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Abstract

Land-use change acts as a potential moderator of flood risk, affecting vegetation and

soil properties and thus influencing the storage and flow of water across landscapes.

This study, conducted in northwest England, investigated physical soil properties and

their hydrological function using overland flow and soil moisture sensors, for five

upland grassland habitats each created through management action. Overland flow

was common, occurring up to 60% of the time with longer durations in grassland

excluded from grazing with higher density vegetation. Soil moisture varied signifi-

cantly between grassland habitats, but there was no clear soil moisture threshold for

overland flow. Surface soil properties to 5-cm depth varied significantly between

grassland types, with saturated hydraulic conductivity (Ks) ranging across several

orders of magnitude from 1.3 � 10�3 to 1.5 � 102 m day�1. With shallow soils and a

median Ks of 2.4 m day�1, saturation-excess overland flow was determined as the

main driver of flood risk. Landscape management was found to be a significant driver

of soil physical and hydrological properties in upland grasslands and therefore should

be strongly considered as part of flood management.
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1 | INTRODUCTION

As the occurrence of extreme weather events such as droughts and

floods increase, landscape management is being considered to

enhance resilience (Forbes et al., 2015). Land-cover is thought to be a

key moderator for flood and drought risk by affecting the storage and

transfer of water across landscapes (Archer, 2007; Gilman, 2002; Zope

et al., 2017). However, recent reviews have suggested the evidence

base for land-cover change impacts on hydrological functioning is still

poorly formed (Burgess-Gamble et al., 2017; Dadson et al., 2017;

Guzha et al., 2018; Rogger et al., 2017). Despite the lack of evidence,

nature-based programmes to reduce flood and drought risk are now

being funded. In the United Kingdom, for example, there is a

programme of Natural Flood Management (NFM) that includes

localised measures such as storage ponds and woody debris dams

(Nicholson et al., 2020; Nisbet et al., 2015) and extensive measures

such as woodland planting (Murphy et al., 2020), peatland restoration

(Goudarzi et al., 2020; Shuttleworth et al., 2019) and reducing grazing

intensity (Gao et al., 2015). Each initiative is designed to increase water

storage or ‘slow the flow’ of run-off by enhancing roughness and

decreasing the connectivity of the landscape. The influence of soil and

vegetation properties on water storage and run-off generation for dif-

ferent habitats needs further research in order to support landscape-

scale assessments of NFM (Burgess-Gamble et al., 2017; Environment

Agency & CBEC, 2017; Forbes et al., 2015; Rogger et al., 2017;

Strosser et al., 2015; WG POM, 2014; WorldWildlife Fund, 2016).
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In the United Kingdom, NFM initiatives are centred on headwater

landscapes which typically have a cool, wet climate and are underlain

by organo-mineral soils (OM soils). OM soils span multiple soil classifi-

cation groups and are defined by the depth of surface organic mate-

rial, generally <40 cm deep, and the organic content of that surface

material, generally >20% (Forestry Commission, 2016; Holden

et al., 2007; Joint Nature Conservation Committee, 2011; Smith

et al., 2007). Very little is known globally about the hydrological func-

tion of OM soils, despite their common occurrence (Avery, 1990; Bol

et al., 2011; Cranfield University, 2018; Hodgson, 1997; Mackney

et al., 1983; Scotland's Soils, 2013). OM soils cover 30.5% of Europe,

including 10.5% of England and Wales (of which 58.5% are in

uplands), and 50% of Scotland and Ireland (Bol et al., 2011). While

there are an increasing number of studies that recognise differences

in soil properties between habitats and management types

(Bogunovic et al., 2020; Carroll et al., 2004; Eze et al., 2020; Sun

et al., 2018), and particularly reporting compaction effects (Clarke

et al., 2008; Drewry, 2006; Wheater & Evans, 2009), there have been

limited studies that have focussed on soil hydrological functioning and

NFM, especially for OM soils. Thus, further work is required to under-

stand how OM soils respond to rainfall events and whether their man-

agement can be used as part of NFM strategies by catchment

managers.

