
This is a repository copy of Error motion trajectory-driven diagnostics of kinematic and
non-kinematic machine tool faults.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/176944/

Version: Published Version

Article:

Rooker, T., Stammers, J., Worden, K. et al. (3 more authors) (2022) Error motion
trajectory-driven diagnostics of kinematic and non-kinematic machine tool faults.
Mechanical Systems and Signal Processing, 164. 108271. ISSN 0888-3270

https://doi.org/10.1016/j.ymssp.2021.108271

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Mechanical Systems and Signal Processing 164 (2022) 108271

Available online 6 August 2021
0888-3270/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

Error motion trajectory-driven diagnostics of kinematic and
non-kinematic machine tool faults
T. Rooker a,b,∗, J. Stammers c, K. Worden b, G. Potts d, K. Kerrigan c, N. Dervilis b
a Industrial Doctorate Centre in Machining Science, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1
4DT, UK
b Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 4DT, UK
c The University of Sheffield Advanced Manufacturing Research Centre, Catcliffe, Rotherham, S60 5TZ, UK
dMetrology Software Products Ltd., 6F Greensfield Court, Greensfield Park, Alnwick, NE66 2DE, UK

A R T I C L E I N F O

Communicated by Y. Lei

Keywords:
Multi-axis machining
Error motion trajectory/volumetric error
Machine tool condition monitoring
Ensemble learning
Transfer learning

A B S T R A C T

Error motion trajectory data are routinely collected on multi-axis machine tools to assess their
operational state. There is a wealth of literature devoted to advances in modelling, identification
and correction using such data, as well as the collection and processing of alternative data
streams for the purpose of machine tool condition monitoring. Until recently, there has been
minimal focus on combining these two related fields. This paper presents a general approach to
identifying both kinematic and non-kinematic faults in error motion trajectory data, by framing
the issue as a generic pattern recognition problem. Because of the typically-sparse nature of
datasets in this domain – due to their infrequent, offline collection procedures – the foundation
of the approach involves training on a purely simulated dataset, which defines the theoretical
fault-states observable in the trajectories. Ensemble methods are investigated and shown to
improve the generalisation ability when predicting on experimental data. Machine tools often
have unique ‘signatures’ which can significantly-affect their error motion trajectories, which are
largely repeatable, but specific to the individual machine. As such, experimentally-obtained data
will not necessarily be easily defined in a theoretical simulation. A transfer learning approach
is introduced to incorporate experimentally-obtained error motion trajectories into classifiers
which were trained primarily on a simulation domain. The approach was shown to significantly
improve experimental test set performance, whilst also maintaining all theoretical information
learned in the initial, simulation-only training phase. The ultimate approach represents a viable
and powerful automated classifier for error motion trajectory data, which can encode theoretical
fault-states with efficacy whilst also remain adaptable to machine-specific signatures.

1. Introduction

The ongoing technological advancements in machine tool and controller design have opened up ever-increasing levels of
precision, accuracy and production capabilities. The proliferation of the multi-axis machine tool1 was a significant step, enabling the
production of more complex workpiece geometries, more efficient operation, extended tool life and improved surface finish quality.

∗ Corresponding author at: Industrial Doctorate Centre in Machining Science, Department of Mechanical Engineering, University of Sheffield, Mappin Street,
Sheffield, S1 4DT, UK.

E-mail address: tjrooker1@sheffield.ac.uk (T. Rooker).
1 Defined as a machine tool which incorporates four or more axes of motion, most commonly comprising two rotational axes in addition to the three

traditional translational axes.

https://doi.org/10.1016/j.ymssp.2021.108271
Received 14 October 2020; Received in revised form 11 June 2021; Accepted 22 July 2021

http://www.elsevier.com/locate/ymssp
http://www.elsevier.com/locate/ymssp
mailto:tjrooker1@sheffield.ac.uk
https://doi.org/10.1016/j.ymssp.2021.108271

Mechanical Systems and Signal Processing 164 (2022) 108271

2

T. Rooker et al.

Glossary

CNC Computerised Numerical-Control

MCTM Machine Tool Condition Monitoring

HTM Homogeneous Transformation Matrix

ANN Artificial Neural Network

ReLU Rectified Linear Unit

CNN Convolutional Neural Network

MC Multi-Class (ensemble classifier)

OVR One-Vs-Rest (ensemble classifier)

OVO One-Vs-One (ensemble classifier)

FT Fine-tuning (ensemble classifier)

CF Catastrophic Forgetting

TP True Positive

TN True Negative

FP False Positive

FN False Negative

PR Precision–Recall (curve)

AUPRC Area Under Precision–Recall Curve

Despite these advancements, real structures are never perfectly rigid, and machine tools are no exception to this rule. Variation
in quasi-static and dynamic error sources [1], that affect machining accuracy, arise due to local temperature fluctuations, in-process
conditions, significant events (such as a tool crash, or calibration activity), errors in the size and form of machine tool components as
well as general wear of moving elements throughout normal operation. Consequently, it is not possible to maintain perfect accuracy
and precision in manufacturing at all times; there will always be some observable, quantifiable degree of error present on a finished
workpiece, as compared to its idealised specification.

Extending this concept of imperfection, it is widely-appreciated that the performance of a given manufacturing system will change
throughout its operating life [2], as its compound error profile is affected through varying levels of use. Multi-axis machine tools
are particularly susceptible to this problem because of the inclusion of rotational axes, which introduce additional nonlinear error
components to the system. Owing to this issue, and amid requirements for repeatable performance in the manufacturing process,
there has naturally been considerable research interest in multi-axis machine tool error identification.

ISO 230-7 [3] defines two properties which affect the geometric accuracy of the rotary-axes. An axis shift is defined as the ‘quasi-
static relative angular and linear displacement, between the tool and workpiece sides, of the axis average line due to a change in
conditions’. The axis average line is a straight line segment, with respect to the reference coordinate axes, representing the mean
location of the axis of rotation. Error motions, on the other hand, are defined as ‘unwanted changes in the position and orientation
of an axis of rotation, relative to its axis average line as a function of angular position of the rotating component’. In other words,
the axis shifts are single value parameters which quantify positional or orientation deviations from the ideal of the rotation-axis,
whereas the error motion is a function which defines the actual trajectory of the error, in a three-dimensional coordinate space.
It is worth noting that various literature sources use alternative terms to describe machine tool error in the general sense, with
examples including volumetric error, volume error or geometric error. For absolute clarity, however, this paper will maintain the latest
definitions formalised in ISO 230-7.

Broadly speaking, the process of error identification involves applying a method for the collection of error motion trajectory data,
and using these data to either calculate the axis shift values for kinematic compensation, or determine the individual error motion
functions for a more-comprehensive solution. ISO 230-7 [3] currently recognises the R-Test [4] for error identification, whereby a
precision sphere, mounted on three orthogonally-oriented linear displacement sensors, is located at various indexations of the axis
of rotation. The classic R-Test is a dynamic testing method, such that data are collected continually throughout axis motion. The
data collected by the standardised procedures reveal the error motion trajectory, from which the error motion functions or axis shift
values can be determined.

Static variants of the R-Test, wherein the procedure and equipment setup is replicated, but error motion trajectory data are
collected at discrete intervals, have been investigated in the literature for objectives such as complete identification of all axis
shifts and error motions in the rotary-axes [5]. Another approach, involving locating a rectangular artefact with a touch-trigger
probe [6], was shown to be effective for identifying and calibrating axis shift errors. The work was then extended to complete
identification of axis shifts and error motions, with a similar artefact probing approach [7]. Spherical artefacts are often favourable
to other geometries, due to their nominally-identical form when approached from different angles. The scale and master balls artefact
method [8] employs touch-trigger probing to locate a collection of precision spheres at various axis positions, and has been shown
to provide the necessary trajectory data to estimate all axis shift errors in a multi-axis machine tool. Locating a single spherical
artefact to evaluate the rotary-axes is less often considered in the research domain; however, it is widely adopted in industry [9],
being regularly applied for both pre-production checks and to inform maintenance or calibration activities.

Mechanical Systems and Signal Processing 164 (2022) 108271

3

T. Rooker et al.

Error motion trajectories are a somewhat-underrated consideration for a condition-based maintenance strategy, whereby
diagnostics and maintenance policy decisions are informed by the system condition directly. Significant research focus with regard
to condition-based maintenance has been afforded to Machine Tool Condition Monitoring (MTCM). In-process monitoring of the
machining process [10] has been studied intensively, with particular interest recorded in monitoring of the cutting tool wear
and remaining useful life [11,12]. Others have placed precedent on monitoring the structural and functional components which
physically comprise the machine tool. Monitoring of the servo-motor current has been proposed [13] as a method for identifying
faults in the rotary-axes of machine tools. Modern machine tool controller systems are often equipped with self-diagnostic tools
to monitor faults in the servos and other electrical issues [14]. Approaches for monitoring the power consumption in machine
tools have been applied for both energy efficiency monitoring [15] and online fault monitoring [16]. Frameworks for managing
the multi-dimensional data streams which are collected with online monitoring techniques have been considered with cloud-based
techniques [17] and structured ontologies [18]. More recently, the research focus has been extended to data mining applications
for data acquisition in populations of multiple machine tools, which is an important precursor for the implementation of Industrie
4.0 [19].

1.1. Motivation

Generally, the research landscape covering machine tool error is primarily concerned with the identification of the axis shift and
error motion parameters, which can be clearly defined in a kinematic model and corrected with a numerical best-fitting process.
Although closely related to the interest in MTCM, the two fields have, historically, been largely separate entities. Recent state-of-
the-art work has begun to bridge this gap — notably in the population-based assessment of double ball-bar data for machine tool
diagnostics [20], and the extension of the scale and master balls artefact technique to a condition monitoring system [21] [22].
However, research concerning MTCM through the analysis of error motion trajectory data is still sparse, with most publications
in the field focusing on more-traditional vibration-, force- or power-based condition-based maintenance approaches, to identify
in-process condition deviations which correlate with physical instances of mechanical damage, or electrical faults in the system.

Error motion trajectories, acquired via inspection techniques, are an interesting alternative data source for an MTCM approach.
The data acquired have the potential to reveal certain non-kinematic faults – such as mechanical damage or electrical faults –
as well as the identification of kinematic errors, for which, they have been traditionally been developed and applied. Prior to
this paper, this broader capability has been seldom-explored, with the majority of error identification publications which utilise
the data tending to overlook the non-kinematic fault detection capability. In production environments, specialist professionals can
manually interpret the trajectory data [9] to diagnose controller software faults or mechanical axis issues, which cannot necessarily
be represented in a kinematic model. Understandably, there are issues with the current approach. Manual interpretation of the
reports is time-intensive, and being a specialist activity, it is not accessible for all users. Moreover, such a manual approach runs the
risk of subjectivity, meaning the diagnostic outcome may vary between individuals and those with different skill-levels. An assistive,
automated diagnostic system is thus required to address the issue in the industrial domain.

1.2. Contribution

This paper presents a novel approach to MTCM via direct study of error motion trajectories, for a fault diagnostics system
unconstrained by the kinematic error model and in a departure from the common school-of-thought in the field. Removing this
constraint allows for a system which can emulate the manual expert, extending the range of identifiable faults, through the use
of more-generic pattern recognition techniques. The approach is applicable for identifying the main kinematic errors affecting
machining accuracy, as well as alternative sources of error which are identifiable in the error motion trajectory.

Currently in industry, the fault diagnostic process is conducted by specialist consultants or experienced Maintenance Engineers,
via manual interpretation of the data. The manual process relies heavily on user skill level for success, and the process of manual
interpretation itself is open to subjectivity between different users. Both of these issues can have significant negative consequences
for obtaining a reliable and informative assessment of the machine’s health state. The automated approach presented in this paper
addresses these issues, providing a standardised tool for users of all skill levels to access expert diagnostic capabilities.

As the collection of error motion trajectory data is an offline procedure, often conducted at roughly one-week intervals in
production environments, it is infeasible to build a representative dataset through experimental collection alone. This paper
introduces a simulation dataset, representing five common fault-states identifiable in error motion trajectories, with the objective of
performing classification on experimentally-obtained data from actively-operational systems. The paper explores ensemble learning
methods to strengthen the generalisation ability of classifiers trained on purely simulated faults.

