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Efficient enumeration of bosonic configurations with applications to the calculation

of non-radiative rates

Robert A. Shaw, Anjay Manian, Igor Lyskov, and Salvy P. Russoa)

ARC Centre of Excellence in Exciton Science, School of Science, RMIT University,

Melbourne, VIC 3000, Australia

(Dated: 20 January 2021)

This work presents algorithms for the efficient enumeration of configuration spaces

following Boltzmann-like statistics, with example applications to the calculation of

non-radiative rates, and an open-source implementation. Configuration spaces are

found in several areas of physics, in particular wherever there are energy levels that

possess variable occupations. In bosonic systems, where there are no upper limits

on the occupation of each level, enumeration of all possible configurations is an ex-

ceptionally hard problem. We look at the case where the levels need to be filled to

satisfy an energy criterion, for example a target excitation energy, which is a type

of knapsack problem as found in combinatorics. We present analyses of the density

of configuration spaces in arbitrary dimensions, and how particular forms of kernel

can be used to envelope the important regions. In this way, we arrive at three new

algorithms for enumeration of such spaces that are several orders of magnitude more

efficient than the naive brute force approach. Finally, we show how these can be

applied to the particular case of internal conversion rates in a selection of molecules,

and discuss how a stochastic approach can in principle reduce the computational

complexity to polynomial time.

a)Electronic mail: salvy.russo@rmit.edu.au
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I. INTRODUCTION

There are several problems in chemical physics where one needs to enumerate points

in an occupation or configuration space, subject to some criterion on those configurations.

Important examples arise in statistical thermodynamics, where the calculation of partial

partition functions over some subset of microstates is necessary for determination of thermo-

dynamical constants.1 Similar quantum-statistical principles find applications ranging from

path-integral molecular dynamics2 and configuration interaction3,4 methods for bosons, with

enumeration of configurations being a key difficulty.5,6 The focus of this work will be that a

number of molecular electronic properties can be determined from knowledge of the configu-

ration of quanta in vibronic modes subject to some energy constraint on the configuration.7–10

In combinatorial mathematics, the problem of selecting integer occupations to satisfy a total

"weight" is known as the knapsack problem.11 In the simplest version of this, you have a

knapsack that can carry a fixed volume of objects, and you have a selection of objects to fill

it with, each of which has an inherent volume and value. The problem is to fill the knapsack

such as to maximise the total value, while not exceeding the total possible volume. In our

physical equivalent in this paper, the "knapsack" is the occupation vector, with each mode

possessing an energy (equivalent to volume) and Franck-Condon factor12 (equivalent to the

value). We then not only wish to find the configuration that gives the best total value, but

also to enumerate all possible configurations that satisfy the volume (energy) requirement.

The difficulty with this problem is that it is of non-polynomial complexity,13 and as such

no polynomial-time algorithm is known that can guarantee the correct solution. That is not

to say that solutions do not exist; an obvious route would be to simply enumerate every

possible configuration, and evaluate its volume and value, selecting the best possible solution

from these. This has the added advantage that it solves our extended problem of determining

all the configurations within the energy crtierion. However, the number of configurations

increases exponentially with the number of modes, rapidly making use of such a brute-force

algorithm intractable. Specifically in the 0-1 knapsack problem (where each object or mode

is either included or not), the number of configurations follows 2M where M is the number

of modes. The best known heuristic algorithm (full polynomial-time approximation scheme)

to solve the 0-1 problem scales as O(ǫ−1M1/ǫ), to get a solution with value at worst (1− ǫ)

times the optimum.14 This does not solve the wider enumeration problem, however, and by

2



necessity approaches the factorial scaling as the threshold ǫ is tightened. Note that the more

general bosonic problem, where each mode can have any integer occupation, can always be

rewritten in terms of the 0-1 problem by allowing copies of the modes.

While the algorithms we present here are more widely applicable, we will focus on the

specific problem of determining non-radiative rates. Understanding molecular photophysical

processes is an important and difficult problem. This is particularly true in the field of

exciton science,15,16 and in the design of optical devices and light-harvesting materials.17–19

Typically, the goal is to either maximize or minimize the photoluminescent quantum yield

of such devices, determined as the ratio of the radiative decay rate to the sum of radiative

and non-radiative rates. The former comprise fluorescence and phosphorescence, while the

latter are predominantly internal conversion (IC, spin preserving) and intersystem crossing

(ISC, spin flipping). These non-radiative processes are facilitated largely through coupling

of electronic and vibrational states, and thus occur when the molecule is excited into a

configuration where the vibronic quanta satisfy an energy criterion. The simplest example

would be excitation from the ground to first excited electronic singlet states. The vibrational

manifolds of each state then allow for an energy window of possible configurations that can

result in internal conversion occurring, and each such configuration can then be weighted by

a probability of resulting in either IC or fluorescence. As such, the theoretical determination

of the rate is naturally formulated as an example of the knapsack problem.

Previous work by Valiev et al.20–22 has focused on the solution of this problem using the

Plotnikov, Robinson, and Jortner (PRJ) formalism for non-radiative energy transfer.9,10 In

their original and more recent papers, they give a scheme for the determination of the various

quantum chemical properties that need to be calculated in determining these rates, but focus

more on the application of the method than on algorithmic development for the exploration

of configuration space. In this work, we will first briefly recap the theory underlying the

formalism, before analysing the density of the configuration space. The main focus will then

be on devising efficient algorithms for the full characterisation of this space, both within

this specific case study, but also more generally for other knapsack-type physical problems.

Finally we will demonstrate the effectiveness of these algorithms, and provide a fully open-

source implementation which can be found at23.
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II. THEORY

A. Background

For a transition between two electronic states, |i〉 (initial) and |f〉 (final), with energy

difference Eif , the general non-radiative rate in the PRJ formalism is written as20:

knr =
4

Γf

E(n)=Eif
∑

n

|Vif (n)|
2 (1)

where the sum is over vibronic configurations n = (n1, n2, . . . , nM), Γf is the relaxation width

of state f , and Vif is a coupling potential that depends on which rate is being calculated. In

this, we have assumed that the relaxation width does not depend strongly on n, and that

Eif ≪ Γf . These conditions generally hold true for temperatures around and below room

temperature,24 typically matching experimental conditions.