OM soils are often not suitable for arable agriculture, particularly

in headwater areas. Thus, such areas are often managed as grasslands

to support livestock. Grasslands account for approximately 69% of

global agricultural land (Wood et al., 2000), including 60% of the

United Kingdom (of which 46% is ‘semi-natural grassland’;
DEFRA, 2016). Grasslands are the most common land use for OM

soils in England and Wales, accounting for approximately 30% of total

OM soil land cover (Bol et al., 2011). In upland England, 29% of all

rough grassland, 35% of all bracken and 33% of all acid grasslands are

underlain by OM soils (Bol et al., 2011). There are a range of grassland

habitat types and management styles, each of which may influence

soil hydrological function and run-off production through influences

on soil compaction (Drewry, 2006), surface roughness (Bond

et al., 2020), deposition of organic matter and root penetration into

the soil (Soulsby, 1993), interception of precipitation by vegetation

(Nisbet, 2005) and evapotranspiration. Each of these factors may con-

tribute to regulation of water within grasslands, determining the ante-

cedent conditions that drive rainfall–run-off response in a storm

event. Within-grassland variation may also be important, influencing

connectivity of hillslopes and streams.

This study seeks to investigate the hydrological function of five

upland arable farm-based grassland types, henceforth referred to as

habitat types, which are underlain by OM soil and subject to varying

management conditions as part of the same heterogenous grassland

landscape. Physical and hydrological soil properties are investigated

including the hydrological function of each grassland management

regime in response to storm events.

2 | METHOD

2.1 | Field site

Field measurements were conducted in Swindale, a 2.66-km2 U-

shaped valley in the Lake District of northwest England (Figure 1;

54�30014.7500N, 2�45056.9100W). Swindale has upland OM soils, pre-

dominantly Malvern 611a (Chromic Endoleptic Umbrisol) and Bangor

311e (Dystric Epileptic Histosol) soils, underlain by igneous shale and

bedrock (Cranfield University, 2020). The U-shaped valley ranges

between 270-m and 430-m elevation and forms part of a wider

15.3-km2 catchment. In Shap, 5 km northeast of Swindale at 255 m

F IGURE 1 Swindale location and
location of all physical soil sampling and
soil moisture (SM in legend) and overland
flow (OLF in legend) sensors. B =

Bracken, E = Excluded (Rank Grassland),
GG = Good Grazing, RG = Rough
Grazing. For schematic diagram showing
hydrological (soil moisture and overland
flow) sensor locations, see Figure 2
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above sea level, mean annual precipitation was 1779 mm between

1981 and 2010; mean of each daily maximum temperature at Shap

was 11.5�C, and mean daily minimum was 4.1�C (Met Office, 2020).

Swindale is part of a higher level stewardship scheme (HLS) that man-

ages the upland grassland habitats as part of a working farm. HLS is

an agri-environmental scheme in England that provides funding to

land managers in return for environmentally conscious management

(Natural England, 2012). This includes action such as creating and

maintaining woodland, encouraging species-rich grassland or hay

meadows, or protecting water quality.

Our sampling was conducted in a paired-plot comparison over

one section of hillslope so that direct comparisons between adjacent

habitats could be made, factoring in elevation, aspect, and making a

reasonable assumption of similar climatic conditions (Figures 1 and 2).

A section of hillslope was chosen representing five farm-based habi-

tats that have the same Malvern 611a (Chromic Endoleptic Umbrisol)

underlying soil type (Cranfield University, 2020) but represent differ-

ent commonly occurring U.K. upland grassland types. These habitats

were Good Grazing and Rough Grazing, Excluded (rank grassland not

used for grazing), Hay Meadows and Bracken (Table 1); these habitats

were also the most common habitat types within the farm boundary,

each representing between 9.4% to 34% of the total land cover.

When compared with the 2007 CEH U.K. land cover map (Morton

et al., 2011), all sampled Swindale grassland types occur within the

F IGURE 2 Schematic of the sensor
installation. Above: the location of soil moisture
and overland flow sensors in Swindale. Below: the
configuration of soil moisture and overland flow
sensors at each sensor block location
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three most populous land-use categories: Improved Grassland (the

United Kingdom covers 23.60%, which includes Good Grazing,

Rough Grazing and Hay Meadows), Rough Grassland (the United

Kingdom covers 5.48%, which includes the Excluded habitat) and Acid

Grassland (the United Kingdom covers 6.94%, which includes

Bracken).