It is observed that real machines have unique signatures [23] which affect the error motion trajectory, resulting in abstractions
to the fault-state representations that do not necessarily conform to expected theoretical definitions. Attempting to incorporate
all possible signatures into a simulation is clearly infeasible. The final major contribution of this paper is a transfer learning
implementation, providing the ability to fine-tune a classifier upon receipt of new, informative data, as it is acquired in a dynamic
environment.

Mechanical Systems and Signal Processing 164 (2022) 108271

4

T. Rooker et al.

Fig. 1. Schematic illustration of the research route for this paper.

1.3. Outline of the paper

The paper is organised as follows. Section 2 firstly describes the experimental procedure conducted to acquire error motion
trajectory data for this paper. Section 3 describes the fault-states which are identifiable in such data, and the simulation procedure
for generating the classifier training datasets. Section 4 discusses the machine learning and ensemble methods investigated, as well
as the training/validation procedures for each classifier model and general model evaluation strategy. Section 5 presents the results
and discussion for both simulated and experimental datasets. Section 6 discusses the strengths/weaknesses of the proposed approach
in comparison with the traditional approach of numerical best-fitting. Finally, Section 7 provides concluding remarks and avenues
for future work. Fig. 1 provides a more detailed summary of the research route taken for this paper.

2. Experimental procedure

The inspection procedure [9], utilised for collecting the experimental test set in this paper, involves probing a single, spherical
artefact at numerous axis positions, or indexations. The instrumentation required for conducting the procedure is summarised below.

Mechanical Systems and Signal Processing 164 (2022) 108271

5

T. Rooker et al.

Fig. 2. Typical hardware setup for collecting error motion trajectory data with the artefact probing procedure.

Fig. 3. Diagram of typical spherical artefact setup on a B-C configured rotary table.

• Machine tool with five permissible motion axes (three linear, two rotary).
• Touch-trigger probing system & receiver.
• Precision spherical artefact.
• Proprietary artefact stand.
• Inspection data acquisition software (NC-Checker [9]).
• Personal computer and ethernet connection.

Multi-axis machine tools are most-often comprised of three linear-axes – facilitating motion in linear directions X, Y and Z –
and two additional rotary-axes, which provide Primary- and Secondary-axes of rotation, denoted A, B and C for motion around X,
Y and Z, respectively. Generally speaking, the Primary-axis is the 𝐶-axis, and the Secondary-axis is either A or B, dependent upon
the specific configuration. In this paper, a B-C machine tool configuration will be assumed.

For each procedure, the sphere is initially located at the ‘home’ position, with the rotary-axes indexed at B = 0𝑜, C = 0𝑜. Fig. 2(a)
shows the typical setup, with rotary-axes at the home position, and Fig. 3 shows this in diagrammatic form. Following confirmation
of the performance of the probe itself (with a dedicated testing cycle), the axes are then reindexed and the sphere is located in
its new location; this process is repeated until the full indexation range of the axis has been covered. The Primary-axis procedure
described in this paper locates the sphere at thirteen indexed positions from C = 0𝑜 to C = 360𝑜. For the Secondary-axis procedure,
the positions indexed are from B = 0𝑜 to B = 90𝑜. Fig. 2(b) shows the sphere being probed at an indexation of the Secondary-axis.
As the nominal kinematics of the system are known, the probing procedure can calculate the residuals between nominal and actual
for each sphere location, to produce the trajectory across the full axis index range. The full procedure is illustrated in Figs. 4(a) and
4(b).

An experimental test set was obtained from four actively-operational machine tools – two from a research environment, and two
provided by industrial partners – utilising the probing procedure described above. The dataset comprised a total of 144 examples
of Primary-axis error motion trajectories and 314 examples of Secondary-axis error motion trajectories, collected across a range of
time periods from twelve to eighteen months.

Table 1 summarises the experimental equipment, inspection procedure and probe performance test requirements for technical
reference in this paper. It should be noted that some data provided by industrial partners was collected with a different indexation
step size (nine indexations of 45𝑜, as opposed to 13 indexations of 30𝑜). Fundamentally, the key properties of the error motion
trajectories are unchanged, however such trajectories are presented at a slightly lower resolution than those which were collected

Mechanical Systems and Signal Processing 164 (2022) 108271

6

T. Rooker et al.

Fig. 4. Indexations of the Primary- and Secondary-axes utilised for experimental data collection and simulation.

Table 1
Summary of experimental procedure parameters. Note — some parameters may differ slightly in data
provided by industrial partners. Those affected are indicated with *. Another point to note is that the
data was collected from four different machine tools, some of which had different controllers installed in
their configuration. This variation does not affect the analysis in any way; however, the specific hardware
used for data collection is included here for technical reference.

Parameter Value

Experimental equipment

Machine tool controller Fanuc 31i/Heidenhain TNC640
Probe type Renishaw OMP60
NC-Checker software version 2016r2
Stylus length 50 mm (straight)
Stylus stem material Ceramic
Probe tip material Ruby
Probe tip size 6 mm
Precision sphere size 25 mm
Machine tool rotary-axes 2

Inspection procedure

Rotary-axis indexations* (Primary/Secondary) 13/7
Indexation step size* (Primary/Secondary) 30𝑜/15𝑜

Range of motion (Primary/Secondary) C = 0𝑜 to 360𝑜/B = 0𝑜 to 90𝑜

Fixed axis (Primary/Secondary) B = 0𝑜/C = 0𝑜

Measured points for axis tests 9
Measured points for probe performance test 25
Targeted testing interval Once per week

Probe performance test requirements

Probe performance (overall) ≤ 25 μm
Probe pre-travel variation ≤ 25 μm
Sphere position in X, Y, Z ≤ 25 μm
Sphere diameter ≤ 50 μm

with a smaller indexation step size. Such potential for variability is important to consider in developing a useful system for the end-
user, as unique users will endeavour to adapt the procedure to fit their specific requirements. The pre-processing for feature-based
and image-based datasets, described in Section 3, provides the necessary robustness for this variability.

3. Simulating fault-states in error motion trajectory data

The ability to generate informative training data artificially is imperative to building an automated diagnostic system in this
domain. Error motion trajectory data are sampled discontinuously throughout the machine life-cycle, so datasets are consequently
often small; therefore, training a classifier on real data is likely to be infeasible and ineffective. Each fault-state, and its corresponding
trajectory representation, is fundamentally comprised of error values in three dimensions, as obtained by the probing procedure. The
foundation for simulating kinematic faults in this paper is based on the theory of Homogeneous Transformation Matrices (HTMs).

Mechanical Systems and Signal Processing 164 (2022) 108271

7

T. Rooker et al.

Table 2
Common hyperparameter/characteristics by model.

Hyperparameter Primary-axis Secondary-axis

Classes 5 5
Samples per class 10,000 10,000
No. axis indexations 13 7
Axis index range C0, . . . , C360 B0, . . . , B90
Output matrix 3 × 13 3 × 7
Minimum error value −0.100 −0.100
Maximum error value 0.100 0.100
Mechanical noise parameter (𝜎𝑚) 𝑁(0, 0.02) 𝑁(0, 0.02)

Natural noise parameter (𝜎𝑛) 𝑁(0, 0.003) 𝑁(0, 0.003)

Defining the base frame, 𝑂, with origin in the base origin position; the tool, 𝑡𝑙, and workpiece, 𝑤𝑝, frames are then formed as
branches from 𝑂. The relative position of 𝑡𝑙 to 𝑤𝑝 can be obtained by,

𝑤𝑝𝑇𝑡𝑙 =
𝑤𝑝 𝑇𝑂 ⋅

𝑂 𝑇𝑡𝑙 (1)

where 𝑖𝑇𝑗 is a 4 × 4 HTM defining the position and orientation of frame 𝑗 in frame 𝑖 [5,24,25]. In a multi-axis machine tool,
each frame in the HTM represents a different kinematic component in the system; the components being synonymous with the
linear translational-axes providing motion in the X-, Y- and 𝑍-axis directions, and rotary-axes providing motion in the A-, B- and
C-directions. The non-ideal link, 𝐷𝑆 , between a frame 𝑆 and its predecessor, is the product of three transformations,

𝐷𝑆 = 𝐷𝑆 (nom) ⋅𝐷𝑆 (𝐸) ⋅𝐷𝑆 (∗) (2)

where 𝐷𝑆 (nom) defines the nominal position and orientation of frame 𝑆 with respect to the previous, encompassing the physical
design dimensions and nominal orientations of the connecting components. 𝐷𝑆 (𝐸) defines the errors in the link, conveniently
generalised for a rotation axis link [26] as,

𝐷𝑆 (𝐸) =

⎡⎢⎢⎢⎢⎣

1 −𝜖𝑧 𝜖𝑦 𝛥𝑥

𝜖𝑧 1 −𝜖𝑥 𝛥𝑦

−𝜖𝑦 𝜖𝑥 1 𝛥𝑧

0 0 0 1

⎤⎥⎥⎥⎥⎦
(3)

where 𝛥𝑥, 𝛥𝑦 and 𝛥𝑧 are the translational errors in the X-, Y- and Z-axes of kinematic component 𝑆, and 𝜖𝑥, 𝜖𝑦 and 𝜖𝑧 its rotational
errors, again about the X, Y and Z axes, respectively. 𝐷𝑆 (∗) defines the commanded change in position of kinematic component 𝑆.
For the BC rotary table configuration described in Section 2, Eq. (1) can be expanded to give,

𝑤𝑝𝑇𝑂 =𝑤𝑝𝑞 ⋅𝐷𝐶 ⋅𝐷𝐵 (4)

𝑂𝑇𝑡𝑙 =𝐷𝑌 ⋅𝐷𝑋 ⋅𝐷𝑍 (5)

where 𝑤𝑝𝑞 is the desired position in the workpiece frame given by [𝑥∗, 𝑦∗, 𝑧∗, 1]. Note that the transformation from 𝑤𝑝𝑞 with 𝐷𝐶

also incorporates the origin of the workpiece frame, colloquially known as the work offset. The coordinate location of the work
offset is unique to each workpiece setup, but is inevitably included as a nominal offset in Eq. (2). The length of the tool is similarly
incorporated into the transformation 𝐷𝑍 , on the tool-side of the calculation.

In order to produce an informative simulation of error motion trajectory data, it is convenient and appropriate to make a number
of assumptions and simplify the above expressions. One can assume zero tool length and work offset; as their values are arbitrary,
they have no effect on the motion of the rotary-axes themselves. The probing procedure applied in this paper collects only rotary-axis
motions, so it is reasonable to assume that there will be no influence from any linear axis motion 𝑥∗, 𝑦∗ and 𝑧∗. Finally, it will be
assumed that the kinematic chain is infinitely small, such that there is no nominal offset nom between any of the chain components.
The resultant, simplified expression for simulating rotary-axis faults is given by,

𝑤𝑝𝑇𝑡𝑙 ≈ 𝐷𝐶 (𝐸𝑐 , 𝑐
∗) ⋅𝐷𝐵(𝐸𝑏, 𝑏

∗) (6)

3.1. Diagnosable faults in error motion trajectory data

The current work considers five potential fault-states that can be identified by a multi-axis spherical artefact probing procedure,
described below. For pure kinematic faults — Classes One, Two and Three — the simulated state is obtained by modifying the
parameters in Eq. (3). For non-kinematic faults — Classes Four and Five — the state is obtained through a customised equation.
Examples of the type of error motion trajectories for each class are illustrated in Fig. 5. For brevity in the trajectory figures, Fig. 6
provides a generic illustration of the formatting.