Each n has an associated Franck-Condon factor, determined using the Huang-Rhys (HR)

factors, yj, of the M vibrational modes:

FC(n) =
M
∏

j=1

(

e−yjy
nj

j

nj!

)

(2)

This factor effectively determines the extent of the vibrational overlap, and thus the strength

of the contribution to the rate, of a configuration. From this we see that modes increase

with increasing yj and decrease with increasing nj. That is, modes with large HR factors

can in general have larger occupations and still give significant contributions, or conversely,

those with small yj are more likely to have low occupations. This will be important later,

as it suggests a way to assess the importance of a configuration.

There are then two physical regimes in which the PRJ formalism can be applied: under

the Franck-Condon approximation, or the Herzberg-Teller approximation.21 For internal

conversion, which we will be focusing on here, these two formulations are written as follows.
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The formulas for intersystem crossing are similar and can be found in ref.22.

V IC,FC
if (n) = −

M
∑

j=1

(

∑

νq

m−1
ν 〈i|

∂

∂Rqν

|f〉Bνqj

)

(

ωj(nj − yj)
2

2yj
· FC(n)

)1/2

(3)

V IC,HT
if (n) = −

M
∑

j=1

M
∑

j′=1

(

∑

νq

∑

ν′q′

(mνmν′)
−1 〈i|

∂2

∂Rqν∂Rq′ν′
|f〉BνqjBν′q′j′

)

×

(

(nj′ + yj′)
2

2ωj′yj′

)1/2(
ωj(nj − yj)

2

2yj
· FC(n)

)1/2
(4)

where ωj is the energy of the jth mode, and Rνq is the qth coordinate of the νth atom

with mass mν . Additionally, these depend on nuclear gradients along the vibrational modes,

Bνqj, and vibronic couplings between the initial and final electronic states. Writing them

in this way demonstrates how the rates can easily be simplified into dot products or matrix

multiplications of a part that depends exclusively on the coordinates, and a part that depends

on the choice of configuration:

kIC,FC =
4

Γf

E(n)=Eif
∑

n

[aFC(R) · zFC(n,y)]
2 (5)

kIC,HT =
4

Γf

E(n)=Eif
∑

n

[zHT(n,y) ·AHT(R) · zFC(n,y)]
2 (6)

where the z, a, and A tensors are defined implicitly in equations 3 and 4.

Most importantly all the rates, including the ISC ones, are modulated through a de-

pendence on FC(n). Moreover, they are formed as a sum over configurations satisfying

a fixed energy criterion, leading to our connection to the knapsack problem. Writing it as

E(n) = Eif is somewhat disingenuous, however. For a system with a finite number of modes

of fixed energy, the probability of finding a configuration (where occupations are necessarily

integers) is infinitesimally small; this is due to the set of integers being countably infinite,

while the set of real numbers (i.e. possible values of Eif ) is uncountably infinite. Physically,

asserting an exact energy criterion would be nonsensical anyway - the excitation is occurring

between two electronic states with vibrational manifolds. Even at very low temperatures,

the excitation band will have non-zero width, implying that in reality the energy criterion

is

|E(n)− Eif | ≤ δ (7)

where δ is some energy window reflecting the thermal variation in acceptable excitation
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FIG. 1. A representation of the enumeration problem when M = 2. The configurations are the

lattice points, shown as bold black dots, while the energy criteria, E = Eif ± δ, are described by

the dashed blue lines. The ‘acceptable’ region is then shaded light blue, showing the density of

configurations. As M increases, the size of this volume will also increase.

energies. To determine the rates, we thus need to enumerate configuration space within this

energy window.

B. Density of configuration space

Each configuration vector, n, can be thought of as a point in an M -dimensional configura-

tion space, where each axis is rescaled by the weight or volume, wj, assigned to that object.

The total volume of the configuration is thus the sum wjnj. The fixed-volume criterion

then describes an (M − 1)-dimensional plane, and the expanded knapsack problem becomes

finding all the lattice points that lie on that plane. If we extend to the range in equation 7,

this describes a volume in configuration space bounded by two such planes, and we wish to

find all the lattice points within that volume. Intuitively, as M increases, the number of

possible lattice points in either instance will increase too, and this will increase further if we

use a wider window. In this section, we will look more rigorously at how many significant

configurations there are in such a system, and how the density of configurations behaves

asymptotically. This will allow us to assess how successful any approximate methodologies

are at characterizing the space.

To determine the behaviour, we consider how the volume of the acceptable region, and
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the number of lattice points within that region, increases with both M and the window δ.

The simplest, two-dimensional case is shown in Figure 1, where the hyper-surface is simply a

line described by ω2n2 = E±δ−ω1n1. The acceptable volume is then the difference between

the larger triangle and the smaller triangle. If we were to expand to three dimensions, these

would be octants of a tetrahedron, and more generally in M dimensions, a pair of regular

M -simplexes. The volume of such a simplex with side length L is LM/M !. By defining our

energy scale as E+ δ ≡ 1, the larger simplex has a volume of 1/M !, and thus the acceptable

region as a proportion of this total volume is:

vM(δ)/VM =
1− (1− 2δ)M

M !
·M ! = 1− (1− 2δ)M (8)

Now we consider the total number of lattice points within the larger simplex. If we

consider the 2D case once more, then the number of lattice points in the square with side

E + δ is simply the product of 1 + n1,max and 1 + n2,max. Similarly, in higher dimensions,

the hypercube contains the product of all such 1+ni,max. These maximum values are easily

computed as

ni,max =

⌊

E + δ

ωi

⌋

(9)

The M -simplex is then 1/M ! of the total volume of the hypercube,25 and so on average

contain
1

M !