Good Grazing and Rough Grazing are both low-density habitats

that have been given the grade of ‘Good’ or ‘Rough’ based on the

quality of fodder and the extent to which the sward is allowed to

grow before grazing. Rough Grazing is also situated on the higher,

steeper hillslopes. Bracken, which dominates the upper hillslopes

above 330-m elevation in Swindale, grows within the Rough Grazing

and Excluded habitats. Each of these habitats have distinctive, but

potentially adaptable, management strategies that may influence

hydrological functions.

Seven years prior to this study, the Excluded habitat was created

by fencing-off the watercourses from grazing using wide buffer strips

throughout the catchment. Therefore, the Excluded habitat is rela-

tively new and would have previously been subject to low-density

grazing under the Good Grazing or Rough Grazing management.

Precipitation data were acquired from Mickleden, approximately

24 km southwest of Swindale (Middle Fell Farm telemetry, Station

number 586820, Environment Agency, 2020). The rain gauge

recorded 15-min interval data between May 2019 and March 2020.

Flow gauge data for Swindale Beck were also recorded at 15-min

intervals from the United Utilities Crump Weir located at the Swindale

Beck abstraction point to Haweswater Reservoir (Figure 1).

2.2 | Soil properties

Soil properties were analysed over the five habitats, encompassing

valley bottom (270 m) to steep upper slopes (330 m). Three soil pits

per habitat were dug in the upper and lower slope plots to describe

the OM soil horizons present. From the horizons identified, physical

attributes that may influence soil hydrological function were assessed.

Soil samples were then taken across the width and depth of each hab-

itat in the hillslope, and all habitats had the same aspect. To prevent

elevation bias, each habitat was divided into sections using 5-m

contour lines, and the same number of samples were taken randomly

along each line (Figure 1). In total, 125 intact soil samples were col-

lected at 0- to 5-cm depth between November 2018 and May 2019,

25 for each habitat. Since bedrock was common below 5-cm depth,

intact soil cores were collected as near-surface samples only.

Samples were analysed in the laboratory for saturated hydraulic

conductivity (Ks) using an Eijkelkamp 25 place permeameter. Following

Ks measurement, saturated intact soil cores were transferred to pre-

weighed metal containers and dried overnight at 105�C to remove

moisture and then reweighed to determine bulk density. Total organic

matter (TOM, %) was calculated using loss on ignition at 550�C.

Shapiro–Wilkes tests showed that bulk density and TOM were

normally distributed, whereas the Ks distribution was non-normal. As

a result, bulk density and TOM were analysed using ANOVA and

Tukey's post hoc tests, whereas Ks data were analysed using non-

normal Kruskal–Wallis and Dunn's post hoc tests. The relationship

between soil properties was investigated using Spearman's rank

(Figure S1.1, Supporting Information S1).

2.3 | Hydrological monitoring

Hydrological monitoring occurred between May 2019 and March

2020 over four habitat types, using a paired-plot method. The paired-

plot approach reduced spatial or temporal influences from factors

such as elevation, underlying geology or storm event tracking. The

Hay Meadows habitat was not included in the hydrological instrumen-

tation because, being at the bottom of the hillslope, it did not have an

equal-elevation comparison with another habitat and was known to

collect water as part of the natural floodplain.

Two paired-plot sites were chosen, one on the ‘upper slopes’
incorporating Rough Grazing, Bracken and Excluded habitats, and one

on the ‘lower slopes’ incorporating Good Grazing and Excluded

(Figures 1 and 2 and Table 1). Although Bracken grew in both the

Excluded and Rough Grazing habitat, it has been included as a sepa-

rate habitat; Bracken is generally avoided by livestock, and its density

precludes growth of the vegetation species otherwise found in the

Excluded and Rough Grazing habitats. Each paired plot contained a

series of 5TM Campbell Scientific soil moisture sensors at 5-, 10- and

15-cm depth, wired in series to an Arduino data logger that measured

percentage soil moisture at 15-min intervals. Soil moisture sensors

were calibrated using the method by METER Environment (2020). At

the soil surface, an overland flow sensor, made following the design

by Goulsbra (2011), measured the absence or presence of overland

flow at 5-min intervals (Figure 2).

For clarity, when referring to the soil moisture and overland flow

sensors, individual sensors henceforth are referred to by the location

for which they were assigned (Figure 1) where E represents the

Excluded habitat, RG represents Rough Grazing, B represents Bracken

and GG represents Good Grazing. The number following each

habitat abbreviation represents its position (Figure 2). A full list of

abbreviations used in this manuscript can be found in Supporting

Information S2 (Tables S2.1 and S2.2).