Mechanical Systems and Signal Processing 164 (2022) 108271

8

T. Rooker et al.

3.1.1. Class one - The ideal case
This represents the situation in which there is negligible error present in the system, such that all measured errors collected are

nominally zero. All parameters in Eq. (3) are set to zero or negligibly small values; example trajectories are provided in Figs. 5(a)
and 5(f). In reality, there is likely to be some tolerance bound which will define what the Maintenance Engineer considers as ideal
performance. For this paper, the ideal case is simulated with Eq. (6) as a position error (Class Two) which is smaller than 10% of
the maximum error value given in Table 2. The trajectory representation is approximated by,

𝑤𝑝𝑇𝑡𝑙(1) ≈
𝑤𝑝 𝑇𝑡𝑙; 𝛥𝑥, 𝛥𝑦, 𝛥𝑧 ≤ 0.01 (7)

3.1.2. Class two - Position error of the rotary-axis average line
There is a translational error in the location of the rotary-axes’ origin, causing one or both of the axes to rotate eccentrically.

Error parameters 𝛥𝑥, 𝛥𝑦 and 𝛥𝑧 are modified to obtain this class; examples are illustrated in Figs. 5(b) and 5(g). Position error is
likely the most commonly-occurring fault, and generally the easiest to correct, requiring a simple update to the origin offsets held
in the controller. Class Two faults are simulated with Eq. (6), such that 𝑤𝑝𝑇𝑡𝑙(2) ≈

𝑤𝑝 𝑇𝑡𝑙.

3.1.3. Class three - Orientation error of the rotary-axis average line
There exists the parallelism error between the ideal and actual axis average lines, causing the table/head to tilt. Error parameters

𝜖𝑥, 𝜖𝑦 and 𝜖𝑧 are modified to obtain this class. Illustrated in Figs. 5(c) and 5(h), orientation errors are generally harder to correct
than their positional counterparts, often requiring manual adjustments to the axes themselves. Class Three faults are simulated
with Eq. (6), such that 𝑤𝑝𝑇𝑡𝑙(3) ≈

𝑤𝑝 𝑇𝑡𝑙.

3.1.4. Class four - Structural/bearing error motion
There is a non-kinematic, mechanical fault with the axis due to faulty bearings or loose component connections, causing it to

move erratically and unexpectedly when in use. Figs. 5(d) and 5(i) provide example illustrations. It is necessary to define another
equation to cover erratic faults, extending Eq. (6) to,

𝑤𝑝𝑇𝑡𝑙(4) ≈
𝑤𝑝 𝑇𝑡𝑙 ⋅

⎡
⎢⎢⎢⎢⎣

1 0 0 𝜎𝑚,𝑥
0 1 0 𝜎𝑚,𝑦
0 0 1 𝜎𝑚,𝑧
0 0 0 1

⎤⎥⎥⎥⎥⎦
(8)

where 𝜎𝑚,𝑥, 𝜎𝑚,𝑦 and 𝜎𝑚,𝑧 are randomly-generated scalar values, applied independently to the X, Y and Z coordinate points to simulate
the erraticism effect induced by a mechanical fault. In order to account for natural variation in the real process, an additional set of
randomly-generated scalars – 𝜎𝑛,𝑥, 𝜎𝑛,𝑦 and 𝜎𝑛,𝑧 – was also applied to the outputs of all five simulated classes, in the same manner
as for Eq. (8).

3.1.5. Class five - Controller compensation/scale reader issues
Illustrated in Figs. 5(e) and 5(j), these types of error motion trajectory are generally attributed to software faults. Controllers may

include compensation software to account for factors such as thermal expansion or deformation due to static loading, of the structural
loop. The scale reader is a measurement system which tracks the physical axis positions and converts them into a readable, coordinate
system. Faults attributed to both of these sources have been observed, in some cases, to induce straight lines and square-shaped
trajectory profiles. A new equation is again necessary to define this class, approximated by,

𝑤𝑝𝑇𝑡𝑙(5) ≈

{
𝑚 ⋅ 𝑠 ⋅ sgn(sin(𝜃∗ + 𝛼)) if 𝜃∗ < 90𝑜 or 180𝑜 ≤ 𝜃∗ < 270𝑜

𝑚−1
⋅ 𝑠 ⋅ sgn(sin(𝜃∗ + 𝛼)) if 90𝑜 ≤ 𝜃∗ < 180𝑜 or 𝜃∗ ≥ 270𝑜

(9)

where 𝑚 is a free gradient parameter defining the rotation of the trajectory, 𝑠 is the step size between each point, and 𝜃∗ is the
commanded rotary axis position, in the B- or 𝐶-axis. An additional small fixed parameter 𝛼 is included, preventing the signum
function at a rotary-axis position of 𝜃∗ = 0 from returning a zero value.

3.2. Simulation methodology

Datasets for model training and validation were simulated for the five classes described above, for Primary-axis and Secondary-
axis probing procedures. Table 2 provides a summary of the dataset characteristics. The sample output matrix size was determined
by the number of axis indexations, which is typically covered by each probing procedure.

The limits for minimum and maximum error values were determined by domain knowledge of the accuracy levels typically
observed on modern multi-axis machine tools. Note that, however, the overall magnitude of the error only affects the diagnosis
of the ideal case (Class One); the fault states (Classes Two — Five) are entirely defined by the shape, or profile, of the trajectory,
providing that the magnitude falls above the threshold for the ideal case. As such, the limits definition serves to generate a suitable
range of profiles which describe a variety of possible fault state permutations. By defining the absolute magnitude of the trajectory
as arbitrary, it is then viable to project extreme cases of experimental data – where the magnitude of the error exceeds the typically-
observed range – into the same standardised space, to be processed by the classification algorithm and correlated with the simulated
examples. The severity of an individual fault can then be trivially-quantified by extracting the magnitude of the trajectory alongside

Mechanical Systems and Signal Processing 164 (2022) 108271

9

T. Rooker et al.

Fig. 5. Error motion trajectory examples for Primary-axis 5(a)–5(e) and Secondary-axis 5(f)–5(j) classes.

Fig. 6. Diagrammatic description of the error motion trajectory images presented in this paper, with a Primary-axis Class Three trajectory as an example. The
three-dimensional trajectory acquired by the measurement procedure is reduced to a two-dimensional representation, by taking three projections in the X–Y,
Y–Z and X–Z planes. The three projections can then be plotted in the same space to obtain a single, two-dimensional figure. Note that the magnitude of the
trajectory is irrelevant for the classification algorithm, all critical information is portrayed by the trajectory profile.

the classification. This step is not presented in the current work, however it would be a straightforward and useful addition to the
final system deployment.

The number of samples per class processed for training a deep learning algorithm has a direct impact on the generalisation
performance, which is ultimately determined by the number of weight parameters in the model. That said, Goodfellow, Bengio and
Courville [27] recently proposed a total of 5,000 samples per class to achieve acceptable performance, as a general rule-of-thumb for
the current generation of deep learning algorithms. For this paper, a total of 10,000 samples were generated per class, comfortably
exceeding this rule-of-thumb.

Tables 3 and 4 provide summaries of the simulation characteristics and specific parameters for Primary and Secondary-axis
systems, respectively. A noise parameter with a variance of 3 μm was applied to all matrix elements to simulate small measurement
system/environmental variations, and a further noise parameter with a variance of 20 μm applied to simulate more extreme variation
in the structural/bearing error motions (Class Four). All samples were normalised about their average values.

Mechanical Systems and Signal Processing 164 (2022) 108271

10

T. Rooker et al.

Table 3
Specific hyperparameter/characteristics by class, for Primary-axis classifiers.

Class One Class Two Class Three Class Four Class Five

Kinematic model True True True True False
Equation (6), (3) (6), (3) (6), (3) (6), (3) (9)
Free parameters 𝛥𝑥 , 𝛥𝑦 𝛥𝑥 , 𝛥𝑦 𝛥𝑥 , 𝛥𝑦 𝜖𝑥 , 𝜖𝑦 𝛥𝑥 , 𝛥𝑦 𝑚, 𝑠
Parameter range (kinematic) 0 : 0.009 0.011 : 0.1 0.011 : 0.1 0.011 : 0.1 N/A
Noise parameters Natural Natural Natural Mechanical, natural Natural

Table 4
Specific hyperparameter/characteristics by class, for Secondary-axis classifiers.

Class One Class Two Class Three Class Four Class Five

Kinematic model True True True True False
Equation (6), (3) (6), (3) (6), (3) (6), (3) (9)
Free parameters 𝛥𝑥 , 𝛥𝑧 𝛥𝑥 , 𝛥𝑧 𝛥𝑥 , 𝛥𝑧 𝜖𝑦 , 𝜖𝑧 𝛥𝑥 , 𝛥𝑧 𝑚, 𝑠
Parameter range (kinematic) 0 : 0.009 0.011 : 0.1 0.011 : 0.1 0.011 : 0.1 N/A
Noise parameters Natural Natural Natural Mechanical, natural Natural

3.3. Feature engineering

The numerical outputs of the simulation were then processed into images and feature vectors, for two separate training datasets.
Image format was standardised as illustrated in Fig. 5, and saved as 512 × 512 RGB images to match the input of the pre-trained
residual learning model [28]. An ad hoc sixteen element feature vector was calculated for each sample, set by domain knowledge
derived from the manual diagnostic approach currently employed by the specialist engineer.

Fig. 7 illustrates the elements of the engineered feature set. Element one evaluates whether the sample is considered ideal or not,
based on the criteria stated in Eq. (7). Element two returns an angle from the trajectory’s centre-point, to the first point collected (at
the home position). This metric indicates which translational error parameter is causing a kinematic eccentric fault. For example,
in a Primary-axis trajectory, this would differentiate between 𝛥𝑥, 𝛥𝑦 or both 𝛥𝑥 and 𝛥𝑦 simultaneously. This case will not be directly
targeted by this paper, but is a worthwhile inclusion to the dataset for future research. Elements three and four give base indications
as to the magnitude of a potential position error.

Elements five and six give the radius and residuals, respectively, of a least-squares estimation on the potential eccentricity seen
in the major axis projection (referring to Figs. 5(b) and 5(g), the major axis projection for a Primary-axis trajectory is blue, and
for a Secondary-axis map is green). Naturally, the former indicates the presence/extent of a position error, and the latter gives an
indication of the likelihood that the circle is influenced by some mechanical error.

Elements seven through twelve are the result of a least-squares estimation on the ellipses by the two minor axis projections
(clearest as the green and red ellipses in Fig. 6) in the presence of a position error. Values are given for the total width, height and
angle of the ellipse for each projection.

Elements thirteen through sixteen score the error motion trajectory characteristics by calculating the gradient between two
rows in the coordinate matrix, and comparing with the gradient between the previous two rows. This produces four output
metrics. Element thirteen quantifies the amount of straight lines that are visible in the trajectory, which is indicative of controller
compensation/scale reader errors, or Class Five. Element fourteen evaluates the circularity of the trajectory; this relates to the
occurrence of a kinematic error, which is a characteristic of both Class Two and Class Three faults. Element fifteen evaluates
the presence of corners, indicating the likelihood of controller compensation errors specifically, defined by Class Five. Finally,
element sixteen quantifies the erraticity, or the amount of (seemingly) random activity in the trajectory, which is an indicator
of structural/bearing error motions, defined by Class Four.

4. Identifying faults with supervised learning

Supervised learning is the process of inferring a function which maps input objects to output values, in which input–output pairs
are passed to an algorithm as examples where the output values are known during an initial training phase. For a classification
problem, the process involves constructing a mapping, 𝑓 ∶ → , from some D-dimensional feature space, ∈ R

𝐷, to a ground-
truth class label space, = {1, 2,… , 𝐾}, where 𝐾 denotes the total number of classes. After construction in the training phase, the
mapping 𝑓 can be reused to predict the class labels of future, unseen input objects, in a testing phase. For the 𝑛th data point, where
the input feature vector is denoted by 𝐱𝑛 ∈ , and a corresponding descriptive class label, 𝑐𝑛 ∈ , the training dataset of example
pairs can be represented as,

 = {(𝐱𝑛, 𝑐𝑛)|𝐱𝑛 ∈ , 𝑐𝑛 ∈ }𝑁
𝑛=1

(10)

for a total of 𝑁 training examples. Research concerning supervised learning is mature and there are many different approaches that
can be – and have been – applied [29] in the context of identifying faults in a machine tool system. Certain factors must be considered
in selecting an appropriate model for a particular problem; such as the size of the dataset available for training, requirements for a

Mechanical Systems and Signal Processing 164 (2022) 108271

11

T. Rooker et al.

Fig. 7. Ad hoc feature engineering.

deterministic or probabilistic output, data type of the input objects or format of the output values (classification, regression, feature
space encoding, etc.), or general computational budget, may all influence the initial model selection. In this paper, the Artificial
Neural Network (ANN) and Convolutional Neural Network (CNN) were explored as base models to perform diagnostics in error
motion trajectory data. Descriptions of these machine learning models are provided in Appendices A and B, the reader may also
refer to [27] or [30] for more detailed descriptions of the theory.

