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Abstract

The use of in-stream wood is one of the most commonly employed natural flood

management (NFM) techniques. The effectiveness of NFM wood structures in

reducing flood risks (i.e., their “primary” effect) has been relatively well docu-

mented. However, their additional or “secondary” effects on other natural processes

have not been fully evaluated. These secondary effects can be inferred by reviewing

previous studies that scrutinized natural wood accumulations or artificial wood

structures constructed for purposes other than NFM. The degree of contact with

base flows and the stream bed provides a broad classification of NFM wood struc-

tures. Having considered the similarities between NFM wood structures and other

in-stream wood types, it is suggested that the following geomorphic effects are com-

mon to all types of NFM wood structures: pool formation; accumulation of clasts

immediately upstream; buffering against stream bed coarsening; and bank erosion,

causing channel widening and the formation of floodplain channels. These geomor-

phic changes contribute to stream bed heterogeneity, potentially creating new

niches for aquatic organisms such as macroinvertebrates. Moreover, NFM wood

structures may retain benthic organisms accidentally flushed away during flood

events, serving as sources of colonists during phases of recovery. Geomorphic

changes induced by NFM wood structures may also contribute to spatial variation

in rates of biogeochemical processing. Accumulation of fine sediments in some

areas may provide more surfaces for the attachment of organic matter and micro-

organisms, hence increasing benthic metabolic rates. Stream bed scouring in other

areas may lead to sediment instability, suppressing the growth of micro-organisms

and benthic metabolic rates.
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1 | INTRODUCTION

The use of wood structures (Figure 1) has become a well-established technique for natural flood management (NFM;
Burgess-Gamble et al., 2018). Wood structures installed specifically for NFM (hereafter “NFM wood structures”) have
been reported in many countries, including the United Kingdom (UK), for example in: Pickering Beck, North Yorkshire
(Nisbet et al., 2015); Black Water, Hampshire (Addy et al., 2018); Belford Burn, Northumberland (Nicholson
et al., 2018); and Blackbrook, Merseyside (Norbury et al., 2018). They are thought to be effective in slowing the rate of
water transfer from uplands to lowlands owing to two hydraulic effects (Dadson et al., 2017; Lane, 2017): first, they
impound water in the channel; second, they act as significant roughness elements that increase local flow resistance.
These two processes decrease flow velocities and increase water levels such that water subsequently flows out of the
channel, into storage areas such as upland floodplains (Gregory et al., 1985; Keys et al., 2018; Thomas & Nisbet, 2012;
Wenzel et al., 2014), thereby reducing stream discharge and contributing to flood peak attenuation (Dixon et al., 2016).
In addition, flood peaks from multiple tributaries can be delayed such that they will not converge upon reaching the
main channel, greatly reducing the magnitude of flood events in urban areas downstream (Lane, 2017).

While the “primary” effects of NFM wood structures in reducing flood risks are fairly well documented, only a few
empirical studies have quantified their secondary effects on local geomorphic, ecological, and biogeochemical processes
(e.g., Deane et al., 2021; Janes et al., 2017; Short et al., 2019). Filling the knowledge gaps pertaining to the secondary
effects of NFM wood structures is important for two reasons. First, if they are confirmed to be associated with a wide
range of additional benefits, it will be more justifiable to make use of them in future flood management (Barlow
et al., 2014). Second, before installing NFM wood structures, it is important to ensure that they will not cause adverse
effects, such as disturbing aquatic ecosystems or causing blockage downstream upon breaking up (Ruiz-Villanueva
et al., 2014; Schmocker & Hager, 2011).

The core aim of this article is to propose a conceptual model of the potential secondary effects of NFM wood struc-
tures by making inferences from previous studies focusing on natural in-stream wood accumulations or artificial wood
structures deployed for purposes other than NFM. The conceptual model can then be empirically verified by future
studies. There is a wide range of NFM wood structures (Dixon, 2016). To simplify matters in this article, NFM wood
structures are broadly classified into four categories based on their degree of interaction with the water column, which
would determine the hydraulic effect of the structure (Manners et al., 2007) and potentially its geomorphic, ecological,
and biogeochemical effects. Type 1 structures (Figure 2(a)) refer to those completely spanning the channel and not
interacting with base flows at all. Type 2 structures (Figure 2(b)) are also full-spanning, but they interact with base
flows while maintaining some gaps with the stream bed. Type 3 structures (Figure 2(c)) are full spanning with complete
contact with the stream bed. Finally, Type 4 structures (Figure 2(d)) include those that only maintain contact with
one bank.

It is the explicit consideration of NFM contexts that differentiates this review from existing reviews that have docu-
mented the general geomorphic (Montgomery et al., 2003; Wohl, 2013; Wohl & Scott, 2017) and ecological (Benke &

FIGURE 1 (a) NFM woody dam and (b) natural woody debris in the upper river cover catchment, North Yorkshire, UK
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Wallace, 2003; Dolloff & Warren, 2003; Gurnell et al., 2005; Lester & Boulton, 2008) effects of in-stream wood. More-
over, very few reviews have adopted an interdisciplinary perspective. For example, Montgomery et al. (2003) provided a
comprehensive summary of the geomorphic effects of in-stream wood, but the same detailed treatment was not given
to the effects on ecosystems; Grabowski et al. (2019) covered more aspects, but the effects on biogeochemical cycling
were not discussed. In contrast, this review summarizes the geomorphic, ecological, and biogeochemical effects of in-
stream wood simultaneously to highlight the interaction between them. This review also complements recent entries in
WIREs Water, such as that by Wohl (2015) on perceptions of in-stream wood and that by Addy & Wilkinson (2019) on
incorporating wood in hydraulic models.