M
∏

i=1

(1 + ni,max) ∼
(E + δ)M

M !
∏

i ωi

such points. Finally, combined with equation 8, the acceptable region must on average

contain

ÑM(δ) ∼
EM

M !
∏

i ωi

[

1− (1− 2δ)M
]

·

(

1 +
δ

E

)M

(10)

For δ ≪ E, we can expand the two terms in brackets as Taylor series. Retaining only the

term linear in δ, this yields

ÑM(δ) ∼
2EMδ

(M − 1)!
∏

i ωi

+O(δ2)

showing that the number of lattice points asymptotically tends to zero as the window shrinks,

as expected. As mentioned earlier, the probability of a lattice point lying exactly on the

hypersurface E(n) = E is vanishingly small. In the regime of large M , we instead expand

the brackets as binomial series. Approximating each weight as some fraction, ω ≈ αE/M ,
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we get

ÑM(δ) ∼ 2

(

M

α

)M M
∑

k=1

M
∑

l=0

(−2)k−1M !

(M − k)!(M − l)!k!l!
δk+lE−l

Given the assumption again that δ ≪ E, this is dominated by the first term in the double

sum, i.e. k = l = 0, This gives the much simpler asymptotic expression:

ÑM ∼
2MM

αMM !
∼ 2

( e

α

)M

(11)

where we have used Stirling’s approximation. From this we see that for a fixed value of δ, the

number of lattice points explodes exponentially in higher dimensions. Any approximations,

therefore, that rely on finding a single acceptable point in the allowable region will therefore

give increasingly worse results as the number of dimensions increases. Efficient strategies

for finding only the most important configurations, using knowledge of the "values" of each

point, are thus necessary to make this problem tractable.

C. Franck-Condon weightings

Having determined what the density of the configuration space is, the next step is to

characterise the importance of various regions in that space. This will be problem specific,

depending on how we have defined the values in the knapsack problem. In the case of

non-radiative rates, we want to find the configurations that give the largest contributions to

the rate. As these are mediated primarily through Franck-Condon factors in all cases, we

wish to find all configurations that have a factor within some threshold. We can rewrite the

product in equation 2 as a sum in the exponent to get:

FC(n) = exp

{

∑

j

(nj ln yj − yj)

}

·
M
∏

j=1

(nj!)
−1

All of the lattice points in a region can be found as the union of all the lattice points on

the planes defined by fixed |n| that intersect the region, where |n| =
∑

j nj is the total

occupation number for that configuration. If we estimate the individual nj as their average

values, |n|/M , and yj by the average value, ȳ, we can use Stirling’s approximation to get

FC(n) ∼

(

M

2π|n|

)|n|+M/2

(2πeȳ)|n| exp (−Mȳ) (12)
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FIG. 2. Normalized importance factor for the Franck-Condon kernel (ȳ = 1) as a function of the

total occupation, |n|, for various sized dimensions, M .

We note that any weighting function (i.e. probability distribution) defining the value of

the objects in the knapsack problem will have this asymptotic form of envelope if its kernel

follows the functional form

ρ(n) ∼ p1(|n|) · exp (p2(|n|)) ·
M
∏

j=1

(nj!)
−1 (13)

where p1 and p2 are arbitrary polynomials with real coefficients. This encompasses many

different probability distributions, including those generated by partition functions in various

ensembles,1 or in general where Boltzmann-like statistics are present.26

The importance of a given value of |n| is then equation 13 weighted by the number of

acceptable configurations with that |n|. As will be discussed in more detail later, the number

of such configurations follows a binomial distribution, from some |n|min to |n|max, which are

determined by the particular choice of target energy. By approximating this symmetric

binomial distribution as a normal distribution, the proportion, p(|n|), of total acceptable

configurations with fixed |n| is given by

p(|n|) ∼

√

αE

Mπδ
exp

{

−
E

Mαδ
(α|n| −M)2

}

where α is as defined earlier. Using the result from equation 11, we therefore have that the

weighted importance value, P (|n|), is given by

P (|n|) = p(|n|) ·NM · ρ(|n|) ∼ p(|n|)

(

|n|

M

)M/2−|n|

exp(−kM) (14)
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where the constant k is dependent on the kernel; for the Franck-Condon factors, k = ȳ.

From this we see that the importance factor follows a form of Gamma distribution, with the

center of the distributing shifting higher with increasing dimension, M , and with decreasing

k.

Figure 2 shows examples of these distributions for various values of M and |n|, with ymin

set at 0.5. This analysis shows that the FC factor acts as an envelope on configuration

space, greatly reducing the number of configurations that need to be considered, as those

configurations outside the main envelope will not contribute significantly to the rate. From

equation 12, we see that the width of the distribution follow M/2, implying that the number

of significant |n| increases linearly with dimension. However, this is also mitigated by the

exponential, which adds a factor of e−y for every extra mode, which is necessarily less than

unity, as y > 0. Therefore, theoretically, the problem is not of factorial complexity, as first

seemed.

III. METHODS

The general problem we are trying to solve is to find all configurations n that satisfy the

energy criterion in equation 7, that have values, ρ(n), greater than some given threshold.

The only assumptions that we make are that the occupations, nj, are necessarily integers,

and that the "energy" can be written as
∑

j njwj for positive weights, wj. We have shown

some of the theoretical properties of such a system in the previous section, and in the

present section, we will present algorithms for finding the solution. Implementations of

these algorithms can be found in the open-source Knapsack software package.23

A. Screened brute force approach

In the simplest, brute-force approach to solving the problem, we enumerate every pos-

sible configuration and test it against the energy criterion. In this manner, no significant

configurations can be missed. It may at first seem that there are infinitely many such con-

figurations, but we can place an upper bound on the occupation of each mode as no njwj

can be greater than the maximum allowed energy, E + δ. As such equation 9 gives upper

bounds for each occupation.
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There are then two possible algorithmic approaches to enumerating these for systems of

arbitrary dimensions. The first is through hashing, where we loop an index, i(n) from 1 to

N =
∏

j nj,max, where this index corresponds to a configuration. The configuration can be

reconstructed as

i(n) = n1 +
M
∑

j=2

nj

(

j−1
∏

k=1

nk,max

)

This is computationally efficient, because you are simply increasing a counter, without the

need for constructing M nested loops.