4.1. Ensemble learning

A strong classifier is defined as one which achieves good performance when predicting the labels of future, unseen data. In order
to do this, it must avoid overfitting in the training phase and be able to generalise the information learned to data in the unseen
test domain. It is often hard to build a single classifier with high generalisation ability. Ensemble approaches provide a potential
solution to this, by combining the predictions from a set of weak classifiers with the hope of strengthening the performance through
the power of the collective. Theoretical analysis and real practice have shown that ensemble models generally result in smaller
expected errors than those obtained by a single model [31].

An ensemble is defined by a collection of base learners, which work independently but towards a common goal. In this paper,
the proposed ensemble models are compared to a multi-class (MC) classifier, defining the baseline performance of a single learner
that maps the input object to all 𝐾 classes contained in the training set. Let 𝑦𝑛,𝑘 be the probability, 𝑃 (𝑐𝑛,𝑘|𝐱𝑛), that class label 𝑐𝑛 = 𝑘,
is obtained when passing input object 𝐱𝑛 to an MC classifier with a softmax activation function on the output layer. The master

Mechanical Systems and Signal Processing 164 (2022) 108271

12

T. Rooker et al.

Fig. 8. Examples of error motion trajectories, collected from operational machines, which do not strictly conform to the theoretical class definitions.

matrix containing all output probabilities for 𝑛 training examples and 𝐾 classes can then be defined by,

𝐘 = (𝑦𝑛,𝑘) ∈ R
𝑛×𝐾 (11)

The predicted class, 𝑐𝑛, for the 𝑛th example is found by selecting the class with the highest probability score,

𝑐𝑛 = argmax
𝑘

𝐘𝑛,𝑘 (12)

such that, for a correct classification, 𝑐𝑛 is equal to the ground-truth class label, 𝑐𝑛. Although the MC baseline approach is simple
in comparison with a base learner collection in an ensemble model, the reality is that it must deal with the full complexity of the
data domain within a single classifier. Considering that the main objective in this paper is concerned with training in a simulated
environment, it is likely that generalisation performance on real-world data will be poor. To attempt to counter this, implementing
an ensemble-based approach may be helpful in producing a stronger overall classifier which has a better ability to generalise.

The complexity of the prediction required for a given base learner can be reduced by employing a divide and conquer [32]
approach; in this case, with a focus on dividing the class label space into smaller and/or easier-to-learn partitions. A One-Vs-Rest
(OVR) scheme is defined where the learner is tasked with predicting if a given example belongs to a single target class, or any of
the other class. The approach firstly constructs a set of 𝐾 base learners. Each learner is assigned a target label 𝑘, and attempts a
binary classification of 𝑘 versus all other labels, �̄�, on a given input object 𝐱𝑛. The softmax function in Eq. (A.4) is applied across the
base learner output to obtain 𝑃 (𝑐𝑛,𝑘|𝐱𝑛) and 𝑃 (𝑐𝑛,�̄�|𝐱𝑛). The probability 𝑃 (𝑐𝑛,𝑘|𝐱𝑛) can then be used to populate element 𝐘𝑛,𝑘 of the
master output matrix, repeating the process across all 𝑖 training examples and 𝑘 base learners to fill the output matrix. Probability
distributions for the 𝑛th row of 𝐘 can then be found by an application of Eq. (A.4) across all 𝐾 classes, and class label predictions
determined with Eq. (12). In comparison with the MC approach, an OVR ensemble is computationally more-expensive, due to the
need to train 𝐾 OVR base learners versus the single base learner in an MC ensemble, with the same number of training examples.

Prediction complexity can be reduced further with a One-Vs-One (OVO) approach, whereby a base learner is trained to identify
whether an example belongs to one of two classes only. This is particularly useful if there are two or more classes in which are
very similar, as it allows the relevant base learner to focus on their specific separation without having to also build representations
for all the other classes. The generic OVO base learner is constructed to identify class 𝑘 from class 𝑘′, and the probabilities for
𝑃 (𝑐𝑛,𝑘|𝐱𝑛) and 𝑃 (𝑐𝑛,𝑘′ |𝐱𝑛) are obtained in much the same way as in the OVR approach. Both 𝑃 (𝑐𝑛,𝑘|𝐱𝑛) and 𝑃 (𝑐𝑛,𝑘′ |𝐱𝑛) are then used to
populated elements 𝐘𝑛,𝑘 and 𝐘𝑛,𝑘′ in the master output matrix. Again, in the same way as the OVR approach, probability distributions

across all 𝐾 classes can be found with Eq. (A.4) and class label predictions with Eq. (12). A total of 𝐾2−𝐾

2
base learners are required

for a full OVO approach, after applying constraints 𝑘 ≠ 𝑘′ and 𝑘 < 𝑘′, to disallow invalid or repeated learners, respectively. As an
individual OVO base learner only needs to learn to differentiate between two classes, it is also not necessary to process the entirety
of the dataset - only a subset of training examples, where 𝑐𝑛 = 𝑘 or 𝑐𝑛 = 𝑘′, are required. This reduces the computational cost of
the approach proportionally with the number of classes, 𝐾, offsetting the relative increase attributed to the higher number of base
learners required.

Separate models were constructed for both feature/image input data types and Primary/Secondary-axis trajectory data, for a total
of twelve ensemble classifiers trained on solely simulated examples. In Section 1, the difficulty in obtaining a dataset representative
of all possible fault-states identifiable through trajectory data was discussed, due mostly to the offline nature of the procedure and
sparse frequency of the data collection intervals. This difficulty leads to the general motivation for building a classifier based on
simulated faults, with the objective being to encode the theoretical bases which define them, even if specific examples are lacking
in the experimental data available. However, real systems do not often behave exactly as expected, and different machines tend to
have certain signatures which set them apart from their peers. For this reason, faults may regularly appear in a real-world setting
which do not necessarily conform to the theoretical definition, but are still diagnosable through the experience of the specialist
engineer interpreting the data.

4.2. Transfer learning

Fig. 8 illustrates four examples of error motion trajectories collected from actively-operational machine tools which demonstrate
some non-conformity to the theoretical fault-state definitions. Each example in Fig. 8 can be assigned a class through expert

Mechanical Systems and Signal Processing 164 (2022) 108271

13

T. Rooker et al.

knowledge and engineering judgement; the ensemble models trained on a simulation, however, are not likely to possess this depth
of ability, and are likely to struggle in the face of certain real-world examples. There is an argument for incorporating additional
domain knowledge from operational machine tools to supplement the theoretical definitions; however, with a typical machine
learning approach, this could intrinsically bias future predictions to the signatures of the machines included in the test set, and thus
may not be useful for other machines with different signatures.

The typical approach in a machine learning application is to optimise model parameters on a large quantity of training data,
fix those parameters, and make predictions on future data based on the information learned in the initial training phase. In order
for this to be effective, the distribution of future testing data must be well-represented in the training set. However, as has been
discussed, this prerequisite is not necessarily met in this particular application domain.

Transfer learning broadly refers to the process of storing knowledge gained on one problem domain, and applying that knowledge
to a new, but related, problem domain. In deep learning, implementations most often take the form of either dedicated feature
extractors or fine-tuning (FT) procedures. In a feature extractor, early network layers are frozen, and mature knowledge on low-level
feature extraction can be exploited on the new domain by either simply updating the later, unfrozen parameters, or changing the
unfrozen network structure entirely to apply the model to an alternative task (such as a different set of target classes). Fine-tuning
describes the process of allowing network parameters to be updated with data from the new domain, incrementally altering the
latent space to increase relevance on the newly-observed training data. The process can be applied either to the entire network, or
to selected unfrozen layers in a feature extractor implementation.

A known complication with fine-tuning is defined by the stability–plasticity dilemma [33]. In an ideal implementation, the
representation built during learning should be stable-enough to retain previous knowledge, but also plastic-enough to adapt to
new information when provided. Neural networks are particularly prone to the dilemma, most often demonstrating low stability
with high plasticity, leading to Catastrophic Forgetting (CF) [34] of old information when re-trained with newly-acquired data.
Replay of previously-learned examples has been posed as a solution for minimising the detrimental effect of CF, with notable recent
successes using generative [35] and pseudorehearsal-based [36] approaches. Where feasible, replay with a subset of the actual
original examples is ideal, in a process known simply as rehearsal. Consider the dataset of length 𝑛 used for the initial model training,
1, with the same form as defined in Eq. (10). Following a period of time after the initial training, a second dataset, 2, of length
𝑛2 is obtained for transfer learning, such that,

2 = {(𝐱𝑛, 𝑐𝑛)|𝐱𝑛 ∈ , 𝑐𝑛 ∈ }
𝑛2
𝑖=1

(13)

The objective with re-training is to incorporate the information contained within 2, whilst preserving the information initially
learned from 1. In order to achieve this, and circumvent the possible occurrence of CF, a rehearsal set, 𝑅, of length 𝑟 can be
sampled from 1, such that,

𝑅 ⊆ 1 (14)

𝑅 can then be combined with 2 to construct a model re-training dataset, 𝐹𝑇 , which allows new examples to be fed to the learner
whilst simultaneously reinforcing some of the originally learned information. Mathematically, the set is constructed by,

𝐹𝑇 = 𝑅 ∪2 (15)

where the cardinality of 𝐹𝑇 is equal to 𝑛2 + 𝑟. To improve generalisation ability on real-world trajectory data examples, it is
proposed to incorporate a subset of experimental examples with the above method, to implement a fine-tuning procedure. Practically,
this would allow the underlying, theoretical fault-state information to be initially encoded, followed by periodic updates during the
system’s deployment to encode any machine-specific signature effects via fine-tuning. Having instant access to a classification system,
but one which can also dynamically improve when applied to new data, would clearly be of great value to the industrial user.

4.3. Modelling methodology

This section now expands on the research route illustrated in Fig. 1, to describe the modelling methodology in detail. Firstly, a
training set was simulated as described in Section 3, producing two datasets; one set comprised of engineered feature vectors, and
one of raw RGB images. The data in each set were split into training/validation/test subsets at ratios of 70/20/10%, respectively,
and passed to the various ensemble models illustrated in Fig. 1. All networks were trained in a standardised way over twenty-
five epochs, passed in normalised mini-batches of four for each propagation through the network. Optimum network parameters
were learned through stochastic gradient descent with a learning rate, ∇, of 0.001 and momentum of 0.9 [30]. Weighted random
oversampling [37] was implemented in the dataloader, to offset the risk of bias associated with the class imbalance introduced in
the OVR ensemble models.

Models to process the engineered feature vectors, referenced by ANN, were constructed with fully-connected artificial neural
networks. Network architectures were found through a Tabu Search [38] optimisation procedure across a search range of two,
three and four layer networks. Overall architecture sizes were constrained to contain a maximum number of parameters no higher
than the number of samples available for training, avoiding overly-complex networks which could cause the model to exhibit
poor generalisation. Dropout with a probability 𝑃 (0.5) was applied to the hidden layers to further strengthen the likelihood of
high generalisation [39]. Each potential solution was allowed to train for ten epochs and the procedure stopped when a solution
achieved 95% or higher validation accuracy in this period. The best architecture was then selected and re-trained in the standardised
procedure described above.

Mechanical Systems and Signal Processing 164 (2022) 108271

14

T. Rooker et al.

Table 5
Total number of examples per class in the two experimental test sets. Note that - for fine-tuning - each
class had an additional two examples held out in the Primary-axis dataset, and three examples in the
Secondary-axis dataset.