Some data gaps occurred during the operation of the soil mois-

ture sensors due to power source and equipment failures and equip-

ment tampering. Consequently, the period of time for which the soil

moisture sensors were operational varied by location. The upper slope

data ran for two periods, May 2019 to August 2019 and December

2019 to March 2020, during which all sensors were operational. The

lower slope data were subject to more difficulties. Sensors for

the habitats E4 and GG1 were operational May 2019 to October

2019 and mid-November to December 2019. All other sensors were

operational mid-September to October 2019 and mid-November to

December 2019 with occasional other scattered data points. The tem-

poral distribution of soil moisture data is shown in Supporting

Information S3 (Figures S3.1 and S3.2). The operation of the overland

flow sensors and total time overland flow was present per habitat is

shown in Table S4.1, Supporting Information S4.
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Due to soil moisture sensors operating for different time periods

(Supporting Information S3, Table S3.1), a matched-records approach

was adopted, analysing data for time periods when all sensors were

operational across each slope position.

For the upper slopes, 9526 matched records were available dur-

ing which 808.4 mm rain fell; 9526 records accounted for 35.7% of

the total possible records between May 2019 and March 2020. For

the lower slopes, 3181 matched records were available during which

246.6 mm fell. This accounted for 11.9% of the total possible records.

For both slope positions, periods of drought and large storm events

were included in the matched-records data.

Since the matched records data were not normally distributed, a

Kruskal–Wallis test was used to analyse difference in soil moisture

between habitats within each slope position and by sensor depth.

Tests were repeated to examine storm and drought conditions using

the top and bottom 1% of soil moisture data.

Soil moisture was analysed using a general linear model for the

sensors at 5-cm depth, where topsoil soil moisture is thought to be

strongly connected to run-off production (Huza et al., 2014; Meißl

et al., 2020). The model predicted soil moisture and cumulative rainfall

by habitat per storm event, based on scaled variable data. Scaling is a

process by which each variable entry for soil moisture and cumulative

rainfall was subtracted from the mean and divided by the standard

deviation, making both variables unitless, therefore comparable.

In combination with overland flow and rainfall data, we tested

whether there was a soil moisture threshold at which overland flow

occurred. Soil moisture thresholds ranging between 5% and 50% soil

moisture were chosen for which the percentage overland flow pres-

ence was determined. The influence of seasonality on overland flow

at different soil moisture thresholds was also tested.

3 | RESULTS

Results are split into three sections: soil profiling, soil properties and

hydrological monitoring.

3.1 | Soil profile description

Soil pits were always less than 30 cm deep before reaching large

pieces of underlying bedrock, which were impenetrable with hand

tools (Figure 3). At depths greater than 5 cm, smaller pieces of shale

up to approximately 5-cm diameter were present throughout the

soil profile. The upper slopes had a more developed soil profile than

the lower slopes. For the upper slopes, an O/A surface organic hori-

zon, approximately 7 cm deep, overlays an eluviated (E) horizon,

approximately 8 cm deep, which contained a higher clay content

and leached mineral and organic material. Underlying the O/A and E

horizons, a subsoil B horizon, approximately 9 cm deep, overlay the

base shale (C) horizon. In comparison, the lower slope soil profiles

consisted of one O/A horizon directly overlying the parent-material

C horizon.

3.2 | Soil properties

The relationships between Ks, bulk density and TOM are shown in

Supporting Information S1. TOM and bulk density were found to be

significant negatively correlated across the whole dataset

(R2 = �0.82, p < 0.001) and for individual habitats (p < 0.05). A signifi-

cant negative correlation was also found between bulk density and Ks

when examining all soil samples (R2 = �0.21, p = 0.019); however,

when this correlation was tested for individual habitats, only that for

Bracken was significant (R2 = �0.69, p < 0.001). No correlation was

found between TOM and Ks.

Within the area sampled, elevation did not have a significant

influence over any soil properties measured (p > 0.05). Mean TOM

was highest in the Hay Meadow (24.6%) followed by Good Grazing

(23.3%), Bracken (22.2%), Excluded (20.2%) and Rough Graz-

ing (17.4%). Rough Grazing had significantly lower TOM than all other

habitats, and Excluded TOM was significantly lower than that for

Bracken, Good Grazing and Hay Meadows (Figure 4, p < 0.05). Good

Grazing TOM was not significantly different to that of Bracken and

Hay Meadows; however, Hay Meadows had significantly higher TOM

to Bracken (Figure 4, p = 0.047). Variability in TOM was highest for

Good Grazing, having an interquartile range of 7.0%, and lowest

for Rough Grazing with an interquartile range of 3.6%.