Algorithm 1 Screened brute-force algorithm for finding configurations, n, that satisfy the

energy criterion, equation 7, within a threshold T on the value ρ(n).
1: For each integer 0 ≤ t ≤ − log10 T and mode j, tabulate N (j, t) = nj,max such that

ρ(0, . . . , nj,max, . . . , 0) ≥ 10−t

2: For each possible value of nj , tabulate T (j, n) = t such that ρ(0, . . . , nj = n, . . . , 0) ≥ 10−t

3: Call Iterate(j = 1,n = (N (1, tmax), 0, 0, . . .)

4: procedure Iterate(j,n)

5: if j = M then

6: for i← 0, nj do

7: Let n
′ = n but with nj = i

8: Check E(n′) against criterion

9: end for

10: else

11: for i← 0, nj do

12: Let n
′ = n but with n′

j = i

13: Set t to the maximum of 0 or

tmax −
∑

k<j+1

T (k, n′
k)

14: Set n′
j+1 = N (j + 1, t)

15: Call Iterate(j + 1,n′)

16: end for

17: end if

18: end procedure
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However, we can greatly improve the efficiency of the screening if we consider that nj,max

should change dependent on the occupations for all k < j. That is to say that if the

threshold is T , then given the occupation n1, n2,max should be calculated with a threshold

of T/ρ(n)1, and so on. The efficiency of this will then be affected by our choice of ordering

of the modes, but this can be optimized by ordering them beforehand such that the modes

that give the strongest contributions to ρ are first. In the case of the FC factors, this equates

to ordering by decreasing magnitude of the Huang-Rhys factors. We cannot use the index

hashing approach with this kind of adaptive screening, though, because the indexing no

longer follows the simple form given above. In fact, even determining the exact number of

configurations, N , is a problem with the same computational complexity as finding all the

configurations themselves.

Instead we can use a recursive approach, combined with pre-tabulation of the maximum

values of nj for each threshold up to the minimum threshold, T . This screened brute-force

algorithm is described in Algorithm 1. The main downfall of this approach is that compilers

have hard limits on the level of recursion allowed, meaning that there is a fundamental limit

on the maximum possible number of modes, M . Additionally, recursion, especially at high

depths of recursion, can be notably slower than the hashing approach outlined earlier. The

efficiency of this approach therefore needs to come from heavy screening, effectively based

on limiting total occupation. We can estimate the total number of configurations that will

be enumerated in this manner as follows, for the example where ρ(n) is the Franck-Condon

factor.

Taking logarithms of equation 2 and rearranging we see that the maximum n for a given

threshold T = 10−t ≡ e−t̃ can be estimated from

yj − t̃ = ñj,max ln yj − ln (ñj,max!) ≈ ñj,max [ln yj − ln ñj,max + 1]

where we have again used Stirling’s approximation. Rearranging and assuming a general

maximum n of around 20, such that ln ñ < 3 ≈ ln 20, we get

ñj,max(t̃) <
t̃− yj

2− ln yj
(15)

Therefore, following Algorithm 1, the total number of configurations can be estimated as

Ñ =

ñ1,max(t̃)
∑

n1=0

ñ2,max(t̃1)
∑

n2=0

. . .

ñM−1,max(t̃M−2)
∑

nM−1=0

ñM,max(t̃M−1)

12



where the conditional threshold t̃j is defined as t̃− log10 FC(n1, n2, . . . , nj−1, 0, . . .). This is

seemingly a very complex sum, and we leave the somewhat involved algebraic manipulations

to the supplementary material. However, the result is fairly simple:

Ñ ∼ n̄M−1 − (1 + ln ȳ + ln n̄)n̄2 +O(n̄) (16)

where n̄ is the maximum possible nj and ȳ is the minimum yj. While this is clearly greatly

reduced from the n̄M scaling of the unscreened method, it is still exponential, and will

become unfeasible for large M .

B. Reduction to quasi-polynomial time

As a result, we want to find a way to reduce the scaling to something computationally

feasible. The key to this is the enveloping noted earlier in equation 12. This suggests that

we can select a range of |n| such that ignoring all configurations with a total occupation

outside this range can be ignored without affecting the calculated value. The number of

configurations NM(|n|) with a fixed |n| is given by

NM(|n|) =
1

(M − 1)!

M−2
∏

k=0

(|n|+ k) (17)

That is, the leading term goes as |n|M−2/(M − 1)!. As we will show shortly, this is strictly

still asymptotically exponential in M , but the mantissa is close enough to unity that, for a

pragmatic range of M , the complexity appears to behave polynomially.

To see this, we note that for a fixed value of |n|, the leading term goes to zero as M goes

to infinity, and has a maximum at approximately |n| = M − 1. The question then becomes

how does the modal value of |n| depend on M . Differentiating equation 14 with respect to

|n|, and writing x = |n|/M , the |n|mode is found at the solution of

2Eα

δ
x+ ln x−

1

2x
=

2E

δ
− 1 (18)

We show numerical solutions for this for varying values of α and 2E/δ in Figure 3. Notably

- and this is shown rigorously in the supplementary material - there is a limiting solution

for 2E/δ sufficiently large. That is, for an energy window less than or equal to 2% of the

total energy, the modal |n| is given by |n| = M/α. Equation 17 then tells us that the

number of configurations asymptotically follows (e/α)M , which is exponentially increasing

13
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FIG. 3. The left hand panel shows numerical solutions of equation for x = |n|/M in equation 18

for various values of α (marked on the lines) as a function of the energy parameters. These all tend

to an asymptote in the large-E/δ limit, and these are plotted as a function of α in the right hand

panel, with the curve x = 1/α overlaid.

for α < e, and decreasing for α > e. The value of α is essentially a measure of how much each

individual mode contributes to the total energy, on average. The behaviour will therefore

depend heavily on the spectrum of ω values: spectra with large spacings will have larger

values of α, leading to a reduced number of configurations, while very densely packed spectra

will have small α and much greater numbers of configurations. We will see later that the

value of α in the case of the Franck-Condon factors is usually very close to, but slightly less

than, e, and as such the scaling appears locally to be polynomial, even though it is strictly

speaking exponential; as such, we refer to it as ‘quasi-polynomial’.