Probing procedure No. examples per class
type

Class One Class Two Class Three Class Four Class Five

Primary-axis 34(+2) 62(+2) 8(+2) 17(+2) 14(+2)
Secondary-axis 43(+3) 2(+3) 203(+3) 47(+3) 4(+3)

Models to process raw RGB images, referenced by CNN, were constructed with an eighteen-layer residual network. The model
architecture was adopted from [28], and transformations applied to match those in the original paper. Specifically, this involved
a randomised horizontal and/or vertical flip, and colour jitter/pixel intensity normalisation about the same values used to initially
train the residual network. A randomised resize and crop transformation which was present in the original paper was omitted from
this implementation; as the images produced from error motion trajectory data were likely to contain a large amount of whitespace,
there was a notable risk that the resultant images could be cropped into blank samples, hindering convergence significantly.
The resize/crop transformation was emulated instead by the variation in error parameter magnitudes, implemented in the fault-
state simulation to produce the training dataset. Pre-conditioned weights [28] (on the ImageNet database) were available for this
network architecture, and were utilised as initial parameter values, to exploit the basic feature detection filters learned for the early
convolutional layers.

A fine-tuning procedure was implemented to allow a classifier to dynamically improve with time upon the acquisition of data
from actively-operating machines, as-and-when that data becomes available. Firstly, a classification model was trained on simulated
data only, encoding the theoretical fault-state definitions. In the ensemble models considered in this paper, it is expected that the
OVO model should result in the strongest overall classifier, being the one with the simplest base learners and pertaining to the
general thesis [31] that ensemble methods boost performance. For this reason, the OVO model was selected for re-training with an
FT approach. A subset of roughly 5% of the total number of examples was held out in each of the experimental test sets, with an
even distribution of classes within each subset. In total, 10 examples were separated from the Primary-axis experimental set, and
15 examples were separated from the Secondary-axis set. Each example was augmented 100 times, varying the scale and rotation
to produce an enhanced training set. The FT re-training set was then supplemented with 400 examples per class from the original,
simulated training set, to implement rehearsal and mitigate the incidence of CF.

The process described above was repeated for each ensemble model illustrated in Fig. 1, for both Primary and Secondary-axis
probing procedures. Model performances were then evaluated on the test sets and ranked for comparison.

4.4. Model evaluation

Two different test sets were applied to evaluate the model performance. Firstly, model training and validation was benchmarked
on a 10% hold-out test set from the simulated dataset. Performance on this test set is important to establish a model’s core
ability to differentiate between the theoretical definitions of each fault-state, as well as identify any occurrence of CF in the FT
implementations. In reality, however, identifying fault-states in a real system is more difficult. Influences of compounded fault-
states may be clearly visible in a single trajectory, or there may be more more subtle effects from a second state or machine-specific
nuance which alters the main state beyond the conventionally-accepted definition.

For the experimentally-obtained data, two examples per class in the Primary-axis dataset, and three examples per class in the
Secondary-axis dataset, were held out for FT model re-training, with the remaining examples used for model evaluation. This hold-
out step was applied prior to any model evaluations, resulting in a total of 134 Primary-axis examples and 299 Secondary-axis
examples passed through each model to obtain the results presented in the following section. Examples were processed into feature
vectors and RGB images in the same procedure applied for the simulated data, and class labels were manually determined as the
most prominent class visible in the trajectory. Table 5 details the distribution of class labels across the two experimental test sets.

Model performances were then compared in detail using a variety of different evaluation metrics. The probability of correct
classification, otherwise referred to as the classification rate, 𝑃 (�̂� = 𝐜), is a common and easy-to-interpret metric for evaluating and
comparing classifiers, calculated by,

𝑃 (�̂� = 𝐜) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(16)

where TP, TN, FP and FN are the true positive, true negative, false positive and false negative classifications, respectively. As classification
rate is widely known and understood, it is used in this paper as the headline metric. For a more-comprehensive comparison, this
paper also explores alternatives. Precision measures the relevancy of the results, by,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(17)

Recall measures how many of the truly relevant results are returned, by,

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(18)

Mechanical Systems and Signal Processing 164 (2022) 108271

15

T. Rooker et al.

Table 6
Optimised architectures with validation set fitness, obtained with Tabu Search [38].

Model Target classes Primary-axis Secondary-axis

Architecture Fitness Architecture Fitness

𝑀𝐶𝐴𝑁𝑁 0, 1, 2, 3, 4 [32, 17, 36] 0.9565 [85, 51, 52, 71] 0.9745

𝑂𝑉 𝑅𝐴𝑁𝑁 0 [10, 11, 11] 0.9998 [11, 26] 1.000
1 [11, 9] 0.9932 [9, 9, 10, 9] 0.9981
2 [11, 10, 9, 9] 0.9978 [9, 9, 10, 9] 0.9924
3 [9, 9, 10, 9] 0.9843 [11, 9] 0.9791
4 [11, 9] 0.9989 [10, 11, 11] 0.9964

𝑂𝑉 𝑂𝐴𝑁𝑁 0, 1 [10, 11, 11] 0.9998 [11, 26] 1.000
0, 2 [10, 11, 11] 0.9998 [11, 26] 1.000
0, 3 [10, 11, 11] 0.9998 [11, 26] 1.000
0, 4 [10, 11, 11] 0.9998 [11, 26] 1.000
1, 2 [11, 9] 0.9932 [9, 9, 10, 9] 0.9981
1, 3 [11, 9] 0.9932 [9, 9, 10, 9] 0.9981
1, 4 [11, 9] 0.9932 [9, 9, 10, 9] 0.9981
2, 3 [11, 10, 9, 9] 0.9978 [9, 9, 10, 9] 0.9924
2, 4 [11, 10, 9, 9] 0.9978 [9, 9, 10, 9] 0.9924
3, 4 [9, 10, 9, 9] 0.9843 [11, 9] 0.9791

𝐹𝑇 𝐴𝑁𝑁 As for 𝑂𝑉 𝑂𝐴𝑁𝑁

The 𝐹1-score, calculates the harmonic mean of precision and recall, allowing both metrics to be accounted for when comparing
classifier models. It is given by,

𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(19)

An alternative means of evaluating a classifier based on both precision and recall is to construct a Precision–Recall (PR) curve.
Commonly, one might expect to see a Receiver Operating Characteristic curve at this point, however there has been recent debate
over their application as metrics to problems with imbalanced datasets [40]. For this paper, the intention is to present a curve
describing the overall classifier accuracy across all classes; in order to do this, the outputs must be binarised through micro-averaging,
resulting in a significant imbalance with more TN results than TP. A PR curve, which ignores the TN values in favour of TP, is
resilient to this issue and more appropriate metric for comparison. The PR curve shows the trade-off between precision and recall
for a range of different thresholds in the classifier’s output probability. The area under the PR curve (AUPRC) is a useful metric,
with high values indicating that the classifier has both high recall and precision, and is confident in its predictions.

The simplified metrics and equations above relate specifically to binary classifiers. For the multi-class form, classification rate
is straightforwardly extended by summing the diagonal elements of the 𝐾 × 𝐾 confusion matrix to obtain the numerator and all
elements in the matrix for the denominator. Precision, recall and 𝐹1-score metrics per-class are obtained by querying the relevant
column and row to obtain TP, FP and FN values for each class.

5. Results & discussion

5.1. Architecture optimisation

Table 6 presents the results of the Tabu Search architecture optimisation procedure applied to the feature-based ANN ensemble
models. As the FT model directly employs the OVO architecture, no search procedure was required. Owing to the stopping criteria
set at 95%, all architectures scored highly, with a majority returning scores of 99% or more. The multi-class𝑀𝐶𝐴𝑁𝑁 model returned
the lowest scores for both Primary- and Secondary-axis procedures, suggesting that the base learners in the OVR and OVO ensembles
are stronger, for their respective classification tasks at least.

5.2. Primary-axis procedure

Table 7 presents the overall probability of correct classification, for all ensemble models trained to identify Primary-axis faults.
For all classification models, results on the simulation test set are excellent, suggesting that all models were able to successfully learn
the theoretical fault-state definitions. This is logical; although free parameters were included to introduce noise to the simulation, the
dataset is inherently very clean, and the fault-states for each class are clearly defined. It is not entirely surprising that the classifiers
perform well on the simulation hold-out test set, as the examples contained within it, although different, are derived from the same
source.

Unsurprisingly, the experimental test set results are generally lower than those on the simulated test set. They are however,
much more relevant, as generalisation to data obtained from operational machine tools is the core objective in this paper. MC
models performed poorly for both ANN and CNN approaches, achieving classification rates of around 20%, equating roughly with
a no-skill, random-guess classifier. As complexity in the network output is reduced when implementing an OVR ensemble approach,

Mechanical Systems and Signal Processing 164 (2022) 108271

16

T. Rooker et al.

Table 7
Comparison of Primary-axis classifier skill levels by probability of correct
classification, with highest results for simulation and experimental test sets
highlighted.

Probability of correct classification 𝑃 (�̂� = 𝐜)

Model Simulation test set Experimental test set

𝑀𝐶𝐴𝑁𝑁 0.9624 0.2074
𝑂𝑉 𝑅𝐴𝑁𝑁 0.9636 0.2593
𝑂𝑉 𝑂𝐴𝑁𝑁 0.9926 0.3630
𝐹𝑇 𝐴𝑁𝑁 0.9996 0.7037

𝑀𝐶𝐶𝑁𝑁 0.9788 0.2963
𝑂𝑉 𝑅𝐶𝑁𝑁 0.9728 0.4074
𝑂𝑉 𝑂𝐶𝑁𝑁 0.9984 0.5185
𝐹𝑇 𝐶𝑁𝑁 0.9990 0.8444

Fig. 9. Precision–recall curve for Primary-axis classifiers, with values for the area under the PR curve (AUPRC).

classifier skill-level increases for both ANN and CNN. The same is true for the OVO ensembles, which indicate further improvement
to the classification rates. The results for the FT approaches indicate a further, significant performance boost, resulting in almost
85% of examples in the experimental test set being correctly identified for the best case, 𝐹𝑇 𝐶𝑁𝑁 model. Observing the FT model
results on the simulation test set, it is clear that the predictors have not been affected by any instance of CF, confirming that the
rehearsal procedure implemented for this paper was successful. In fact, the FT results on the simulation test set indicate marginal
improvements when compared with the OVO results (OVO provides a performance snapshot of the FT model before it is re-trained),
suggesting that the rehearsal procedure could likely have been less intensive and still achieve the desired effect.

Comparing the feature-based ANN and image-based CNN models in Table 7, it is evident that the CNN models tend to produce
more accurate predictors. Both exhibit the same trend of improved performance through ensembling and finally fine-tuning, however
the classification rates for all CNN models are consistently higher than their ANN counterparts. This is largely due to their much
higher number of parameters, which mean that much more intricate and complex feature spaces can be modelled, as well as the
mature low-level feature detectors that were obtainable by loading a model with preconditioned weights. The CNN approaches are
inevitably more computationally expensive than the corresponding ANNs, and the classification rate of 70% observed in 𝐹𝑇𝐴𝑁𝑁 is
commendable for such a lightweight approach.

5.2.1. Primary-axis — precision–recall curve
Figs. 9(a) and 9(b) show the micro-averaged PR curves, for Primary-axis ANN and CNN approaches, respectively. AUPRC results

are also reported for each curve, as an additional comparator. Only PR curves for model evaluation on the experimental test set are
presented, as it is clear from Figs. 10(a) and 10(b) that all models exhibit perfect or near-perfect performance on the simulated test
set, there would be minimal insight to be gained from inspecting their PR profiles.