Rough Grazing had significantly higher bulk density than all other hab-

itats with a mean of 0.768 g cm�3, followed by Excluded (0.654 g cm�3
),

Bracken (0.618 g cm�3), Hay Meadows (0.568 g cm�3) and Good Grazing

(0.562 g cm�3) (Figure 4). The latter three were not significantly different

to one another, while Excluded had significantly higher bulk density com-

pared to Good Grazing and Hay Meadows (Figure 4, p < 0.05). The inter-

quartile range was greatest for Good Grazing (0.208 g cm�3).

Ks was high for all habitats, ranging across several orders of magni-

tude from 1.3 � 10�3 to 1.5 � 102 m day�1 with a median of

2.4 m day�1, suggesting that infiltration-excess overland flow was unlikely

to occur across most of the landscape studied. Median Ks was highest in

Bracken followed by Excluded, Good Grazing, Rough Grazing and Hay

Meadows (Figure 4). Ks varied significantly between habitats, but within

F IGURE 3 Representative soil profiles for the upper (left) and
lower (right) slope sampling locations
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habitats, there was up to three orders of magnitude variation. Ks for

Bracken was significantly greater than that for Good Grazing, Hay

Meadows and Rough Grazing while Ks for Excluded was significantly

greater than that for Hay Meadows and Rough Grazing. Ks for Good

Grazing was significantly greater than that for Hay Meadows (Figure 4).

3.3 | Hydrological monitoring

3.3.1 | Soil moisture

Mean soil moisture was found to significantly vary between all habi-

tats, at all depths, subject to the same precipitation (Dunn's post hoc,

p < 0.05), except for between RG1 and B1 in the upper slopes at

5-cm depth (Figure 5). Although soil moisture varied by depth, a

Dunn's post hoc analysis of the whole dataset showed that, for the

upper slopes, the driest habitat was RG1 followed by B1, E2, B2, E1

and RG2, the wettest habitat. However, when isolating the highest

and lowest 1% of soil moisture data for each upper slope habitat, RG1

consistently had the highest soil moisture peaks, reaching a maximum

72%, and the lowest soil moisture, as low as 4.7%. Analysis of the top

1% of soil moisture data showed that, excluding Bracken, upper slope

habitats were grouped; RG1 and RG2 were statistically similar to each

other, as were E1 and E2 (Dunn's post hoc, p < 0.05). Otherwise, habi-

tats were statistically different (top 1% data, Dunn's post hoc,

p < 0.05). In comparison, for the bottom 1% of soil moisture data, all

habitats except E1 and E2 were statistically different to each other

(bottom 1% data, Dunn's post hoc, p < 0.05).

In the lower slopes, GG1 was the driest habitat, followed by E4,

GG2, GG3 and E3, the wettest habitat. Looking at the top 1% of soil

moisture data, E3 had the highest peaks, up to 96.2%, and GG1 had the

lowest soil moisture (23.9%). Excluding GG1 and GG2, all lower slope

F IGURE 4 Soil properties for Bracken, Excluded (Rank Grassland),
Good Grazing, Hay Meadows and Rough Grazing habitats. Boxplots
show the range, quartiles and median data for each soil property:
(A) bulk density, (B) total organic matter and (C) Ks. Statistical
significance is shown by the letters above each boxplot (Tukey's post
hoc test, p < 0.05) where a shared letter indicates no statistical
significance

F IGURE 5 Soil moisture boxplots comparing habitats within each
slope location by matched-records (i.e., the same time periods for
each habitat within that Slope position). Direct statistical comparisons
cannot be drawn between the upper and lower slope sites. Statistical
significance is represented by the letters above each graph facet
(Dunn's post hoc test, p < 0.05) where comparisons are made
between habitats within each Slope position and sensor depth, and a
shared letter indicates no statistical significance. Boxplots show the
range, quartiles and median data for each habitat. Outlying data (data

points greater than 1.5 * inter-quartile range) were retained because
measurements of extreme soil moisture values related to antecedent
conditions and storm events
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habitats had significantly different soil moisture peaks (top 1% data,

Dunn's post hoc, p < 0.05), and all habitats were significantly different

from each other during the driest 1% period (Dunn's post hoc, p < 0.05).