More than 500 peer-reviewed primary research articles published in scientific journals (details of which are pro-
vided in the Appendix S1) were consulted to extract information potentially relevant to NFM wood structures. The
effects of in-stream wood most commonly reported by these research articles are summarized in Figure 3. Sections 2 to
4 discuss the extent to which these geomorphic, ecological, and biogeochemical effects are associated with the four cate-
gories of NFM wood structures identified earlier. Section 5 summarizes hypotheses pertaining to NFM wood structures
that need to be verified by further empirical research.

2 | POTENTIAL GEOMORPHIC EFFECTS OF NATURAL FLOOD
MANAGEMENT WOOD STRUCTURES

The most commonly recorded geomorphic effects of in-stream wood were pool formation, sediment storage, and
influencing bank morphology (Figure 3(a)). These effects are also likely to be associated with NFM wood structures
and are further elucidated in this section.

2.1 | Pool formation

NFM wood structures will lead to pool formation wherever they concentrate flows (Wallerstein, 2003; Figure 4: connec-
tion between “hydraulics” and “pool formation”). However, the four types of NFM wood structures would concentrate
flows in different ways, so they are expected to form different types of pools. Type 1 structures force water to flow
beneath them and may therefore lead to the formation of underflow pools (Schalko et al., 2019; Robison &
Beschta, 1990; Wallerstein et al., 2003). In contrast, Type 3 structures do not maintain any gap with the stream bed, and
water can only flow over them, leading to the formation of plunge pools immediately downstream (Baillie &
Davies, 2002; Bendix & Cowell, 2010; Bilby & Ward, 1989, 1991; Keller & Swanson, 1979; Zelt & Wohl, 2004). Mao
et al. (2008) suggested that a single wood structure of this type could create a pool as large as 20 m3. Type 2 structures
also concentrate water underneath them, but since they block parts of the water column, some water may be forced to

FIGURE 2 (a–d) Different types of NFM wood structures currently in use
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flow over them as well. Therefore, both plunge pools and underflow pools may be formed. Type 4 structures will divert
flows away from the bank to which they are attached, likely forming deflector pools in the center of the channel or near
the opposite bank (Gallisdorfer et al., 2014).

FIGURE 3 Frequently reported (a) geomorphic, (b) ecological, and (c) biogeochemical effects of in-stream wood in the 527 research

articles reviewed
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A few factors have been identified to potentially limit the ability of NFM wood structures in forming pools. First,
high stream power (Figure 4) is required. For example, Jackson & Sturm (2002) found that, although the small streams
in the Coast Ranges (Washington State, The United States) had high wood loads and channel gradients (32%), their dis-
charge and stream power were insufficient to carve pools. Osei et al. (2015b) studied wood placements in River Bure
(UK) and found that well-defined pools had not yet appeared although scouring around wood pieces had started to
expose the gravel layer previously buried under sand. They suggested that more high flows were needed for such pools
to develop (Figure 4: “effects building up over time”). These observations are particularly relevant to Type 1 structures
as they only concentrate flows when water levels are sufficiently high. The time required for pools associated with Type
1 structures to develop should therefore depend on the frequency of flood events. Scouring induced by Type 1 structures
will stop completely during moderate flows, and the pools may become gradually infilled with sediments (Elosegi
et al., 2017).

Next, the size of wood pieces needs to be sufficiently large. Mao et al. (2008) observed that wood pieces with
small diameters failed to carve deep plunge pools as they only provided small drops in elevation. Conversely,
Bilby & Ward (1989) found that wood structures with greater volumes generally produced more extensive pools
(Figure 4: relationship between “size,” “hydraulics,” and “pool formation”). Moreover, there needs to be a mini-
mum distance separating two wood structures, otherwise hydraulic interactions between the two will suppress pool
formation (Bennett et al., 2015; Nakamura & Swanson, 1993; Figure 4: “spacing between structures” affecting
“hydraulics”). In upland streams, the stream bed is dominated by bedrock and boulders. These roughness elements
are also effective pool-forming agents, so the number of wood-related pools may be outweighed by the number of
boulder-related pools (Hilderbrand et al., 1997; Kraft et al., 2002). Moreover, bedrock and boulders are relatively
resistant to erosion, making it more difficult to carve pools in these streams (Figure 4: link between “erodibility”
and “pool formation”).