The algorithm for following such a procedure is also easily adapted from Algorithm 1,

and can make use of the same screening, yielding similar O(|n|2 ln |n|) time savings. Only

two changes are needed. We add an argument |n| to the Iterate procedure and in line 6,

we replace i← 0, nj with

i← max(|n|, 0),min(|n|, nM)

Then, in line 15 where the recursion happens, we pass the new argument |n| − i.

All we require, then, is a method of estimating the minimum and maximum values of |n|

required to give values within a given threshold. Alternatively, we can try to estimate these

by finding the |n| for which ρ(n) is at a maximum, and estimate the spread of the Gamma

distribution. For the former, we note that equation 17 tells us that, agreeing with intuition,

the number of configurations increases with |n|, and so it is much more important to find a
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tight bound on the maximum |n| than for the minimum |n|. In this regard, we can trivially

compute a lower bound via the minimum target energy as:

|n|min =

⌈

E − δ

ωmin

⌉

(19)

For the upper bound, we must analyse ρ(n). For the specific case of the Franck-Condon

factor, from equation 2 that for a given threshold, T = 10−t, we have that, approximately,

10−t < exp

(

|n| ln ymax −
∑

j

yj

)

(

M

|n|

)M

where we have estimated the individual nj as |n|/M and used the fact that 1/n! < 1/n.

Under the reasonable assumption that ymax has no dependence on M , this rearranges to

give the estimate

|n|max = M · exp

{(

t ln 10−
∑

j

yj

)

/M

}

(20)

As expected from earlier, this increases with M , but is also somewhat affected by the values

of yj. Interestingly, if we write the sum in the exponential as
∑

j yj = Mȳ where ȳ is the

average value of yj, we can expand the exponential as a Taylor series to see that for large

M :

|n|max ∼M − k +O

(

1

M

)

That is, the maximum increases roughly linearly with M . This, along with the analysis of the

spread of the distribution of ρ from earlier (which is also linear in M), means that if we can

determine approximately the modal |n|, the scaling from equation 17 will be considerably

reduced.

To do this, we use the method of Lagrange multipliers. In their most recent paper on

the topic,22 Valiev and coworkers demonstrated that they were using a very similar method

to estimate the total contribution from the Franck-Condon factors. As a result, we are able

to replicate their approximations directly for the calculation of non-radiative rates, and we

will discuss in the results sections how our analysis here demonstrates that it becomes an

increasingly poor approximation as M increases. The method of Lagrangian multipliers is

well-known and we do not need to discuss it in any detail. We wish to find the maximum

of the distribution, ρ(n), which we assume to have kernel of the form given in equation 13.

This is subject to the energy constraint in equation 7. The Lagrangian is thus

L(n) = ln ρ(n)− λ

(

∑

j

njωj − E

)
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where λ is a Lagrange multiplier. Differentiating with respect to nj and rearranging gives

nj exp

{

−
p′1(nj)

p1(nj)
− p′2(nj)

}

= exp (−λωj) (21)

which can then be solved for nj and summed to give the modal value of |n|. The multiplier

can be found by standard optimization means, by finding the value of λ such that equation 21

satisfies the energy criterion.

The underlying assumption of this approach is that we are allowing the nj to take non-

integer values, as otherwise the Lagrangian is discontinuous and thus undifferentiable. The

resulting calculated nj will be fractional. Therein lies the problem with using this as a

method for actually evaluating ρ - the configuration generated is completely invalid, and you

are effectively approximating a sum across a distribution with its value at the maximum. As

we know from the analysis earlier, the density of configurations increases exponentially with

M for nonzero δ, and as such, this type of estimate will be very poor for large M . On the

other hand, it will also likely be poor for small M , because the nearest valid configurations

- of which there will be relatively few - will not achieve this maximum value, and thus

the maximum will be a considerable overestimate. However, for our purposes, it is an

excellent manner for determining the two nearest integer |n| to the mode of the distribution,

and the value of ρ at that point. Combined with our estimate for the maximum, we can

then interpolate the rate at which the distribution decays by using the functional form in

equation 13, effectively making the number of fixed-|n| values constant. We will therefore

refer to this as the fixed-|n| algorithm.

C. Stochastic sampling of configurations

Another way to arrive at the conclusion of equation 18, but for general ρ of the form in

equation 13 is to consider the following. If the spread of ρ follows M/2 and |n|max follows M ,

as per the previous analysis, we crudely expect the most important |n| to be at around M/2.

The fixed-|n| algorithm from equation 17 will then follow the quasi -polynomial scaling; it is

still strictly asymptotically exponential, but the asymptotics will only apply for relatively

large M . If we wish to go to even larger systems, however, we need some non-deterministic

or heuristic method of characterising configuration space.

The nature of the problem suggests that we can very simply stochastically sample the

space by randomly selecting configurations. That is, for each j, we randomly select some
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nj between 0 and nj,max, then test the overall configuration to see if it satisfies the energy

criterion. Such a method would naturally scale linearly with M for a fixed number of

samples, as there are M random numbers generated per sample. However, the number

of samples necessary for such a uniform prior would necessarily scale factorially with M ,

making it a largely pointless endeavour. If we can find a starting guess in the manifold of

acceptable configurations to seed the sampling, we could restrict the space that needs to be

explored by only allowing samples of nj close to the guess. The natural manner to do this

is to set a maximum number of occupations to change and/or the maximum amount that

|n| is allowed to change. If a configuration so generated is ‘acceptable’, it is added to the

pool of guesses, from which the next sample is generated.