Because of the nature of the matched-records analysis, slope

positions were not comparable to each other using statistical tests.

However, upper slope soil moisture was less variable (�25% moisture

for all three depths) than lower slope soil moisture, which was more

varied, and large peaks in soil moisture were reflected in towering

‘whiskers’ and outlying datapoints (Figure 5). Maximum soil moisture

in the lower slopes was frequently 1.5 times greater than median soil

moisture. Soil moisture was generally higher in the winter months

(October to March) than summer (May to September).

3.3.2 | Overland flow

Overland flow occurred in all habitats between May 2019 and March

2020. In some habitats, overland flow was very frequent, occurring

>60% of the time in habitat GG3, 57% of the time in habitat E3 and

approximately 40% of the time in habitats E1, E2 and E4 (Table S4.1).

Habitat GG2 had overland flow present for 32.7% of its operational

timeframe and habitat B2 showed overland flow presence 19.8% of

the time. All other habitats produced overland flow <9% of the time

between May 2019 and March 2020.

Overland flow was consistently recorded more often in the lower

slopes than the upper slopes and occurred more frequently in winter

months than summer. Overland flow was also found to occur more

often on the Excluded side of the hillslope than the grazed side, with

the exception of habitat GG3 (Figure 6, Table S4.1). The Good Grazing

habitat had the most varied overland flow occurrence within it, with

8–60% occurrence, despite the sensors' relatively close proximity to

each other. In comparison, within habitat and slope position catego-

ries for Excluded and Rough Grazing sensors recorded similar values.

For example, E1 and E2 were operational >90% of the time, recording

overland flow presence 39% and 40% of the time respectively

(Table S4.1).

The overland flow sensors were operational for the majority of

the research period with most sensors recording data 65–99% of the

time; only sensor B1 was operational for less time, working just 27%

of the research period. Because of this, sensor B1 was excluded from

a matched-record analysis that allowed direct comparison of habitats

by monthly overland flow occurrence based on same-date, reliable

records without bias towards seasonality or storm event (Figure 6).

Using the matched-records approach, with the exception of habi-

tat E1, the majority of overland flow occurred in January and

February, accounting for >50% in all lower slope habitats. January

and February also account for the greatest rainfall volume with

434.6 mm and 326.8 mm, respectively, falling within the timesteps

analysed. Winter overland flow, represented by December, January

and February matched-records data, accounted for >70% overland

flow presence in all habitats except E1 and B2, for which overland

flow was most common in summer months. The third most common

month in which overland flow occurred was July, accounting for

>20% overland flow in habitats E1, RG2, B2, E3, GG1 and GG3. July

also received the third highest volume of rainfall, 227.4 mm, which

followed a drought period in June and early July.

There was no apparent soil moisture threshold at which overland

flow occurred. Overland flow occurred at all soil moisture thresholds

tested, even <5%, and was not more common within a particular soil

moisture bin width. Although soil moisture was generally lower in the

summer months than in winter months, and overland flow was

recorded more often in the winter than summer, there was no soil

moisture threshold influence on overland flow identified when analy-

sis was undertaken for summer and winter periods independently.

3.3.3 | Storm events

Between May 2019 and March 2020, 68 storm events occurred,

which had greater than or equal to 20-mm precipitation over a 24-h

period. Figures 6 and 7 show two storm events that were representa-

tive of the hillslope response to rainfall in the summer and winter.

These two events represent the largest storms for which soil moisture

data were available at both upper and lower slope locations. For 5-cm

depth, a general linear model indicated that soil moisture for all habi-

tats significantly varied from each other for both the July and

December storm events tested (Figures 7 and 8); both habitat type

and the volume of cumulative rainfall were important in the model.

In both storm events, soil moisture was quick to respond to the

onset of rain, rising almost immediately in response to rainfall. How-

ever, the summer response was more muted in comparison with the

winter, gradually rising until peak rain and then falling gradually over

F IGURE 6 Relative overland flow presence per habitat per
month. Calculated using a matched-records analysis including all
sensor locations except B1. Above each stack the total duration of
overland flow per habitat for all months is shown (%). Full details of
the percentage overland flow and rainfall volume per month are
shown in Supporting Information S4

8 of 13 BOND ET AL.



the following 12 h after which it had almost returned to the previous

base-level moisture. The winter soil moisture was higher before the

beginning of the storm than for the summer storm. However, soil

moisture changes strongly in response to rainfall intensity, increasing

soil moisture by up to 8% before falling rapidly after each rain event.