FIGURE 4 Factors influencing the geomorphic significance of NFM wood structures (yellow: Frequently observed geomorphic effects;

blue: Wood structure characteristics; red: Stream characteristics; green: Temporal factors; positive sign: Accelerating; negative sign:

Inhibiting)
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2.2 | Sediment storage

There are two modes of sediment storage associated with NFM wood structures. First, where they maintain contact
with the stream bed (particularly Type 3 structures), they will intercept bed load particles and lead to the build-up of
sediments immediately upstream (Comiti et al., 2008; Janzen & Westbrook, 2011; Mosley, 1981; Nakamura &
Swanson, 1993; Thompson, 1995; Figure 4: creation of “accommodation space” to be filled by sediments). The typical
volume of material retained by each structure would lie between 10 and 100 m3 (Andreoli et al., 2007; Mao et al., 2008).
In cases with high storage, local channel gradients will be significantly reduced (Davidson & Eaton, 2013; Larson
et al., 2001; Montgomery & Abbe, 2006). Type 2 structures may retain less material than Type 3 structures as they are
partially suspended above the stream bed and sediments may be released from the gaps (Smith et al., 1993). Type
3 structures made of few logs with little interstitial space may also be ineffective in retaining sediments (Andreoli
et al., 2007; Mao et al., 2008; Figure 4: “size” and “structural complexity” influencing “accommodation space”). Type
4 structures may easily release sediments as well as they do not completely span the channel (Martin et al., 2016; Smock
et al., 1989; Figure 4: “orientation” affecting “accommodation space”). Type 1 structures are completely suspended
above the stream bed and may not intercept any fine material at all, but cobbles and boulders that are too large to pass
through the gap will still be retained (Scott et al., 2014).

The second mode of sediment storage involves reach-scale textural fining following wood input (Assani &
Petit, 1995; Gerhard & Reich, 2000; Merz, 2001; Nagayama et al., 2012; Shields & Smith, 1992). This is due to the addi-
tional flow resistance introduced by the wood itself, which results in A lower average flow velocity and less energy
available for sediment transport (Manga & Kirchner, 2000; Figure 4: linkage between “hydraulics” and “sediment stor-
age”). Type 2, Type 3, and Type 4 structures permanently interact with the water column, so they may lead to textural
fining during base flows as well as buffer against coarsening during high flows. On the other hand, Type 1 structures
may only buffer against coarsening as they do not interact with base flows.

Two catchment-scale factors influence the effectiveness of NFM wood structures in storing sediments. First, sedi-
ment supply is important. In streams in central Sierra Nevada (California, The United States), although wood had cre-
ated extra accommodation space, there was insufficient material to fill it (Berg et al., 1998; Figure 4: “sediment storage”
as a product of both “accommodation space” and “sediment supply”). Sediment supply could be mediated by the pres-
ence of other structures upstream (Figure 4: “spacing between structures” controlling “sediment supply”). In the Rocky
Mountain National Park (Colorado, The United States), Wohl & Beckman (2014) observed that woody dams retaining
large amounts of sediments were usually followed by those with much lower storage downstream. In contrast, in the
case of Osei et al. (2015a), where two wood structures were monitored, the downstream structure retained more sedi-
ments because the upstream structure (a deflector) caused intense scouring. At the other extreme, when sediment sup-
ply is excessive, it will be difficult to determine if in-stream wood is storing sediments or simply co-existing with them
(Short et al., 2015; Wohl et al., 2009).

Second, high flows can erode sediments stored by the structures. For example, Nakamura & Swanson (1993)
observed repeating cycles of aggradation and degradation in the vicinity of wood pieces in Lower Lookout Creek
(Oregon, The United States), indicating that some sediments stored by in-stream wood must have been reworked
during high flows. Similar reworking of stored sediments was reported by Shields et al. (2008) in Little
Topashaw Creek (Mississippi, The United States). Wood-induced sediment storage will also be negligible if stream
power is so low that particles will settle onto the stream bed even without the influence of wood (Smock
et al., 1989).

2.3 | Interaction with banks and changing channel widths

Full-spanning NFM wood structures oriented perpendicular to the flow are likely to divert water to the two sides,
resulting in channel widening via the erosion of both banks (Nakamura & Swanson, 1993). Bank erosion associated
with Type 1 and Type 2 structures should be more pronounced than that caused by Type 3 structures because the
former would divert faster-flowing water in the upper part of the water column experiencing less friction offered by
the stream bed into the two banks (Wallerstein et al., 2003). Type 4 structures will concentrate the flow to one side
of the channel, leading to erosion along one bank but greater stability along the other (Gallisdorfer et al., 2014).
When NFM wood structures are displaced by high flows and become parallel to the bank, they can probably protect
the bank from the erosive power of the flow (Burrows et al., 2012). These effects on channel width are typically
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localized in areas in the vicinity of in-stream wood. If there are numerous structures deployed, higher mean widths
at the reach scale may result (Jackson & Sturm, 2002; Shields & Smith, 1992). These streams also tend to have
higher variance in width (Robison & Beschta, 1990) as areas influenced by wood are interspersed with those that
are not.

2.4 | Other geomorphic effects

NFM wood structures may lead to higher stream bed heterogeneity. First, this is due to the increase in the variety of
channel units (Roni & Quinn, 2001). In addition to causing pool formation, Type 3 structures also trigger the develop-
ment of other channel units such as steps (Erskine et al., 2012; Parkyn et al., 2009; Ruffing et al., 2015; Scott
et al., 2014; Wohl et al., 1997), which offer extra spill resistance (Curran & Wohl, 2003) and play a role in limiting ero-
sion downstream. Type 1 and Type 2 structures may also cause step formation only if the gap between the structure
and the stream bed is entirely clogged. Type 4 structures likely induce bar formation — as they do not completely span
the channel, water will flow around them, creating zones of no flow immediately downstream (Abbe &
Montgomery, 1996; Gurnell et al., 2001). Channels with shallow depths, low stream power and fairly high supplies of
sediments are more conducive to bar formation (Gurnell & Petts, 2006; Lisle et al., 1991). Type 1 and Type 2 structures
are unlikely to create bars immediately downstream, but they may still induce bar formation further downstream by
supplying sediments through the scouring of pools or the sudden release of sediments during failure. NFM wood struc-
tures may also increase stream bed heterogeneity through: (a) increasing the number of sedimentary facies (Elosegi
et al., 2017); (b) the formation of a more rugged stream bed with greater topographic variation (Ruffing et al., 2015);
and (c) increasing variation in flow velocities and directions (Klaar et al., 2011).