Viewed in conjunction with the probability of correct classification results in Table 7, the results corroborate the indication of
a general improvement through application of ensemble approaches, and finally fine-tuning. Fig. 9(a) confirms that the 𝑀𝐶𝐴𝑁𝑁

and 𝑂𝑉 𝑅𝐴𝑁𝑁 models produce predictions which are not much better than a random guess, with low recall for all thresholds and
AUPRC values of 0.25. 𝑂𝑉 𝑂𝐴𝑁𝑁 improves on this significantly, although the AUPRC is still quite low at 0.48. Re-training in 𝐹𝑇𝐴𝑁𝑁

significantly improves performance, returning an AUPRC of 0.82 and correspondingly higher quality of predictions when maintaining
high recall.

Fig. 9(b) indicates that the CNN -based classification models perform better than the ANN -based models in every case. Compared
with the ANN approaches, the general trend of improvement from 𝑀𝐶𝐶𝑁𝑁 to 𝐹𝑇𝐶𝑁𝑁 is more obvious, with a clear step up from
each method visible in the AUPRC results, in general agreement with the probability of correct classification results in Table 7.

Mechanical Systems and Signal Processing 164 (2022) 108271

17

T. Rooker et al.

Fig. 10. 𝐹1-score by class, for Primary-axis classifiers.

5.2.2. Primary-axis – 𝐹1-score by class
Figs. 10(a) and 10(b) combine precision and recall to show the 𝐹1-score results by class, for the Primary-axis assessment on

the simulation hold-out test set. 𝐹1 results for all models, and across every class, are excellent. The result confirms the classifiers
successfully fit to the theoretical domain for all fault-states. Comparing the classification models themselves, the strengthening of
ability by application of an ensemble is evident through the increase in performance from theMC and OVRmodels to the OVOmodel.
Although the minimum 𝐹1 performance for MC and OVR models is high (both 0.92 for ANN networks Class Two), constructing an
ensemble of OVO base learners demonstrates an improvement to a perfect classifier, when evaluated on this particular test set.
Contrastingly, however, the implementation of OVR base learners for the CNN shows a slight degradation in performance, when
compared with its associated MC model. This degradation is not reflected in the ANN approaches, although there is no notable
improvement, as the OVR model demonstrates identical performance to the MC model.

The FT model results show no degradation whatsoever when compared to their baseline models (OVO), for every class, confirming
that there are no instances of CF affecting the predictors.

Figs. 10(c) and 10(d) show the 𝐹1-score results by class, for the Primary-axis assessment on the experimentally-obtained test set.
A general improvement is observed in the progression from MC to FT models, for both ANN and CNN approaches.

Comparing ANN and CNN approaches by class, there are some cases which exhibit similar characteristics and some which do
not. For both approaches, the classification models trained only on simulated examples (MC, OVR and OVO) are generally successful
in predicting Class Four, with improvements observed with each step down in ensemble base learner complexity. Position and
orientation errors (Classes Two and Three) are generally less successful, but again achieve similar scores for both ANN and CNN
approaches. This suggests that the fault-state simulation approach described in Section 3 accurately models the reality of Primary-axis
structural/bearing error motions (Class Four), but is less relevant when applied to examples of position (Class Two) and orientation
errors (Class Three) on actual, operating machine tools.

Physically, the difficulty in separating orientation from position errors makes sense, an orientation error is effectively a position
error with an additional tilt component. The distinction is particularly blurred in the boundary cases, where the tilt component is
small and may be overridden by the clear evidence of a position error.

The results for Class One indicated a disparity between the ANN and CNN approaches, with ANN consistently performing poorly
and CNN performing well. This indicates a likely issue with the feature engineering approach, whereby the encoding for an ideal
(Class One) trajectory is not sophisticated enough to generalise from simulated training data to experimental testing examples. This
is not an problem for the CNN approaches, which incorporate automatic feature extraction through the convolution operations.

Generally speaking, Class One represents a healthy condition – with negligible error present in the system – and Classes Two to
Five indicate various forms of faulty conditions. Assessing the 𝐹1-scores for Class One, in the experimental test set, reveals insight

Mechanical Systems and Signal Processing 164 (2022) 108271

18

T. Rooker et al.

Table 8
Comparison of Secondary-axis classifier skill levels by probability of correct
classification, with highest results for simulation and experimental test sets
highlighted.

Probability of correct classification 𝑃 (�̂� = 𝐜)

Model Simulation test set Experimental test set

𝑀𝐶𝐴𝑁𝑁 0.9716 0.1739
𝑂𝑉 𝑅𝐴𝑁𝑁 0.9524 0.1873
𝑂𝑉 𝑂𝐴𝑁𝑁 0.9968 0.3010
𝐹𝑇 𝐴𝑁𝑁 0.9974 0.4248

𝑀𝐶𝐶𝑁𝑁 0.8828 0.7793
𝑂𝑉 𝑅𝐶𝑁𝑁 0.8996 0.6822
𝑂𝑉 𝑂𝐶𝑁𝑁 0.9966 0.7191
𝐹𝑇 𝐶𝑁𝑁 0.9998 0.9030

into the model performance with respect to the actual machine tool condition, with high values indicating the classifiers’ ability to
discern healthy from faulty states. For the models trained solely on simulation data, there is a large disparity between the feature-
based and image-based approaches, with ANN models being of low value as general fault detectors, and CNN models demonstrating
significantly-better performance. When implementing a fine-tuning approach, however, both ANN and CNN models perform well
at separating healthy data from faulty, achieving 𝐹1-scores around 0.9 in both cases.

5.3. Secondary-axis procedure

Table 8 presents the overall probability of correct classification, for all ensemble models trained to identify Secondary-axis faults.
In a similar manner to the Primary-axis classifiers, all models achieved high performance on the simulation test set. MC and OVR
ensembles for the CNN classifiers are slightly lower, returning classification rates of approximately 90%, however this is improved
to near-perfect performance in the OVO ensemble implementation.

Observing the experimental test set results, it is clear that the trend observed in Table 7 is reflected in the Secondary-axis ANN
approaches, where performance is gradually improved through the ensemble strategies, and finally boosted by fine-tuning. The same
is not true for the CNN approaches, where performance drops by 10% when moving from the MC model to OVR, followed by a
modest increase of only 3% when implementing OVO. A notable characteristic of the Secondary-axis CNN results is that they are
all relatively high, with the 𝑀𝐶𝐶𝑁𝑁 classifier achieving a correct classification rate of almost 80%. This suggests that ensemble
approaches may not be applicable in cases where the classifier is already regarded as strong, and it is not a global method to
improve classification ability in any situation. Performance is still boosted when applying the fine-tuning step to both ANN and
CNN approaches, as was observed for the Primary-axis results in Table 7, achieving an impressive 90% classification rate for the
𝐹𝑇 𝐶𝑁𝑁 approach.

Comparing the feature-based ANN and image-based CNN models in Table 8, it is, again, clear that the CNN models resulted in
significantly stronger classifiers. Classification rates for the ANN approaches are significantly lower than their CNN counterparts,
for every implementation.

5.3.1. Secondary-axis – Precision–Recall curve
Figs. 11(a) and 11(b) show the micro-averaged PR curves, for Secondary-axis ANN and CNN -based classifiers, respectively. Again,

only a comparison of the experimental test set results is presented.
The PR curves for the ANN networks confirm the poor performance suggested from Table 8, as well as the impressive performance

achieved by the CNN -based classifiers. The – supposedly – ‘worst’ method,𝑀𝐶𝐶𝑁𝑁 returned an AUPRC score of 0.77. As previously
noted, the classification rate for 𝑂𝑉 𝑂𝐶𝑁𝑁 indicates slightly worse performance as compared with 𝑀𝐶𝐶𝑁𝑁 , although the AUPRC
results report a small improvement. The PR curve confirms the excellent performance of the 𝐹𝑇 𝐶𝑁𝑁 model, approaching a perfect
classifier on the experimental test set evaluation, and returning an AUPRC result of 0.97.

5.3.2. Secondary-axis – 𝐹1-score by class
Figs. 12(a) and 12(b) show the 𝐹1-score results by class, for the Secondary-axis assessment on the simulation hold-out test set.

Parallel conclusions on overall performance are drawn from the results, as compared with the Primary-axis simulation test set results
in Figs. 10(a) and 10(b). One notable difference in the results for𝑀𝐶𝐶𝑁𝑁 and 𝑂𝑉 𝑅𝐶𝑁𝑁 is that there is some observed difficulty in
separating Secondary-axis position (Class Two) and orientation (Class Three) errors, with scores around 0.8 being returned. When
probing a single artefact, as previously mentioned, orientation errors are only visible in the presence of a position error. There is
likely a region of very low orientation error parameters in the simulation set, which are difficult to discern in the resolution of
the images provided to the CNN -based models, causing misclassification and affecting the precision and recall of these two classes.
The issue is rectified by simplifying the problem for the relevant OVO base learners, and simulated test set results are improved to
near-perfect levels again.

Figs. 12(c) and 12(d) show the 𝐹1-score results by class, for the Secondary-axis assessment on the experimentally-obtained test
set. Observation confirms that the ANN methods exhibit generally poor performance. Most notably, position errors (Class Two)

Mechanical Systems and Signal Processing 164 (2022) 108271

19

T. Rooker et al.

Fig. 11. Precision–recall curve for Secondary-axis image-based classifiers, with values for the area under the PR curve (AUPRC).

were not recognised by any of the classification models. This highlights a major concern with the feature engineering approach, in
that it is heavily reliant on manually encoding the feature space. However, as there are only two examples of this class available
for evaluation, a small number of misclassifications has a drastic effect on the results, so the issue may be largely attributed to
insufficient representation of the class in the experimental test set. Automatic feature extraction in the CNNs still struggles for the
models which are purely trained on the simulation, however the score is improved when fine-tuned for 𝐹𝑇 𝐶𝑁𝑁 .

Orientation and structural/bearing error motions (Classes Three and Four) appear to be the easiest to recognise in the models
trained purely on simulation, with impressive scores for the CNN -based models in particular. Software (Class Five) faults are not
readily identified in these models, suggesting the simulation does not accurately represent their reality. Fine-tuning significantly
improves the scores of all classes — with the exception of Class Three, which already demonstrated a high score of 0.9. 𝐹𝑇𝐴𝑁𝑁

sees little improvement on its baseline scores in 𝑂𝑉 𝑂𝐴𝑁𝑁 .
On general condition assessment, it is clear from Fig. 10(c) that the feature-based ANN approaches have not produced viable fault

detectors, with scores hovering around 0.3 at best. 𝐹𝑇𝐴𝑁𝑁 performs well, but performance in the simulation-only trained models
is temperamental, with good performance recorded for the MC model but extremely poor scores in OVR/OVO. The temperamental
performance in the simulation-only models adds to the motivation for implementing fine-tuning in this problem, as high-level fault
detection must ultimately be the first priority in any condition assessment.

5.3.3. A note on network complexity
The results in this section generally indicate that, for this application, the CNN networks outperform their ANN counterparts

in the majority of classification model comparisons. A large contributor to this is the level of complexity that can be represented
in a deep network, which is made possible by the implementation of residual connections in the ResNet architecture. One notable
general characteristic of the PR curves, when comparing ANN and CNN networks, is the curve’s behaviour when the trade-off
threshold is reached and recall begins to drop. The curves for 𝑂𝑉 𝑂𝐴𝑁𝑁 and 𝐹𝑇𝐴𝑁𝑁 classifiers all demonstrate a nearly-vertical
drop, which in most cases drops directly to levels of a no-skill (a recall value of around 0.2, for a five class problem) classifier.
This reflects the relative simplicity in the ANN network, indicating that there is a cut-off point defining the maximum probability
output, and all predictions above this cut-off are uncertain. This contrasts with the CNN networks, which all demonstrate a smooth
curve, indicating both a wider range of probability outputs and much higher certainty for some of the more obvious examples. The
latter case is clearly preferable, as it provides the system with a more robust indication of the reliability of its predictions.

6. Comparison with numerical best-fitting approaches

The general pattern recognition approach, presented in this paper, is novel when placed in the context of the wider error
identification and calibration field. The majority of research in the field is based on kinematic theory and methods which apply
numerical best-fitting, which has led to mature methods capable of identifying all kinematic error model parameters – defined in
ISO 230-1 [41] and ISO 230-7 [3] – with high degrees of accuracy. Software solutions [42] are now also available for performing
the parameter identification automatically.