After 12 h, soil moisture was at the pre-storm level again. Overland

F IGURE 7 Rainfall, soil moisture (5-cm depth
only) and presence of overland flow for a July
2019 storm

F IGURE 8 Rainfall, soil moisture (5-cm depth
only) and presence of overland flow for a
December 2019 storm
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flow occurrence was more frequently recorded in the winter storm

than the summer storm. However, both storms show a delay in over-

land flow response after rainfall and soil moisture rise, suggesting a

saturation-excess overland flow response. For both storm events,

habitat GG3 and E3 are the most sensitive to hydrological changes

with overland flow occurrence quickly following any rainfall.

4 | DISCUSSION

Overland flow is an important feature in this upland OM soil system,

frequently occurring in response to storm events. Results from this

study recorded overland flow as being present or absent only; there-

fore, it is impossible to make comment about the volume of overland

flow that occurred in each habitat. Many studies (Carroll et al., 2004;

Jordon, 2020; Marshall et al., 2014) suggest that overland flow should

be more prevalent in grazed habitats than ungrazed, and while the

sensor location which recorded overland flow presence most often

was GG3, a grazed habitat, overland flow occurred more frequently

overall in Excluded habitats. The prevalence of overland flow in

Excluded habitats may be a consequence of enhanced storage and

slowing of flow in the more highly vegetated ungrazed habitats,

through which surface water cannot flow downslope as readily and

therefore the time for which overland flow lasts is longer. Confirma-

tory evidence for this hypothesis comes from Bond et al. (2020) who

used overland flow velocity experiments in the Swindale catchment to

show that surface roughness in Rank Grassland was associated with

an overland flow velocity half that of the velocity in Hay Meadows.

Thus, the Excluded habitat, the same habitat which Bond et al. (2020)

called Rank Grassland, retained overland flow for longer which could

be key for NFM implementation.

The common presence of overland flow in all habitats combined

with high Ks (Figure 4), the shallow soil profiles (Figure 3) and the delayed

overland flow onset after storm events (Figures 7 and 8), suggests a

saturation-excess overland flow mechanism dominates in the upland

grassland system studied. In many catchments, subsurface properties are

thought to play a key influence on catchment hydrology (Anderson &

Burt, 1990). In Swindale, we hypothesise that shallow soils and large

pieces of underlying shale slow groundwater percolation allowing soil sat-

uration to occur quickly, despite the high soil Ks values. The lower slope

habitats were more susceptible to overland flow with net accumulation

from upslope, and shallowest soils and higher soil moisture throughout

the year, including soil moisture peaks up to 96.2% (Figure 5).

Despite the above, there was not an obvious soil moisture thresh-

old at which overland flow occurred. Analysis of storm events pro-

duced some evidence to suggest that there was greater retention and

slower release of water in the Excluded habitats than the grazed habi-

tats, shown by prolonged overland flow presence. The difference

between habitats may be related to both retention of water by the

increased volume of vegetation in the ungrazed sections of the hill-

slope and to the physical soil properties, for which Ks was highest for

the Excluded and Bracken habitats (where Bracken was 50% within

the Excluded habitat and generally avoided by grazing livestock).

When compared on a matched-records basis, mean soil moisture

was found to significantly vary between all habitats at all depths with

the exception of habitats B1 and RG1 at 5 cm depth (Figure 5). The

variation in soil moisture highlights strong heterogeneity within grass-

land habitats, even within those subject to the same management and

weather conditions. Nevertheless, grouping was observed when com-

paring the top and bottom 1% of data where some sensor locations

within a habitat type were statistically similar (RG1 and RG2, E1 and

E2 and GG1 and GG2). Grouping suggests that management of

grassland habitats may have a dominant influence over soil moisture

extremes.