However, from equation 11, we know that even this much reduced space scales exponen-

tially with M . We can follow the deterministic approach of the previous sections, applying

the distribution ρ as the prior to our sampling procedure. We attach a weight to allowing a

mode to increment or decrement by one based on the change to the ‘value’, as defined by ρ:

p±j = ln

{

ρ(n : nj)

ρ(n : nj ± 1)

}

(22)

We take logarithms under the assumption that ρ follows the kernel in equation 13 and as

such is exponential. The probability of the mode being selected is then simply

P (nj → nj ± 1) =
p±j

∑

j p
±
j

(23)

Equation 23 is certainly not the only possible choice of probability distribution to enforce,

especially as it divides incrementing and decrementing a mode into two separate probabili-

ties. We have chosen to do it this way for two main reasons. Firstly, modes that are least

favourable to increment are most favourable to decrement, and vice versa; thus having two

essentially inverse probability distributions make sense. Secondly, it allows us to sample

for a fixed change in |n|: we select the change ∆|n|, then sample for k+ increments and

k− decrements such that k+ − k− = ∆|n|. In this way, we can use the information from

the fixed-|n| algorithm to further improve our sampling. In particular, we can use the La-

grangian estimate, equation 21, as our initial starting guess, then sample away from this

such that ∆|n| is weighted roughly quadratically, with a hard cutoff when we reach |n|min

or |n|max.
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Algorithm 2 Algorithm for the stochastic sampling of configuration space weighted with a

prior distribution defined via equation 23.
1: Generate some number of starting guesses in set G.

2: for all Samples do

3: Randomly select a guess n ∈ G

4: Sample ∆|n| from (|n| − |n|mode)
2, such that |n| ∈ [|n|min, |n|max].

5: Randomly select k+ up to some fixed limit, and set k− = k+ −∆|n|

6: Sample k+ modes to increment, k− modes to decrement, weighted as per equation 23.

7: Set n
′ = k̂−k̂+n.

8: if |E(n′)− Eif | ≤ δ then

9: Add n
′ to G

10: end if

11: end for

The stochastic algorithm is described fully in Algorithm 2. We note that the k± modes to

increment/decrement are selected independently, such that a mode can increase or decrease

by more than one in a single sample, and it is possible to select the same sample multiple

times. Algorithmically, this creates a problem of uniqueness when calculating the final value.

There are two possible ways to approach this. The memory-intensive method is to set the

group G up as a hash-table, such that a configuration n′ only gets added to G if it is not

already in the table. The fixed memory approach, on the other hand, is to allow n′ to

be added to G multiple times, then when the memory limit is reached, sort G and screen

out duplicates. Furthermore, at this point, configurations with ρ below some threshold can

either be discarded or written to file, with only the most ‘important’ configurations kept in

G for the next round of sampling. The additional expense in this approach, however, is that

a considerable amount of writing to and reading from file is necessary, as the final value

cannot be computed until all samples have been performed.

The effectiveness of Algorithm 2 relies entirely on the fortuitous enveloping of configu-

ration space by ρ(n), and the increasing pool of guesses in G. This means, however, that

starting with only a single guess drastically reduces the rate at which ergodicity is ap-

proached (if ergodicity is reached at all). To this end, we use the traditional 0-1 knapsack

problem fully-polynomial time approximation scheme to generate G guesses with values of
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E evenly spaced between Eif − δ and Eif + δ. The algorithm for doing so is well-known and

described elsewhere.14

Finally, we must consider what number of samples will theoretically be required to achieve

a sufficient characterisation of the configuration space. This is not an easy question to

answer. Certainly, we would expect, from the previous section, that the relevant space

will still expand exponentially even with the restrictions on |n|. However, we would not

necessarily expect the number of configurations with significant values of ρ to increase in

such a manner. Precisely we would expect the number of samples needed to follow instead

the following estimate:

Ñs <

∫ |n|+∆

|n|−∆

ρ(n) · n dn

where ∆ is some measure of the spread of the distribution ρ, and we are approximating this

as a continuous distribution of possible n, hence the inequality. For the simplest possible

version of the kernel in equation 13, that is

ρ(n) = exp

(

∑

j

cjnj

)

·
∏

j

(nj!)
−1 <

∏

j

exp (cjnj)

nj

for some constants cj. This equates to

Ñs <
∏

j

∫ n̄

0

exp (cjnj) dnj =
∏

j

{

1

cj
[exp(cjn̄)− 1]

}

where n̄ is some estimate of the average maximum value of each nj satisfying the range

|n| ±∆. Using the results of the previous sections, we know that |n|mode ±∆ ∼M/2. This

means that |n| can range up to (asymptotically) MC for some constant C, making n̄ ≈ C.

Replacing the cj with their average, c̄, this becomes

Ñs ∼

(

exp(Cc̄)− 1

c̄

)M

(24)

which is still exponential in M . However, c̄ is typically negative; in the case of the Franck-

Condon factors, cj = ln yj, and the yj are generally less than unity. This means that, like

with the fixed-|n| procedure, the mantissa is close to 1, so Ñs appears to be polynomial until

M gets very large.
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D. Parallelization

It is important to note that both Algorithm 1 and 2 are inherently parallelizable, and

by extension therefore also the fixed-|n| algorithm. Here we briefly describe the strategy for

each.

The screened brute force algorithm is perhaps the most complex, because the task of

determining exactly how many configurations will be screened is as complex as the enumer-

ating itself. Certainly, we cannot simply divide the work based on the maximum n of the

first mode, because the screening will necessarily result in fewer configurations for larger

values of n1. Instead, we would propose ordering the modes in terms of their maximum

possible n from largest to smallest; in the case where ρ is the Franck-Condon factor, this

is equivalent to in order of decreasing yj. The simple problem of finding all bounds on the

first k modes can then be solved, and the work divided up accordingly. For example, if we

took the just the first two modes, for each value of n1 we would determine the maximum n2,

and then use n1n2 as a heuristic to assess how many configurations there will be in total.