The traditional, numerical best-fitting approach, and the general pattern recognition approach proposed in this paper, both have
strengths and weaknesses in the context of multi-axis machine tool fault detection. Key comparison points to consider between the
approaches are provided below.

6.1. Error parameter identification accuracy

There is no doubt that numerical best-fitting can identify kinematic model parameters with finer granularity, as compared with
the pattern recognition approach proposed in this paper. The research has greatly matured in direct pursuit of this goal, and the
efforts have generally been very successful in achieving it. Conversely, the pattern recognition approach is limited to separating
faults into their respective classes, and is not designed for the specific determination of error parameter values.

Mechanical Systems and Signal Processing 164 (2022) 108271

20

T. Rooker et al.

Fig. 12. 𝐹1-score by class, for Secondary-axis classifiers.

6.2. Kinematic faults

For the same reasons as outlined above, numerical best-fitting is, generally, the superior method for the identification of faults
that can be defined in the kinematic error model.

6.3. Non-kinematic faults

Being rooted in kinematic theory, the use of numerical best-fitting is typically implemented as a white-box method, and as such
it is effectively constrained to error parameters that can be defined in a kinematic model. A key benefit of the approach proposed in
this paper, as compared with numerical best-fitting, is the ability to identify faults which cannot be defined in a kinematic model,
but are known to exhibit an effect on the error motion trajectory (such as a software fault on the controller) by industry experts [9].

6.4. Adaptability and machine-specific signatures

Another key benefit of general pattern recognition, as compared with numerical best-fitting, is the ability to adapt to less obvious
patterns in the error motion trajectories. To an extent, this can be dealt with via thresholding in a traditional best-fitting approach.
However, the fine-tuning approach proposed in this paper introduces the ability to identify, and adapt to, the specific characteristics
of the machine being tracked, as more data becomes available during its operational life-cycle.

6.5. A hierarchical approach

The approach, presented in this paper, is not intended as an improved alternative to the mature methods of the field. Rather,
the general pattern recognition approach targets a different goal, to compliment the well-established and comprehensive methods
already developed with the practice of numerical best-fitting. A production-ready system, built with the proposed approach, would
take elements from both approaches to implement an enhanced fault detection model. The general pattern recognition model
could provide high-level fault detection, the ability to detect non-kinematic faults and robustness against trajectories influenced
by machine-specific signatures. Upon detection of a likely kinematic fault, a numerical best-fitting approach would then be applied,
to accurately identify the error model parameters for calibration.

Mechanical Systems and Signal Processing 164 (2022) 108271

21

T. Rooker et al.

7. Concluding remarks

This paper investigated a complete and adaptable solution for performing multi-class fault diagnosis with error motion trajectory
data, in the context of a machine tool condition monitoring system. All approaches were initially trained purely on simulated,
theoretical examples, and tested on an experimental test set obtained from actively-operational machine tools. Classification
rates indicated performance improvements of up to 22% when implementing One-Vs-Rest and One-Vs-One ensemble learning
approaches, as compared with a baseline Multi-Class classifier. This improvement was consistent across all experiments, with
the exception of one, where the Multi-Class classifier had a high initial classification rate, and the ensemble approaches led to
a small performance degradation in comparison. An approach for retaining an ensemble model when unexpected examples appear
in an experimental test set was also implemented. Classification rate results showed that re-training boosted performance in every
implementation, leading to further performance improvements of up to 34%. Performance on the simulation environment was also
evaluated, which confirmed that the information learned in the initial training phase was successfully maintained during re-training.
Image-based, convolutional neural network implementations were consistently found to be more effective than lightweight fully-
connected networks based on a minimally-engineered feature vector. Re-trained convolutional neural networks ultimately achieved
classification rates of 84.4% and 90.3% for Primary- and Secondary-axis fault-states, respectively.

Future work related to this project involves investigating more sophisticated and automated feature extraction techniques for
lightweight, feature-based classifiers, to improve on the image-based convolutional classifiers that were successful in this paper. The
work-to-date only considers the case where a single label may be assigned to any given example of error motion trajectory data. In
reality, a single instance of trajectory data may contain insight into a number of different fault-states, so expanding the classification
methods developed in this paper to a multi-label setting would be a valuable further development.

CRediT authorship contribution statement

T. Rooker: Conceptualization, Methodology, Software, Formal analysis, Data curation, Writing – original draft, Visualization,
Project administration. J. Stammers: Supervision, Writing – review & editing, Conceptualization. K. Worden: Supervision, Writing
– review & editing, Conceptualization. G. Potts: Supervision, Writing – review & editing. K. Kerrigan: Investigation, Resources,
Writing – review & editing. N. Dervilis: Supervision, Writing – review & editing, Conceptualization.

Declaration of competing interest

One or more of the authors of this paper have disclosed potential or pertinent conflicts of interest, which may include receipt of
payment, either direct or indirect, institutional support, or association with an entity in the biomedical field which may be perceived
to have potential conflict of interest with this work. For full disclosure statements refer to https://doi.org/10.1016/j.ymssp.2021.
108271.The doctoral project is partly sponsored by metrology software products ltd., so the context of the research is broadly related
to their industry sector. The contributions in this paper are unrelated to any of their products, and are intended for more general
research community interests.

Acknowledgements

The authors would like to gratefully acknowledge metrology software products ltd. and the Engineering and Physical Sciences
Research Council (EPSRC) grant EP/I01800X/1 for supporting this research. KW would like to additionally acknowledge support
from an EPSRC Established Career Fellowship, UK EP/R003645/1.

Appendix A. Artificial neural networks

The ANN was originally inspired by the concept of the biological neural networks understood to comprise the brain. It broadly
comprises an input layer, output layer and a number of hidden layers in a connected network structure; through which, input objects
are propagated, to arrive at some desired output. The basic network model can be described as a series of functional transformations.
The connections between nodes in neighbouring layers are defined by a matrix of weight parameters, 𝑤𝑗𝑖, which are used to construct
a series of 𝑀 linear combinations of a single input variable, 𝐱, of the form,

𝑎𝑗 =

𝐷∑
𝑖=1

𝑤
(1)

𝑗𝑖
𝑥𝑖 +𝑤

(1)

𝑗0
(A.1)

where 𝑗 = 1,… ,𝑀 . The superscript (1) indicates that the weights belong to the first layer in the network, 𝑎𝑗 is the activation value
for the node 𝑗, and 𝑤𝑗0 is an additional bias parameter. Each of the activations is then transformed using a (usually) differentiable,
nonlinear activation function, ℎ(⋅), to obtain,

𝑧𝑗 = ℎ(𝑎𝑗) (A.2)

which are generally referred to as the hidden units. The choice of nonlinear activation function ℎ(⋅) is dependent upon the particular
application. The Rectified Linear Unit (ReLU) – also known as the ramp function – given by,

ℎ(𝑥𝑖) = max(0, 𝑥𝑖) (A.3)

https://doi.org/10.1016/j.ymssp.2021.108271
https://doi.org/10.1016/j.ymssp.2021.108271
https://doi.org/10.1016/j.ymssp.2021.108271

Mechanical Systems and Signal Processing 164 (2022) 108271

22

T. Rooker et al.

is commonly selected for modern implementations, as its simple differentiation reduces computational cost and idempotent property
helps prevent the occurrence of vanishing gradients during model training [43]. The hidden units are then linearly combined again
to obtain the output unit activations, in a similar manner to Eq. (A.1). The process is repeated across each layer in the network
architecture, and a final transformation is performed at the output layer to obtain the network outputs, 𝑦𝑘. The choice of activation
function is, again, informed by the application, in particular the nature of the data and assumed distribution of the target variable.
For a multi-class problem, the normalised exponential function [30], or softmax function, of the form,

softmax(𝑎𝑘) =
exp(𝑎𝑘)∑𝐾

𝑙=1
exp(𝑎𝑙)

(A.4)

is often employed, which normalises the values in the output layer to give a probability distribution over the 𝐾 total classes. The
resultant function – obtained through successive applications of Eqs. (A.1) and (A.2) from the input variable, 𝐱, to the output
prediction, 𝐲 – defines a feed-forward neural network. A key property of the feed-forward neural network is that it is differentiable
with respect to the network parameters, 𝐰, allowing model training to occur by updating the network weights with backpropagation.

A recent paper [38] demonstrated success in applying a Tabu Search optimisation procedure to find an optimal network
architecture; the approach is a population-based evolutionary algorithm, based on the notion of distancing ones-self from suboptimal
solutions and intensifying the search where optima are more likely. Metrics obtained through evaluation of the validation set also
provide an early indication of the model’s ability to generalise, and can be useful for stopping the training procedure early when
model convergence is identified to preserve computational resources and avoid overfitting. The completion of both training and
validation steps signifies one full epoch. The learning process is then repeated until either a pre-determined number of epochs have
elapsed, or early stopping criteria is met.

A.1. On generalisation and overfitting

Generalisation is the ability of a predictor to correctly identify the labels of previously unseen data. A model which achieves good
performance on the test set but fails to generalise is regarded as one which overfits, which is often a result of fitting an overly-complex
function to noisy training data which does not necessarily reflect the true distribution. There are numerous regularlisation techniques
that can be employed to reduce the likelihood of overfitting. Two prominent examples in the context of ANNs are dropout [39] -
which randomly freezes nodes in the hidden layers, forcing the model to find alternative paths through the network – and, to a
lesser extent, batch normalisation [44] – which normalises the activations of each layer by subtracting the mean and dividing by
the standard deviation of the batch. A critical requirement for ANNs to generalise well is the provision of a sufficient quantity of
training examples [27]. Due to the high number of network parameters (particularly so in modern deep learning applications), ANNs
have the potential to learn extremely complex functions, and will often overfit if insufficient data is provided during the training
phase.

Appendix B. Convolutional networks

Due to their fully-connected nature, regular ANNs do not scale well to image classification tasks. The Convolutional Neural Network
(CNN) subverts this by focusing on the extraction of local features, based on the notion that information learned in local regions will
be generally useful elsewhere. Features learned in early layers can then be combined in later layers to detect higher-order features,
which yield deeper and more holistic information about the image.

The CNN is implemented through three mechanisms: (i) local receptive fields, (ii) weight sharing and, (iii) sub-sampling. The input
object 𝐗 is a tensor with form R

𝐷1×𝐷2×𝐷3 where 𝐷1 and 𝐷2 are the spatial dimensions of the image, and 𝐷3 is the dimension
containing the colour channels. The convolutional layer is organised into 𝐿(1) planes (for the first hidden layer), each of which is
called a feature map. Feature maps are constructed by scanning an 𝑓 × 𝑓 × 𝐷3 tensor of weight parameters – known as a filter –
across overlapping local receptive fields of the input object, performing a convolution operation between the two to populate a
single element of the 2-Dimensional feature map.

The convolution operation is repeated 𝐿(1) times with different filters to obtain the first convolutional layer. A critical strength
of the CNN is that the parameters contained in the 𝑓 ×𝑓 ×𝐷3 filter are shared across the entire feature map, which is a significantly
smaller number than would be required for the same representation in a fully-connected ANN. This leads to models which are both
more computationally efficient, and more resilient to overfitting.

A controlled reduction in the spatial dimension usually follows the convolution layer, by passing the outputs through a sub-
sampling layer. For example, sub-sampling may be applied to local receptive fields of size 2 × 2 in the feature map, extracting the
largest value and using this to populate the corresponding element in the sub-sampled output. This particular operation is known
as max pooling.

Expressed in matrix form, the output unit activations, 𝐀(𝑙), for a convolutional and subsampling layer pair, 𝑙, is given by,

𝐀(𝑙) = 𝐖(𝑙)𝐙(𝑙−1) (B.1)

with shared weights, 𝐖(𝑙), and the hidden units, 𝐙(𝑙−1). The current layers hidden units, 𝐙(𝑙), are obtained by applying a nonlinear
activation function, ℎ,

𝐙(𝑙) = ℎ(𝑙)(𝐀(𝐥)) (B.2)

Mechanical Systems and Signal Processing 164 (2022) 108271

23

T. Rooker et al.

Fig. B.13. A typical shortcut block in the residual learning scheme, with notation following Appendix B.

such as the ReLU function, defined in Eq. (A.3). This framework is then repeated through multiple cycles of convolutional/sub-
sampling layers, until a transformation is made to a 1×𝐾 fully-connected structure for label prediction (in a classification problem).
The entire network can be trained with a slight modification to the backpropagation procedure described above, to ensure that the
shared-weight constraints are satisfied.