As expected, soil moisture was higher year-round in the lower

slope habitats and higher in winter months compared with summer;

however, significant within-habitat variation for both soil moisture

and soil properties may be due to localised differences in compaction,

rooting and micro-topography (Clarke et al., 2008; Ghestem

et al., 2011; Hu et al., 2020). These localised differences may also

account for the absence of anticipated grouping of grazed versus

excluded habitats in terms of mean soil moisture, bulk density, TOM

and Ks. It may be that rooting and compaction out-weigh each other

in affecting infiltration and run-off for these habitats. Certainly, the

higher overland flow frequency in the Excluded habitat does not

translate to a higher soil moisture; this may also be a reflection of

volume verses frequency of overland flow where both Low-density

Grazing and Excluded habitats were subject to the same volume of

rain which produced statistically similar soil moisture but differing

durations of overland flow presence.

Bulk density, TOM and Ks were significantly different between

most grassland types. The differences in soil properties are likely due

to the influence of management which alter organic matter inputs

through grazing and vegetation controls. Vegetation species present

and grazing density are naturally heterogenous within each habitat

type, explaining high within-habitat variability alongside micro-

topographical influences. For example, high TOM in the Hay Meadows

may be a consequence of floodplain deposition or waterlogging

affecting breakdown of organic matter. Although, as expected, TOM

and Ks were found to be significantly negatively correlated to bulk

density (Figure S1.1), there was no strong association between man-

agement and soil properties, especially when comparing grazed and

ungrazed habitats (Figure 4). Again, this may be the result of strong

within-habitat heterogeneity, itself a partial consequence of low-

density grazing and relatively newly-implemented exclusion zones. Ks

had especially high variability, and the values recorded were similar to

the highest found in temperate or high latitude peatlands: a literature

summary of peat Ks by Branham and Strack (2014) suggests values

between 8.64 � 101 m day�1 and 8.64 � 10�4 m day�1 across eight

studies. This suggests that, for surface properties at least, OM soils

have a similar hydrological response to peat, further supported by the

dominance of saturation-excess overland flow.

Many studies compare land uses for which management has been

separately applied for decades. In this study, the Excluded habitat had

only been in operation for 7 years following grazing. If the Excluded

habitat had the same soil properties as the low-density grazing
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habitats prior to being fenced-off, then we have evidence that

changes in grassland management may quickly alter soil properties

and hydrological conditions.

The prevalence of overland flow and the strong hydrological

differences between habitats suggests that, at a hillslope scale, the

largest influence on flood mitigation in these shallow, high Ks, OM-soil

grassland systems is surface roughness. While soil properties are

essential in controlling antecedent conditions and the rate at which

habitats wet-up, once overland flow is produced, the primary control

is vegetative roughness. Research by Bond et al. (2020) showed that

overland flow velocity significantly varies between grassland habitats

as a consequence of land management and seasonality, the primary

controls affecting roughness. Since roughness changes occur in the

short to medium term, land management may affect flood and

drought mitigation on a shorter timescale than many studies suggest.

Consequently, roughness may be important as a fast-acting land-use

change which serves as initial NFM approach while long-term changes

in soil properties more slowly accumulate further benefits. A

mosaicked upland landscape can utilise NFM to produce multiple eco-

logical and environmental benefits where they are most required, such

as in a high overland flow-producing area, in addition to maintaining

economic practices such as livestock management.

Since overland flow is clearly an important factor in upland OM

soil landscapes at the hillslope scale, modelling research should explic-

itly include overland flow processes. Modelling is needed to upscale

our findings to catchment and landscape scales, accounting also for

soil property changes as a result of management practice. Where

landscape heterogeneity is becoming an increasingly important part of

upland management, modelling should account for spatial differences,

investigating best placement of NFM and how future landscapes may

respond hydrologically with shifting soil properties. Therefore, further

studies could incorporate a long-term before-after-control-impact

approach which monitors changes in hydrological function with man-

agement interventions, and funders should be encouraged to invest in

such long-term monitoring.

5 | CONCLUSION

In this research, we investigated the hydrological function of upland

OM soils under differing grassland management. Bulk density, TOM

and Ks were significantly associated with grassland type, suggesting

that management of grasslands is important to OM soil properties.

Overland flow occurred frequently across the upland study site, being

present for up to 60% of the research period and occurring more

often in the Excluded habitat than under grazed conditions. Soil mois-

ture was significantly different between habitats and between sensors

within one habitat type; this was attributed to soil heterogeneity. Our

research suggests that there is potential for upland grassland manage-

ment on OM soils to be included as part of NFM, especially using sur-

face roughness interventions. However, modelling is required to test

the potential influence of grassland NFM techniques at a catchment

scale.
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