NFM wood structures likely influence floodplain morphology as well. Type 1 and Type 2 structures directly divert
water onto the floodplain, and the resulting overbank flow may be concentrated and erosive enough to carve new chan-
nels on the existing floodplain (Andreoli et al., 2007; Collins et al., 2012; Sear et al., 2010; Wohl, 2011). Even without
the creation of new channels, overbank erosion and deposition associated with Type 3 and Type 4 structures will add
spatial heterogeneity and roughness to the floodplain, further contributing to the primary objective of flood-risk reduc-
tion. However, if the new floodplain channels formed ultimately reconnect with the main stem through shorter paths
as in meander cut-offs (Keller & Swanson, 1979; O'Connor et al., 2003), NFM efforts will be undermined because water
is being transported downstream more quickly. In-channel sediment accumulations upstream of Type 3 and Type
4 structures may also integrate with the existing floodplain in the long run if they are not reworked (Montgomery &
Abbe, 2006).

2.5 | Importance of structural stability

The stability and persistence of NFM wood structures determine how long their geomorphic influence will last
(Cadol & Wohl, 2011). First, stability is contributed by the structural complexity (Figure 4) of wood structures. Com-
pared with conifers, deciduous trees are more likely to interlock with each other and form stable structures in channels
because they have more irregular forms (Gurnell & Sweet, 1998). For the same reason, wood pieces with root wads
attached also tend to form more stable dams (Baillie et al., 2008). Some wood species such as willow (Miku�s et al., 2013)
and alder (Klaar et al., 2011) can resprout and develop roots into the stream bed, contributing to stability. Second,
attachment to the banks or partial burial (Figure 4) in the stream bed increases structural stability (Baillie et al., 2008).
Conversely, small and short pieces either float on the water surface or are only attached to one bank, so they will be
easily rotated and transported by the flow (Piégay & Gurnell, 1997; Robison & Beschta, 1990). Third, time is an impor-
tant factor. NFM wood structures will become more complex and stable if they trap small wood pieces over time, but
they will also undergo decomposition (Merten et al., 2013), making them less likely to sustain their geomorphic influ-
ence (Cadol & Wohl, 2011; Figure 4: unclear relationship between “stability and persistence” and “time elapsed since
wood input”). Even displaced structures can exert some influence on channel morphology. Wood pieces in transit can
scour the bed and the banks mainly through abrasion (Nakamura & Swanson, 2003). When they eventually get depos-
ited at preferential locations (e.g., along the outer bank of a bend, at the upstream end of an exposed bar, behind bridge
piers or other wood structures downstream), they may continue to exert their geomorphic influences at those places
(Melville & Dongol, 1992; Pagliara et al., 2011; Piégay & Gurnell, 1997).
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3 | POTENTIAL ECOLOGICAL EFFECTS OF NATURAL FLOOD
MANAGEMENT WOOD STRUCTURES

The influence of NFM wood structures on fish is not discussed in this review as relevant information could be extracted
from existing reviews (Dolloff & Warren, 2003; Nagayama & Nakamura, 2010; Smokorowski & Pratt, 2007; Zalewski
et al., 2003). Swanson et al. (2021) also pointed out that the response of fish to in-stream wood had received dispropor-
tionately more attention than that of other organisms, so heavier weighting should be placed on aquatic micro-
organisms and aquatic macroinvertebrates. Other taxonomic groups reported to be benefited by in-stream wood include
aquatic vegetation, amphibians, terrestrial macroinvertebrates, and terrestrial vertebrates (Figure 3(b)), but due to the
lack of evidence, it is uncertain if findings can be applied to NFM contexts. This section will therefore focus on aquatic
macroinvertebrates, aquatic micro-organisms, and riparian vegetation.

3.1 | Aquatic macroinvertebrates

The submerged surfaces of Type 2, Type 3, and Type 4 structures should harbor a high diversity of aquatic
macroinvertebrates (Benke & Wallace, 2003). Some of these species are xylophagous, ingesting wood fragments as the
major component of their diet (Anderson et al., 1984; Collier & Halliday, 2000; Steedman & Anderson, 1985). External
food sources on the wood surface can be exploited by other functional feeding groups: scrapers (Collier et al., 2004;
Tank & Winterbourn, 1996), filter-feeders (Cudney & Wallace, 1980), and collector-gatherers (Smock et al., 1989). The
structures offer benefits beyond nutrition as some species make use of them for pupation, emergence, and oviposition
(Hoffmann & Hering, 2000). Which group dominates depends on wood species and decay status (Magoulick, 1998).
There is normally a transition from dominance by surface dwellers to dominance by xylophagous borers as the wood
piece softens over time to become more palatable (Gurnell et al., 1995). Species compositions on wood surfaces are
sometimes distinct from those living on inorganic substrates (Benke et al., 1984; Dossi et al., 2018; Phillips, 2003;
Shields et al., 2008; Warmke & Hering, 2000), but more commonly the individuals found on wood surfaces are simply
opportunists facultatively associated with wood (Dudley & Anderson, 1982; Lester & Wright, 2009; Valente-Neto
et al., 2015). Filter-feeding species, by constructing nets on elevated wood surfaces instead of sediment surfaces, can
gain access to the more nutritious particles suspended higher in the water column (Cashman et al., 2016). Predators
also prefer wood surfaces as there is a higher prey availability (Phillips & Kilambi, 1994).