Richer feature detection is generally achieved with deeper networks. This advantage has, however, been limited by the issue
of vanishing/exploding gradients in backpropagation [43], which hinders convergence. The issue has been largely solved by batch
normalisation [44], with the additional benefit of regularising the network. With deeper networks able to converge, a degradation
problem emerges, where model accuracy saturates with increasing depth and then degrades rapidly. Deep residual learning [28]
addresses this problem by considering that a deeper network can be represented in shallower form by construction, where identity
maps are defined to realise shortcut connections through the network.

In theory, if additional layers can be constructed as identity maps, a deeper network should have no greater training error
than its shallower counterpart. Rather than attempt to construct the identity map between two points in a network directly, the
approach instead attempts to construct the residual map instead, which the authors of the original paper hypothesise will be easier
to optimise. The degradation problem itself suggests that a learner may struggle to approximate an identity map which represents
multiple nonlinear layers. By instead constructing the residual, the learner can simply push the weights of the nonlinear layers
towards zero if the identity map is optimal. In the more realistic case where the identity map is suboptimal, then the approach can
at least help to precondition the problem and make it easier to solve [28]. A typical building block is shown in Fig. B.13. Formally,
this is defined as,

𝐙(𝑙) = (𝐙(𝑙−𝑞), {𝐖𝑙𝑞}) + 𝐙(𝑙−𝑞) (B.3)

where 𝑙 is the output layer reference, 𝑞 is the number of stacked layers in the shortcut, and (𝐙(𝑙−𝑞), {𝐖𝑙𝑞}) represents the residual
mapping to be learned. The shortcut connection approach introduces no additional parameters or computational complexity, but
allows for extremely deep network representations with excellent generalisation performance.

References

[1] H. Schwenke, W. Knapp, H. Haitjema, et al., Geometric error measurement and compensation of machines-an update, CIRP Ann. Manuf. Technol. 57 (2)
(2008) 660–675.

[2] International Organization for Standardization, ISO230-9 Test Code for Machine Tools, Part 9: Estimation of Measurement Uncertainty for Machine Tool
Tests, 2005.

[3] International Organization for Standardization, ISO 230-7 Test Code for Machine Tools - Part 7: Geometric Accuracy of Axes of Rotation, 2015.
[4] S. Weikert, W. Knapp, R-test, a new device for accuracy measurements on five axis machine tools, CIRP Ann. Manuf. Technol. 53 (1) (2004) 429–432.
[5] S. Ibaraki, C. Hong, C. Oyama, Construction of an error map of rotary axes by static R-test, in: Proceedings of the 6th International Conference on Leading

Edge Manufacturing in 21st Century, LEM 2011, vol. 51.
[6] S. Ibaraki, T. Iritani, T. Matsushita, Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a

touch-trigger probe, Int. J. Mach. Tools Manuf. 58 (2012) 44–53.
[7] S. Ibaraki, T. Iritani, T. Matsushita, Error map construction for rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger

probe, Int. J. Mach. Tools Manuf. 68 (2013) 21–29.
[8] J.R. Mayer, Five-axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact, CIRP Ann. Manuf. Technol.

61 (1) (2012) 515–518.
[9] P. Hammond, T. Brown, NC-Checker - metrology software products ltd, 2010, URL http://metsoftpro.com/nc-checker/.
[10] R. Teti, K. Jemielniak, G. O’Donnell, et al., Advanced monitoring of machining operations, CIRP Ann. Manuf. Technol. 59 (2) (2010) 717–739.
[11] N. Ghosh, Y.B. Ravi, A. Patra, et al., Estimation of tool wear during CNC milling using neural network-based sensor fusion, Mech. Syst. Signal Process.

21 (1) (2007) 466–479.
[12] D.A. Tobon-Mejia, K. Medjaher, N. Zerhouni, CNC machine tools wear diagnostic and prognostic by using dynamic Bayesian networks, Mech. Syst. Signal

Process. 28 (2012) 167–182.
[13] F. Zhao, X. Mei, T. Tao, et al., Fault diagnosis of a machine tool rotary axis based on a motor current test and the ensemble empirical mode decomposition

method, Proc. Inst. Mech. Eng. C 225 (2011) 1121–1129.
[14] Y. Zhang, Q. Zhang, Research and discussion on the electrical fault of the CNC machine, in: Proceedings of the 2011 2nd International Conference on

Digital Manufacturing and Automation, ICDMA 2011, pp. 305–308.
[15] S. Hu, F. Liu, Y. He, et al., An on-line approach for energy efficiency monitoring of machine tools, J. Cleaner Prod. 27 (2012) 133–140.
[16] S. Emec, J. Krüger, G. Seliger, Online fault-monitoring in machine tools based on energy consumption analysis and non-invasive data acquisition for

improved resource-efficiency, Procedia CIRP 40 (2016) 236–243.

http://refhub.elsevier.com/S0888-3270(21)00637-3/sb1
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb1
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb1
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb2
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb2
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb2
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb3
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb4
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb6
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb6
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb6
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb7
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb7
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb7
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb8
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb8
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb8
http://metsoftpro.com/nc-checker/
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb10
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb11
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb11
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb11
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb12
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb12
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb12
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb13
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb13
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb13
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb15
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb16
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb16
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb16

Mechanical Systems and Signal Processing 164 (2022) 108271

24

T. Rooker et al.

[17] J. Wang, M. Qi, Application of intelligent fault diagnosis technology in NC machine tool fault diagnosis, in: ICEOE 2011-2011 International Conference
on Electronics and Optoelectronics, Proceedings, vol. 4. pp. 424–427.

[18] B. Shen, S.Y. Zhao, J.H. Wang, Ontology-based fault diagnosis knowledge representation of CNC machine tool, Appl. Mech. Mater. 427–429 (2013)
1372–1375.

[19] W. Wang, H. Li, P. Huang, et al., Data acquisition and data mining in the manufacturing process of computer numerical control machine tools, Proc. Inst.
Mech. Eng. B 232 (13) (2018) 2398–2408.

[20] B. Schmidt, K. Gandhi, L. Wang, Diagnosis of machine tools: Assessment based on double ball-bar measurements from a population of similar machines,
Procedia CIRP 72 (2018) 1327–1332.

[21] K. Xing, X. Rimpault, J.R. Mayer, et al., Five-axis machine tool fault monitoring using volumetric errors fractal analysis, CIRP Ann. 68 (1) (2019) 555–558.
[22] K. Xing, S. Achiche, J.R. Mayer, Five-axis machine tools accuracy condition monitoring based on volumetric errors and vector similarity measures, Int. J.

Mach. Tools Manuf. 138 (2019) 80–93.
[23] T. Rooker, J. Stammers, K. Worden, et al., Machining centre performance monitoring with calibrated artefact probing, Proc. Inst. Mech. Eng. B (2020).
[24] J.A. Soons, F.C. Theuws, P.H. Schellekens, Modeling the errors of multi-axis machines: a general methodology, Precis. Eng. 14 (1) (1992) 5–19.
[25] Y. Abbaszadeh-Mir, J.R. Mayer, G. Cloutier, et al., Theory and simulation for the identification of the link geometric errors for a five-axis machine tool

using a telescoping magnetic ball-bar, Int. J. Prod. Res. 40 (18) (2002) 4781–4797.
[26] D.C. Cong, B.B. Chinh, H. Jooho, Volumetric error model for multi-axis machine tools, in: Procedia Manufacturing, vol. 1, pp. 1–11.
[27] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[28] K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, in: Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, vol. 2016-Decem. pp. 770–778.
[29] R. Zhao, R. Yan, Z. Chen, et al., Deep learning and its applications to machine health monitoring, 2019.
[30] C. Bishop, Pattern Recognition and Machine Learning, first ed., Springer-Verlag, New York, 2006.
[31] C.C. Aggarwal, Data Classification: Algorithms and Applications, 2014.
[32] M. Asafuddoula, B. Verma, M. Zhang, A divide-and-conquer-based ensemble classifier learning by means of many-objective optimization, IEEE Trans. Evol.

Comput. 22 (5) (2018) 762–777.
[33] S. Grossberg, Competitive learning: From interactive activation to adaptive resonance, Cogn. Sci. 11 (1) (1987) 23–63.
[34] A. Robins, Sequential learning in neural networks: A review and a discussion of pseudorehearsal based methods, 2004.
[35] N. Kamra, U. Gupta, Y. Liu, Deep generative dual memory network for continual learning, 2017, arXiv.
[36] V. Marochko, L. Johard, M. Mazzara, et al., Pseudorehearsal in actor-critic agents with neural network function approximation, in: Proceedings -

International Conference on Advanced Information Networking and Applications, pp. 644–650.
[37] M. Buda, A. Maki, M.A. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks, Neural Netw. 106 (2018)

249–259.
[38] T.K. Gupta, K. Raza, Optimizing deep feedforward neural network architecture: A tabu search based approach, Neural Process. Lett. 51 (3) (2020)

2855–2870.
[39] N. Srivastava, G. Hinton, A. Krizhevsky, et al., Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014)

1929–1958.
[40] T. Saito, M. Rehmsmeier, The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets, PLoS

One 10 (2015).
[41] International Organization for Standardization, ISO 230-1, Test Code for Machine Tools — Part 1: Geometric Accuracy of Machines Operating under

No-Load or Quasi-Static Conditions, Technical Report, International Organization of Standards, 1996.
[42] S. Ibaraki, Y. Nagai, H. Otsubo, et al., R-test analysis software for error calibration of five-axis machine tools: Application to a five-axis machine tool with

two rotary axes on the tool side, Int. J. Autom. Technol. 9 (4) (2015) 387–395.
[43] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, J. Mach. Learn. Res. 9 (2010) 249–256.
[44] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International

Conference on Machine Learning, pp. 448–456.

http://refhub.elsevier.com/S0888-3270(21)00637-3/sb18
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb18
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb18
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb19
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb19
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb19
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb20
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb20
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb20
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb21
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb22
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb22
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb22
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb23
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb24
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb25
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb25
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb25
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb27
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb29
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb30
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb31
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb32
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb32
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb32
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb33
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb34
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb35
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb37
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb37
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb37
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb38
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb38
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb38
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb39
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb39
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb39
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb40
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb40
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb40
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb41
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb41
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb41
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb42
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb42
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb42
http://refhub.elsevier.com/S0888-3270(21)00637-3/sb43

	Error motion trajectory-driven diagnostics of kinematic and non-kinematic machine tool faults
	Introduction
	 Motivation
	 Contribution
	Outline of the paper

	Experimental procedure
	Simulating fault-states in error motion trajectory data
	 Diagnosable faults in error motion trajectory data
	 Class one - The ideal case
	 Class two - Position error of the rotary-axis average line
	 Class three - Orientation error of the rotary-axis average line
	 Class four - Structural/bearing error motion
	 Class five - Controller compensation/scale reader issues

	 Simulation methodology
	Feature engineering

	Identifying faults with supervised learning
	Ensemble learning
	Transfer learning
	Modelling methodology
	Model evaluation

	Results & discussion
	Architecture optimisation
	Primary-axis procedure
	Primary-axis — precision–recall curve
	Primary-axis – F1-score by class

	Secondary-axis procedure
	Secondary-axis – Precision–Recall curve
	Secondary-axis – F1-score by class
	A note on network complexity

	 Comparison with numerical best-fitting approaches
	 Error parameter identification accuracy
	 Kinematic faults
	 Non-kinematic faults
	 Adaptability and machine-specific signatures
	 A hierarchical approach

	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Artificial neural networks
	On generalisation and overfitting

	Appendix B. Convolutional networks
	References