In this way a roughly equivalent number of configurations can be assigned to each thread

or process, and Algorithm 1 can be carried out on each ‘chunk’ independently. For the

fixed-|n| version, the load balancing is simpler. We can quickly determine from equation 17

the maximum number of configurations for each |n| from |n|min to |n|max. As each |n| can

easily be performed in parallel, the task is then dividing the total number of configurations

evenly between each available thread or process.

For the stochastic algorithm, every sample can in principle be done independently. How-

ever, there is the pooling of the configurations into G to be considered, and whether the

algorithm is performed entirely in-core or with regular dumps to file. There are then two

distinct possible approaches. In the first, each thread or process performs a completely

independent sample run, with its own pool of guesses. The initial guess pool could be the

same for each run, or be divided between all the runs. The advantage of this is that there is

only overhead at the end, when all of the samples from all the threads need to be combined.

This works particularly well when all valid configurations are being written to file, as the

sorting and screening greatly speeds up the eventual recombination. The disadvantage is the

duplicated effort, as the independent runs will likely find many of the same configurations,

despite the stochasticity. The alternative then is to let all the threads share a guess pool.
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Every fixed number of samples, the thread-specific configurations are broadcasted out to all

the other threads, effectively pausing the sampling on all threads while the update occurs.

This does not work so well with writing to file, however, as the records from each thread

would need to be combined at every broadcast event, creating a considerable extra amount

of file-based work.

IV. RESULTS

To test the efficiency of the new algorithms, and the validity of our asymptotic anal-

yses, we generated a random ensemble of systems to be used with the density described

in equation 2. For a selection of values of M (system size) from 20 to 50, the energies,

ωi, and weights, yi, of each mode were selected from a uniform distribution on [0.01, 0.41],

and a Pareto distribution with location 10, respectively. These were chosen to resemble

realistic systems, as it would be exceptionally difficult to systematically find and compute

such values for an ensemble of real molecules. In particular, the Pareto distribution for the

weights generally results in a few modes with large weights (greater than 0.5) while most

are less than 0.1, as is found in real molecular systems. The target energy for each model

system was then chosen as the mean of the ωi multiplied by a factor drawn from a normal

distribution with location 16 and unit scale. This was based on the empirical observation

that for polyacenes considered elsewhere,20,21 the excitation energy is roughly 16 times the

average mode energy.

For each value of M , ten such model samples were drawn and calculated using each of the

algorithms described above, with the exception that the true brute force algorithm was only

performed for the lowest value of M , as it is prohibitively expensive for larger M . All the

calculations were run using the open-source knapsack software, running on four cores with

2 GB of memory. We also include calculations of the internal conversion rate, according to

equation 5.

For the molecular systems, electronic ground state (S0) geometries were optimized using

B3LYP27,28 and the def2-TZVP basis set,29 in the Turbomole software package.30,31 The

first singlet excited state (S1) was determined using TD-B3LYP with the same basis. These

geometries were then used to calculate vibrational constants in the SNF package,32 with the

same functionals and basis, yielding the B-matrix in equation 3. This normal mode analysis
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was combined with the forces from the earlier optimizations to generate the non-adiabatic

coupling matrix elements needed in the same equation.33 Finally, the S0 to S1 electronic

excitation energy was calculated using DFT/MRCI34–36 with BHLYP/def2-TZVP.37 The

reference space was iteratively generated with 10 electrons across 10 orbitals, with a maxi-

mum excitation level of 2; all electron configurations with coefficients larger than 10−3 were

included at each step. Probe runs were calculated by discarding configurations with energy

less than the highest reference energy; starting with a barrier of 0.6 Eh, then 0.8, with fi-

nalised wavefunction built using a barrier of 1.0 Eh. Molecular orbitals with energies larger

than 2.0 Eh were not used. The number of modes included in the rate calculation was re-

duced by two means. Firstly, a number of modes are equivalent by point group symmetry,

typically reducing the number of modes by a factor of 2 (the order of the point group).

Secondly, any modes with a Huang-Rhys factor of less than 10−6.

A. Model systems

For every model system, the brute force (where applicable), hybrid brute force, and fixed-

|n| algorithms all gave values of the total density
∑

n
ρ(n) that agreed to within a thousandth

of a percent. For the stochastic algorithm, we first need to ascertain the appropriate number

of samples to achieve convergence to the correct result. This was done by systematically

increasing the number of samples from 108 for a single model for each value of M , and

determining at what number the density plateaus. Figure 4 shows this analysis for the three

smallest system sizes.

From the figure, we see that the density does flatten out, and approaches the correct

value ascertained from the non-stochastic algorithms. However, the deviation of the value

after ‘convergence‘ is typically on the order of 0.1%, and adding additional samples does not

help. The reason for this is sensitivity to the pool of starting guesses - if the total |n| for

each starting guess is too large, the algorithm ‘walks’ to higher and higher |n|, missing the

most important configurations as would be located using the fixed-|n| algorithm. As such,

when generating the starting guesses as per step 1 of Algorithm 2, we took the following

approach. The energy window was divided into 20 equally spaced chunks. We then used the

fully polynomial time algorithm for solving the 0-1 knapsack problem to find configurations

close to each energy division. From this best guess, we scan for the nearest acceptable
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FIG. 4. Convergence of the value of the density, ρ, with the number of samples used in the stochastic

algorithm, for a selection of the model systems described in the main text. The extrapolated

asymptotes for each system are shown as dashed lines.

configuration with total |n| less than or equal to the target modal value of |n|, as determined

by the Lagrangian method. This scan can be achieved rapidly by energy ordering the modes

and iteratively adding or subtracting occupations so as to not change the energy by more

than a given tolerance, while approaching the correct total |n|. In practice we have seen

that this can typically be found in no more than 20 iterations. Seeding the guess pool in

this way led to the promising results of Figure 4; in contrast, using fewer guesses or not

adjusting the value of |n| appropriately, led to considerable underestimates of the value of

the density, sometimes of several orders of magnitude.