Macroinvertebrate communities in the vicinity of NFM wood structures are also likely to be diversified. First, this
may be due to the interception of organic particles that serve as favorable food sources for some macroinvertebrates
(Gerhard & Reich, 2000; Winkler, 1991; Figure 5). In other situations, increased diversity may be due to increased habi-
tat heterogeneity, enabling the habitat needs of more species to be satisfied (Yarnell, 2006; Figure 5). For example, large
wood diversified the stream bed of Pliszka River, Poland, into distinct patches of sand, gravel, and organic matter, and
each of these three types harbored a distinct faunal assemblage (Pilotto et al., 2014). Another study conducted in the
Ume River catchment, Sweden, showed that locally increased flow velocities and sediment sizes induced by in-stream
wood favored a distinct assemblage of species (Frainer et al., 2017). Moreover, buried wood was found to increase the
densities of invertebrates such as ostracods, mites, and annelid worms inhabiting the subsurface (Crenshaw
et al., 2002). Since Type 1 structures only interact with the water column occasionally, their constituent wood pieces are
unlikely to be persistently inhabited by aquatic macroinvertebrates. They are also unlikely to intercept much floating
organic matter and benefit shredders during base flows. However, Type 1 structures may retain macroinvertebrates
flushed away from their benthic habitats during high flows and serve as sources of colonists after catastrophic events
(Borchardt, 1993; Hax & Golladay, 1998; Figure 5). Moreover, as Type 1 structures could potentially drive geomorphic
changes, they may diversify macroinvertebrate communities on the stream bed. The creation of new floodplain chan-
nels and the subsequent increase in stream bed area may increase the population size at the landscape scale (Venarsky
et al., 2018).

NFM wood structures may sometimes have limited effects on macroinvertebrates in upland streams. First, this may
be due to the prominence of coarse sediments (Jähnig & Lorenz, 2008; Phillips & Kilambi, 1994), which provide favor-
able habitats for macroinvertebrates (Drury & Kelso, 2000; Imbert et al., 2005). Consequently, there is no incentive for
them to migrate to wood surfaces. Conversely, fine substrates are less attractive due to their low stability, so the addi-
tion of wood in streams dominated by these substrates will lead to the concentration of macroinvertebrates on wood
surfaces (Benke, 1984). Second, as mentioned earlier, it may be more difficult for the structures to modify the physical
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habitat in upland streams, hence offering no new niches for additional species. For instance, in Barbours Creek
(Virginia, The United States), the addition of wood did not cause any increase in the number of pools, so no new habitat
was created for species preferring slow-flow habitats (Hilderbrand et al., 1997). In other situations, factors independent
of the presence of wood may be more important in limiting macroinvertebrate diversity, including the inability of
organisms to disperse and colonize favorable sites (McKie & Cranston, 2001; Jähnig et al., 2010), the availability of sun-
light (Carlson et al., 1990), the amount of fine sediment supply (Larson et al., 2001), and the frequency of extreme
events that could cause physical disturbances and affect water quality (Testa et al., 2010).

Finally, it is worth highlighting situations where NFM wood structures may harm benthic macroinvertebrates.
Arimoro & Osakwe (2006) observed that wood fragments smothered the stream bed and released harmful leachates,
ultimately leading to the loss of pollution-sensitive genera such as Baetis and Centroptilum. Peters et al. (1976) also
discovered that toxic substances released from wood (e.g., lignans and tropolones) could reduce survival rates of
mayfly and caddisfly larvae. Physical disturbances to the stream bed during the installation process were found to
be harmful to benthic macroinvertebrates, but signs of recovery were recorded in 1 year (Collier & Bowman, 2003).
Three other studies (Entrekin et al., 2007; Spänhoff et al., 2006; Walther & Whiles, 2011) also reported lower num-
bers of macroinvertebrates in stream reaches containing high wood loads, but no explanation was provided. Most
likely, some of the other factors cited above were more important in structuring benthic community structure in
these cases.

3.2 | Aquatic micro-organisms

NFM wood structures benefit micro-organisms in at least two ways. First, the submerged parts of Type 2, Type 3, and
Type 4 structures provide spaces for the attachment of biofilms, which are made up of algae and other heterotrophic
organisms such as fungi and bacteria (Collier & Halliday, 2000; Díez et al., 2002; Findlay et al., 2002; Tank &
Webster, 1998; Tank & Winterbourn, 1996; Tsui et al., 2000). Second, they act as food sources for these heterotrophs, as
reflected by the presence of enzymes involved in the degradation of wood components such as lignin and cellulose on
wood surfaces (Bucher et al., 2004; G�omez et al., 2016; Zare-Maivan & Shearer, 1988). However, the relative contribu-
tions of wood tissues, autochthonous production by epixylic algae, and organic matter intercepted from the stream flow
toward microbial metabolism remain unclear. Type 1 structures are expected to have minimal influence on epixylic
microbial communities owing to their infrequent contact with the water column. However, by modifying stream bed
sedimentary characteristics, they may still influence epilithic microbial communities.

