on each other for replication, as neither can

replicate itself. Hypercycles are observed as an emergent

property in aspatial stringmol (Hickinbotham et al., 2016).

This definition can be extended to hypercycles of more

than two reactants in the obvious way.

Examples of the hypercycle(A ♦B) property:

A⋗B → [A,B,B] ∧B ⋗A → [B,A,A] (48)

∧A ◮ A ∧B ◮ B

A⋗B → [A,B,B] ∧B ⋗A → [B,A,A] (49)

∧A⋗A → [A,A,A′] ∧B ⋗B → [B,B,B′]

The classic case (eqn.48) is A replicates B, and B replicates

A, as case repl2(A ⋗ B) ∧ repl2(B ⋗ A), and neither A
nor B self-replicate because they cannot self-bind. Alterna-

tively, the lack of self-replication may have self-binding, but

no self-production (eqn.49)

Parasitic property

Parasitic reactions in Stringmol have ‘freeloader’ strings that

are replicated, but do not themselves replicate other strings.

The definition of the parasitic property requires both of these

cases to hold.

Definition – parasitic property: The parasitic property

holds of strings P and R if R replicates P , but P does not

replicate R:

parasitic(P ♦R) , repl(R ♦ P) ∧ ¬ repl(P ♦R) (50)

8Hypercycles in Stringmol are “catalytic hypercycles”, as de-
fined by Eigen and Schuster (2012, fig.7)

The property parasitic(P ♦R) can be read as ‘P is parasitic

on R’. In the context of R, P is a parasite, but P need not

be a parasite in the context of other strings.

Examples of parasitic(P ♦R) reaction pairs:

R⋗ P → [R,P, P] ∧ P ◮ R (51)

R⋗ P → [R,P, P] ∧ P ⋗R → [P,R,A] (52)

R⋗ P → [R,P, P] ∧ P ⋗R → [P,R′, R] (53)

P ⋗R → [P,R, P] ∧ R ◮ P (54)

A parasitic reaction depends on the behaviour of each string

as a replicator. The classic case is R replicates P , but P does

not bind as the first partner to R, and so does not replicate it

(eqn.51). This case is commonly seen in aspatial stringmol

(Hickinbotham et al., 2016), and in the early stages of the

spatial Stringmol runs (Hickinbotham et al., 2021).

There are other possibilities: P might bind as string1 but

produce something other than R, a new-product(P ⋗R) re-

action (eqn.52); P might indeed copy R but the original is

destroyed, a jumper2(P ⋗R) reaction (eqn.53). The defini-

tion admits yet more exotic possibilities: R might replicate

P where P is string1 (a case of repl1(P,R)), with R not

being able to bind as string1 (eqn.54).

We classify the P as a parasite only in the context of R.

P may not be a parasite with respect to a different string R′:

R′ might not replicate P (so the first conjunct of eqn.50 does

not hold), or P might replicate R′ (so the second conjunct

does not hold). Indeed, if we have both R′ does not replicate

P (¬ repl(R′ ♦P)) and P replicates R′ (repl(P ♦R′)), then

R′ is the parasite in that context.

For purposes of implementation, where properties of the

string1 and string2 may be calculated at different times, it is

useful to split the parasitic property into two parts, one that

holds when the parasite P is the second string and one where

it is the first string.

Definition – para2: the para2(P♦R) property holds when

string1 R replicates string2 P , but P does not replicate R:

para2(P ♦R) , repl2(R⋗ P) ∧ ¬ repl(P ♦R) (55)

Definition – para1: the para1(P ♦ R) property holds when

string2 R replicates string1 P , but P does not replicate R:

para1(P ♦R) , repl1(P ⋗R) ∧ ¬ repl(P ♦R) (56)

We can show some equivalences:

parasitic(P ♦R) ≡ para1(P ♦R) ∨ para2(P ♦R) (57)

para2(P ♦R) ≡ repl2(R⋗ P) (58)

∧ ¬(repl1(R⋗ P) ∨ repl2(P ⋗R))

para1(P ♦R) ≡ repl1(P ⋗R) (59)

∧ ¬(repl1(R⋗ P) ∨ repl2(P ⋗R))