FIGURE 5 Mechanisms through which NFM wood structures diversify macroinvertebrate communities (yellow: Mechanisms

associated with geomorphic changes; green: Mechanisms associated with movements of organisms; blue: Mechanisms associated with

biogeochemical changes); pathways most relevant to Type 1 structures enclosed by dotted box
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3.3 | Terrestrial vegetation

Type 3 and Type 4 structures may cause water table levels in the river banks to rise during base flows, and soils will
become more frequently saturated with water (Gurnell et al., 1995). Riparian plant communities are therefore driven
toward domination by water-tolerant species. Furthermore, they may promote riparian forest development (Collins
et al., 2012). Osei et al. (2015b) analyzed sediment samples collected from five different types of locations (within wood
jams, on bank faces near wood jams, on bank faces far from wood jams, on gravel bars, and on the floodplain) in High-
land Water, UK, and observed that plant propagule abundance and species richness were both significantly higher in
samples obtained from bank faces near wood jams. Similar results were obtained from other surveys in River Bure, UK
(Osei et al., 2015a) and Fiume Tagliamento, Italy (Gurnell et al., 2001). When the propagules germinate and grow into
mature plants, they retain more sediments and lead to the expansion of floodplains (Abbe & Montgomery, 1996; Mont-
gomery & Abbe, 2006). It should be noted, however, that when NFM wood structures disintegrate during flood events,
the mobilized wood pieces can cause physical disturbances to riparian forests (Johnson et al., 2000). Since Type 1 and
Type 2 structures maintain a gap with the stream bed, significant sediment accumulation and vegetative colonization
may not occur in their vicinity. However, since they force water onto the floodplain during flood events, plant propa-
gules may deposit further in the interior of the floodplain, resulting in the development of vegetation there instead.

4 | POTENTIAL BIOGEOCHEMICAL EFFECTS OF NATURAL FLOOD
MANAGEMENT WOOD STRUCTURES

Previous studies on in-stream wood mainly focused on the influence of in-stream wood on local carbon and nitrogen
cycling (Figure 3(c)). These findings are suggested to be relevant to NFM contexts as well.

4.1 | Carbon and organic matter cycling

Particulate organic matter (POM) storage by NFM wood structures is achieved via three mechanisms. First, Type 2, Type
3, and Type 4 structures can directly intercept POM in transport (Pfeiffer & Wohl, 2018; Figure 6: “intercepting coarse
POM”). For example, Smock et al. (1989) recorded high amounts of POM trapped within the interlocking structure of
woody dams (i.e., 3326 g/m2, compared with only 548 g/m2 on the sediment surface). Type 1 structures may intercept
POM during flood events, but as the discharge decreases, the POM will be transported underneath the dams. Second,
NFM wood structures induce pool formation, and POM will settle onto the stream bed in these slow-flow areas
(Livers & Wohl, 2016; Livers et al., 2018; Figure 6: linkage between “pool formation” and “deposition of POM”). Third,
accumulation of fine grains upstream of Type 3 structures, reach-scale textural fining associated with Type 2, Type
3, and Type 4 structures, and reduced coarsening associated with Type 1 structures all imply an increase in the total
sediment surface area available for the attachment of OM (Sutherland, 1999; Figure 6: linkage between “textural fining”
and “adsorption on grain surface”). Pilotto et al. (2014) surveyed a river in western Poland and observed that sediments
in reaches with wood contained two times more OM than those in reaches without wood (2.26 vs. 0.77%). Trotter (1990)
also compared streams with and without in-stream wood and saw that the former stored as much OM as 885 g/m2,
roughly two times that of the latter. These comparative studies were supported by a field experiment: Daniels (2006)
measured that, in a lowland river in northern Illinois, the percentage mass of OM adhered to benthic sediments
decreased from 6.35 to 4.23% after wood removal. In addition to POM, submerged structures may retain dissolved OM
— Baldwin et al. (2014) reported its uptake by epixylic biofilms (Figure 6: “dissolved OM in water column” uptaken by
“epixylic biofilm”). Finally, constituent wood pieces of NFM structures themselves represent a form of OM storage
(Figure 6: “OM in wood tissues”). Beckman & Wohl (2014) studied 30 woody dams, observing that the mass of carbon
stored within wood tissues was four times as much as that stored in sediments trapped by the dams.

NFM wood structures may also accelerate degradation of OM. Blaen et al. (2018) observed that the rate of respira-
tion in Hammer Stream (West Sussex, UK) increased by more than three times when the amount of in-stream wood
doubled. Similar relationships between in-stream wood and reach-scale metabolic rates were also reported for some
streams in Piedmont, eastern USA (Sweeney et al., 2004). Two major mechanisms can account for accelerated OM
processing. First, submerged wood surfaces of NFM structures provide space for the attachment of epixylic biofilms,
which can produce 10 times more carbon dioxide than benthic communities (Gulis et al., 2008; Tank et al., 1993;
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Figure 6: “epixylic biofilm” having “respiration > photosynthesis”). Epixylic biofilms respire both OM derived from
wood tissues and that intercepted from the water column, but the precise partitioning is unclear. Second, there is also
enhanced OM processing in channel locations other than wood surfaces. Increases in the standing stock of coarse POM
and epilithic OM on the stream bed associated with Type 3 and Type 4 structures likely favor more faunal and micro-
bial activities, resulting in an increase in the absolute amount of OM being transformed (Acuña et al., 2013; Figure 6:
“biological processing of coarse POM”). Even when there is no increase in the standing stock of OM, increased densities
of macroinvertebrates in association with stream bed heterogeneity induced by Type 1 and Type 2 structures can result
in higher rates of coarse POM decomposition and carbon dioxide production (Frainer et al., 2017). Finally, anoxic sedi-
ments retained by Type 3 structures may support anaerobic respiration pathways such as methanogenesis (Baker
et al., 1983; Crenshaw et al., 2002; Figure 6: “methane production” arising from “anoxic conditions”).

4.2 | Inorganic nutrient cycling

Submerged parts of NFM wood structures may remove dissolved nutrients from the water column. Comparing reaches
with wood and those without, the removal rates of phosphate (Valett et al., 2002; Warren et al., 2007; Webster
et al., 2000) and ammonium (Acuña et al., 2013; Roberts et al., 2007; Sweeney et al., 2004) were both found to be at least
two times higher in the former. Bernhardt et al. (2003) observed a 10-fold increase in the removal rate of nitrate follow-
ing wood input. A few mechanisms can contribute to accelerated nutrient removal. First, increases in the concentra-
tions of nitrogen and phosphorus on wood surfaces after prolonged submergence in streams suggest that dissolved
nutrients get either physically adsorbed to the wood surface or incorporated into the biomass of the micro-biota
inhabiting the wood surface (Aumen et al., 1985; del Campo & G�omez, 2016; Ferreira et al., 2006; Sinsabaugh
et al., 1993; Figure 6: linkages between “dissolved nutrients in water column,” “epixylic biofilm,” and “adsorption on
wood surface”). Second, textural fining or reduced coarsening associated with NFM wood structures may result in a

FIGURE 6 Impact of NFM wood structures on carbon and nutrient cycling (brown: Wood features; dark blue: Biogeochemical

consequences; yellow: Geomorphic factors; green: Processes on the surface; light blue: Processes in the subsurface); pathways considered

most relevant to Type 1 structures enclosed by dotted box
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larger surface area for the adsorption of nutrients (Warren et al., 2007; Figure 6: connection between “dissolved nutri-
ents in water column” and “adsorption on grain surface”). Third, increased rates of biogeochemical transformations
within the anoxic sediments mostly associated with Type 3 structures can also contribute to faster removal (Figure 6:
“textural fining” giving rise to “anoxic conditions”). For example, Groffman et al. (2005) observed higher rates of deni-
trification in sediments trapped within organic debris dams than in gravel bars. There is also some evidence of
enhanced anaerobic ammonium oxidation (anammox) in areas around wood pieces, as they increase the time of contact
between biogeochemically active surfaces and stream water rich in reactants (Shelley et al., 2017). Anammox removes
dissolved nitrite and ammonium from the water column and converts them into nitrogen gas. Wood-induced transfor-
mations of phosphorus are seldom reported; adsorption and biological assimilation may be more important in account-
ing for its removal.

NFM wood structures may also favor biogeochemical reactions that release nutrients in inorganic forms that can be
readily utilized by micro-organisms. For example, OM stored by Type 3 and Type 4 structures may provide energy for
nitrogen fixation (Baker et al., 1983) and lead to more ammonium being produced. Type 1 and Type 2 structures may
stimulate aerobic processes such as nitrification (Briggs et al., 2013; Crenshaw et al., 2002) and the mineralization of
inorganic compounds (Hale & Groffman, 2006) in the hyporheic zone by forcing oxygen-rich surface water into the sub-
surface (Krause et al., 2014; Lautz et al., 2006; Lautz & Siegel, 2006; Sawyer et al., 2011; Sawyer & Cardenas, 2012;
Stofleth et al., 2008; Figure 6: “hyporheic exchange” leading to “oxic conditions”), resulting in the production of dis-
solved nitrogen ions. Overall, these processes may be slower than those described above, resulting in net nutrient
removal.

4.3 | Source of matter for downstream ecosystems

Physical breakdown and biological processing of the constituent wood pieces of NFM structures will transfer POM into
the water column (Jacobson et al., 1999; Merten et al., 2013; Ward & Aumen, 1986; Figure 6). Wood tissues are also a
source of dissolved substances as leaching releases water-soluble compounds in wood tissues rapidly upon submergence
(Díez et al., 2002; Gonçalves et al., 2007; Jones et al., 2019; Spänhoff & Gessner, 2004). These chemicals can influence

FIGURE 7 Conceptual model describing the potential secondary effects of NFM wood structures (red: Geomorphic effects; green:

Ecological effects; blue: Biogeochemical effects)

12 of 22 LO ET AL.



ecosystem functioning downstream (Fisher & Likens, 1972), so catchment-scale carbon and nutrient budgets must take
into account these extra sources of materials provided by NFM wood structures. Although Type 1 structures are gener-
ally not submerged in water, physical breakdown of their aerial parts may also contribute particulate matter to the
stream flow. In addition, rainwater falling onto the structures may transfer dissolved substances originating from wood
tissues into the stream (Reiners & Olson, 1984).