Breaking down the definition of parasitic in this way pro-

vides easier implementation of analysis in Stringmol, but

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/is

a
l/p

ro
c
e
e
d
in

g
s
-p

d
f/is

a
l/3

3
/8

0
/1

9
2
9
9
2
7
/is

a
l_

a
_
0
0
4
1
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

1
 A

u
g

u
s
t 2

0
2
1

the definitions are too involved to be appropriate as the ‘in-

tuitive’ definition of the parasitic property. Indeed, the for-

malisation exercise reported here was performed precisely in

order to understand and analyse parasitism in spatial String-

mol. Finding a formulation that is both simple and imple-

mentable has not been possible for parasitism, because of

some of the intricacies in how evolved strings in Stringmol

can behave, and also in how the analysis is implemented.

Formalisation allows us to prove equivalences between dif-

ferent formulations, and so provides the best of both worlds:

(relative) clarity of definition (eqn.50), and ease of imple-

mentation (eqns.58,59).

Any given replication reaction is either mutual replication

or parasitic, but not both. In order to know which, the reverse

reaction must also be considered.

repl(A ♦B) ≡ mutual-repl(A ♦B) (60)

XOR parasitic(B ♦A)

Note the change in order of arguments in this. We have: ‘A
replicates B iff either A and B mutually replicate, or B is

parasitic on A’, so A is the replicator in both terms.

Discussion

In simulations and experiments with ‘closed’ form and

where the interrogation of the system is straightforward, the

task of identifying and following the abundance of features

is trivial. In studies of evolution where the goal is to gener-

ate an ‘open’ system, it becomes less clear what the defining

features are. As we get closer to the goal of open-ended

evolution the emergence of such novel features is something

to be expected, and planned for as part of the experimental

design.

The definition of properties given above was developed

to characterise the analysis in Hickinbotham et al. (2021) in

a way that is understandable, correct, and implementable.

Evolution in the system generates changes in the replication

reaction that can be captured and tracked only via a formal-

isation that accommodates the observed phenomena, which

helps us to identify the edge cases that let us identify when

the system had moved outside its original model. This is

particularly useful in the definition of the parasitic property,

as several alternative complex behaviours are collected in a

single high level definition (eqn.50). In Stringmol, the para-

sitic property has two possible execution pathways, para1

and para2, from the way Stringmol decides which string

executes initially. Each different system may well have a

definition of parasitic in terms of its own idiosyncratic path-

ways; stating formally how this is defined will make it easier

to compare emergence between systems.

The properties defined above are all based on examin-

ing the outcomes of reactions in Stringmol experiments. In

Stringmol, this is more feasible than trying to determine

properties by looking for patterns in the opcode strings,

given the evolved complexity of opcode execution order,

which loops, can skip over substrings, and can flip back and

forth between strings multiple times per reaction. Thus it is

not possible just to identify ‘the replication code’ in a par-

ticular string: the defined properties are genuinely properties

of reactions or networks, not of individual strings. Having

developed the formalism given here, it was then relatively

straightforward to automate the analysis of the experimen-

tal results to identify the emergence and dynamics of these

properties, as described in Hickinbotham et al. (2021).

The properties defined here are in vitro analysis proper-

ties, of perfect execution in an environment where mutation

has been switched off. Further work is needed to define in

vivo properties of evolving systems, such as parasite and

replicator lineages, and other yet-to-emerge, or yet-to-be-

recognised, properties.

In future, we plan to implement a ‘symbolic’ run of the

Stringmol system, using these definitions as proxies for the

actual program executions, attaching and evolving rates to

each reaction. Although such a system cannot be open-

ended in the same fine-grained way provided by detailed

string mutation, it would allow larger-scale simulations to be

run more quickly, leading to an understanding of the String-

mol system that may be used to develop new open-ended

simulation frameworks. It may also be possible to combine

the detailed Stringmol system with these symbolic runs, to

get a large-scale, open-ended simulation, such as described

in Nellis and Stepney (2010).