5 | CONCLUSION: TESTING THE SECONDARY EFFECTS OF NATURAL
FLOOD MANAGEMENT WOOD STRUCTURES

The preceding review of the existing literature has provided important insights into the plausible secondary effects of
NFM woody dams and highlighted important research gaps. First, there is a clear need to evaluate the geomorphic
effects of NFM wood structures. Having considered the key features of the different types of NFM wood structures, it is
suggested that the they can likely lead to the following geomorphic effects (Figure 7; Table 1): (a) formation of plunge

TABLE 1 Geomorphic, ecological, and biogeochemical effects of in-stream wood, highlighting those that are considered to be relevant

to NFM wood structures (Figure 7) in particular

Potential secondary effects Type 1 Type 2 Type 3 Type 4

Pool formation

• Deflector pools ✓

• Plunge pools ✓ ✓

• Underflow pools ✓ ✓

Sediment storage

• Accumulation of fine sediments ✓

• Accumulation of large clasts ✓ ✓ ✓ ✓

• Textural fining during base flows ✓ ✓ ✓

• Reduced coarsening during flood events ✓ ✓ ✓ ✓

Influencing bank morphology

• Bank erosion ✓ ✓ ✓ ✓

• Bank protection ✓

Step formation ✓

Bar formation ✓ ✓ ✓ ✓

Influencing floodplain morphology

• Creating new floodplain channels ✓ ✓

• Enlargement of existing floodplains ✓ ✓

Aquatic macroinvertebrates and micro-organisms

• On wood surfaces ✓ ✓ ✓

• On the stream bed ✓ ✓ ✓ ✓

Carbon cycling

• OM storage and processing within the structure ✓ ✓ ✓

• OM storage and processing on the stream bed ✓ ✓ ✓ ✓

Nitrogen and phosphorus cycling

• Adsorption/ biological uptake onto wood surfaces ✓ ✓ ✓

• Adsorption/ biological uptake onto grain surfaces ✓ ✓ ✓ ✓

• Accelerated anoxic processes in the subsurface ✓

• Accelerated oxic processes in the subsurface ✓ ✓

Source of dissolved and particulate matter ✓ ✓ ✓ ✓
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pools and underflow pools; (b) trapping of sediments in the gap between the structure and the stream bed; (c) textural
fining during base flows or reduced coarsening of the stream bed after high flows; (d) erosion of both banks; and
(e) formation of floodplain channels. High-resolution, three-dimensional surveys can help reveal these geomorphic
changes (Carrivick & Smith, 2018).

Further empirical analyses of how these geomorphic effects drive further changes in ecosystem structure and func-
tioning are also necessary. Since some NFM wood structures are not persistently submerged in water, their surfaces
may not be important to aquatic macroinvertebrates and micro-organisms. However, modifications of the physical habi-
tat that they induce (e.g., diversification of stream bed substrates) may still drive ecological changes (e.g., diversification
of benthic macrofaunal communities; Figure 7; Table 1). The relationship between macroinvertebrates and wood-
induced geomorphic changes has not been extensively empirically tested. The study by Pilotto et al. (2014) was one of
the few exceptions, but it was limited to a lowland river. More benthic community studies involving NFM wood struc-
tures in upland environments are therefore required.

Geomorphic changes driven by NFM wood structures have biogeochemical implications as well. For example,
when the dams reduce sediment coarsening under high flows, there will be an increase in the area for the attach-
ment of OM and nutrients (Sutherland, 1999; Warren et al., 2007), promoting the growth of micro-organisms. In
contrast, the growth of micro-organisms will be inhibited where the dams promote scouring and lead to sediment
instability (Atkinson et al., 2008). Ultimately, biogeochemical processes driven by these micro-organisms will be
altered (Figure 7; Table 1). To date, this connection has not been thoroughly scrutinized. Shelley et al. (2017) stud-
ied biogeochemical reactions in sediments near wood, but only anaerobic nitrate reduction pathways were investi-
gated. Aerobic processes such as respiration and photosynthesis were not quantified. How wood-induced changes in
sedimentary characteristics influenced biogeochemical processes was also not examined. By isolating and measuring
the metabolic rates of sediments from areas that are expected to undergo geomorphic changes upon the input of
wood (including NFM wood structures), the contribution of wood-induced geomorphic changes, relative to the other
mechanisms described in Figure 6, to the overall alteration in reach-scale metabolism can be precisely identified. In
addition, understanding how in-stream wood influences benthic metabolism and the production of carbon dioxide
enables more accurate quantifications of the various processes leading to carbon outgassing from inland waters. Out-
gassing is thought to play a crucial role in the global carbon cycle, but relevant quantitative information is still lac-
king (Battin et al., 2009).

All these secondary effects are best investigated using a full before-after control-impact (BACI) research design,
which was seldom employed in previous studies (Table 2). Through a full BACI design, we can most reliably isolate
local changes driven by NFM wood structures from those caused by natural variations (Underwood, 1992) and quantify
the resulting secondary effects robustly.
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