In a truly open system, this process of analysis via defin-

ing new properties will be on-going. As the system contin-

ually moves outside its model, entirely new kinds of proper-

ties, applied to different features at different scales, will be

needed. It is not possible to define all such properties a pri-

ori; the very presence of open-endedness precludes it. Here

we have shown, by example, a method for capturing proper-

ties that are simultaneously mathematically simple, capture

complexity, and readily implementable.

Acknowledgments

The logfiles from the runs were parsed with these def-

initions using the R software package github.com/uoy-

research/Rstringmol v0.3.1. The dataset analysed dur-

ing the development of this study is available at doi:

10.15124/305dfdb6-9483-4c5b-8a01-c030570b9c31

The Stringmol system was originally developed under the

Plazzmid project, EPSRC grant EP/F031033/1, and was fur-

ther developed under the EU FP7 project EvoEvo, grant

number 610427. We thank Paulien Hogeweg for several

stimulating discussions on what precisely is a ‘parasite’.

References
Bansho, Y., Ichihashi, N., Kazuta, Y., Matsuura, T., Suzuki, H., and

Yomo, T. (2012). Importance of parasite RNA species repres-
sion for prolonged translation-coupled RNA self-replication.
Chemistry & Biology, 19(4):478–487.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/is

a
l/p

ro
c
e
e
d
in

g
s
-p

d
f/is

a
l/3

3
/8

0
/1

9
2
9
9
2
7
/is

a
l_

a
_
0
0
4
1
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

1
 A

u
g

u
s
t 2

0
2
1

Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster,
J. A., McMullin, B., de Melo, V. V., Miconi, T., Spector, L.,
Stepney, S., and White, R. (2016). Defining and simulat-
ing open-ended novelty: Requirements, guidelines, and chal-
lenges. Theory in Biosciences, 135(3):131–161.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
Chemistries—A review. Artificial Life, 7(3):225–275.

Eigen, M. and Schuster, P. (2012). The Hypercycle: A Principle of
Natural Self-Organization. Springer.

Hickinbotham, S., Clark, E., Nellis, A., Stepney, S., Clarke, T.,
and Young, P. (2016). Maximizing the adjacent possible in
automata chemistries. Artificial Life, 22(1):49–75.

Hickinbotham, S., Clark, E., Stepney, S., Clarke, T., Nel-
lis, A., Pay, M., and Young, P. (2012). Specifica-
tion of the stringmol chemical programming language ver-
sion 0.2. Technical Report YCS-2010-458, University of
York. https://www.cs.york.ac.uk/library/reports/2010/YCS/
458/YCS-2010-458.pdf.

Hickinbotham, S. J., Stepney, S., and Hogeweg, P. (2021). Noth-
ing in evolution makes sense except in the light of parasites.
bioRχiv. https://www.biorxiv.org/content/10.1101/2021.02.
25.432891v1.

Koonin, E. V., Wolf, Y. I., and Katsnelson, M. I. (2017). In-
evitability of the emergence and persistence of genetic para-
sites caused by evolutionary instability of parasite-free states.
Biology Direct, 12(1):31.

Nellis, A. and Stepney, S. (2010). Automatically moving between
levels in artificial chemistries. In ALife XII, Odense, Den-
mark, August 2010, pages 269–276. MIT Press.

Stepney, S. and Hickinbotham, S. (2020). Innovation, variation,
and emergence in an automata chemistry. Artificial Life 2020,
Montreal, Canada (virtual), July 2020, 32:753–760.

Takeuchi, N. and Hogeweg, P. (2012). Evolutionary dynamics of
RNA-like replicator systems: A bioinformatic approach to
the origin of life. Phys. Life Rev., 9(3):219–263.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/is

a
l/p

ro
c
e
e
d
in

g
s
-p

d
f/is

a
l/3

3
/8

0
/1

9
2
9
9
2
7
/is

a
l_

a
_
0
0
4
1
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

1
 A

u
g

u
s
t 2

0
2
1

	Introduction
	Stringmol overview
	Classifying reaction properties
	Basic components
	Strings
	Binding
	Reactions
	Properties

	Properties of individual reactions
	React and no-bind properties
	Self-preserving and self-modifying properties
	Properties of the products
	Replicator properties
	Jumper reactions

	Network properties
	Mutual replication
	Hypercycle property
	Parasitic property

	Discussion
	Acknowledgments