Having determined the appropriate number of samples to use in the stochastic algorithm,

we can now look at the scaling of both the computational time and number of significant

configurations found using each algorithm. We show these in Figure 5. Note that we expect

the hybrid brute force to find the most configurations, with consistently more configurations

screened out due to insignificance in both the fixed-|n| and stochastic algorithms. The

amount of computational time should naturally scale roughly linearly with the number of

configurations, however the stochastic algorithm has a considerable overhead due to needing
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FIG. 5. Log-log plots of the scaling in computational wall time (left) and number of significant

configurations (right) for the ensemble of model systems described in the main text. Full brute

force results (black circles) are given only for the lowest value of M , as based on the number of

configurations that would need to be checked for the next biggest, such a calculation would take

several millennia.

to sort and write to file configurations whenever the allocated memory is full. This is due

to the redundancy inherent in the algorithm.

We see these trends clearly in Figure 5. Importantly, both the hybrid (screening-only) and

fixed-|n| deterministic algorithms appear to show strictly linear log-log scaling of number of

valid configurations, which implies polynomial behaviour with respect to increasing system

size. This demonstrates that the density of significant configurations (that also satisfy the

energy criterion) is not in fact exponential. The time taken - which encompasses all config-

urations checked, not just those which contribute significantly - is not linear for the hybrid

algorithm, however, with a clearly discernible slight increase in gradient with increasing M ,

indicating exponential behaviour. The fixed-|n| algorithm, on the other hand, appears to

be linear over the range of M considered, with a straight line fit (with gradient of 14.4)

explaining over 99% of the observed variance. This reflects the predicted quasi-polynomial

behaviour due to restricting the configuration space.

The results for the stochastic algorithm are less clear. There is a much greater spread

of timings within each set of model systems, due to the number of samples being required

to reach convergence differing between them. On the other hand, the number of significant

configurations stays fairly consistent for each value of M , suggesting that the variability
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FIG. 6. Comparisons of the modal value of |n| (left) and total density ρ (right)as predicted by

the Lagrangian procedure, versus that found by tabulating all configurations from the fixed-|n|

algorithm.

is largely due to the ease of finding suitable starting guesses. Interestingly, the number

of configurations is higher for the stochastic algorithm than all but the full brute force

algorithm, which implies that our importance criterion is not strong enough, and a more

efficient sampling could be achieved by tightening this. However, this effect lessens with

increasing M , and most importantly there is clearly a point at which the time taken for

the stochastic algorithm will be considerably less than for the other algorithms. In fact,

this has already started to happen for the largest value of M considered in Figure 5. This

is because the cost of each individual sample does not increase with system size (beyond a

small amount of additional overhead in the sorting steps), whereas the recursive nature of

the other algorithms mean they get far more memory-intensive and thus expensive as M

increases. Finally, we note that all three new methods perform orders of magnitude better

than the full brute force approach for the smallest system (105 times faster in the case of the

fixed-|n| algorithm), and this improvement will only increase as M does, given the factorial

scaling of the naive method.

It is also worth looking at the Lagrangian approximation of equation 21 in more detail,

as it affects the efficacy of both the fixed-|n| and stochastic algorithms. Figure 6 shows

the predicted modal |n| and the estimated density ρ as determined using this approach,

compared to that found from the hybrid brute force algorithm, across all model systems.

Generally speaking, the Lagrangian prediction of |n| is within 1 of the empirical mode, and
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is thus a very effective prediction for the overall distribution of significant |n|. However, the

approximation to the density is very poor; it is on average two orders of magnitude too large

or too small, with the nature of the error depending on the exact distribution of weights

and eneriges. As such it neither provides a convenient bound nor good approximation to

the density. This is important in the context of non-radiative rates as this method has been

used previously to estimate rates,22 which being directly proportional to this density, will

also likely be in error by orders of magnitude.

B. Example rates

As an important final test, we apply the new algorithms to the determination of internal

conversion rates for three molecular systems: anthracene, tetracene, and indole. We have

selected these because they are molecules that are known to have a viable internal conversion

pathway,38–41 and that have a feasible number of vibrational modes for the calculations.

Our intention here is not to assess the validity of the physical assumptions underlying the

formalism inherent in equation 5, as that is not the topic of this paper, and has been

considered elsewhere.20,42 In fact, it is very difficult to validate specifically the calculated

internal conversion rate for a single pathway, as there is very limited experimental data for

molecules that we can treat computationally, and moreover these experiments will typically

be in solvent. Instead, we are demonstrating that for realistic systems, where the relevant

parameters have not been randomly estimated as per the model ensembles above, that the

new algorithms give consistent results.

In Table I, we tabulate the results from these algorithmic comparisons, along with a sum-

mary of the relevant parameters. Crucially, we see that the hybrid and fixed-|n| algorithms

consistently give the same results, with values of |n|max and |n|mode determined more by the

target transition energy than by the dimension M . As it is this parameter that controls

the computational cost of the fixed-|n| method, this is promising. However, the number of

configurations with a Franck-Condon factor greater than the fixed threshold (here chosen

as 10−12) does increase noticeably with M . This is a particular problem for the stochastic

method, where we see that in the case of indole, convergence has not quite been achieved

even at 2.5 × 1010 samples. However, the stochastic results are consistently much closer to

the deterministic results than those found through the Lagrangian approximation. This is
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TABLE I. Internal conversion rates as calculated using equation 5 for anthracene, tetracene, and

indole, for each of the algorithms described in this work. Additionally, we give the number of modes

M , target energy E, and mode-weight parameter α for each, along with algorithm parameters. The

energy window δ in all cases was 40 meV. The brute force rate for anthracene was 2.120× 105 s−1.

Anthracene Tetracene Indole

M 12 22 29

ES0→S1
(eV) 3.172 2.435 4.689

α 1.8 2.5 2.4

|n|min 11 8 10

|n|max 18 16 24

|n|mode 14 12 19

No. samples 1× 108 5× 109 2.5× 1010

No. config. 2.89× 105 2.02× 108 3.07× 109

kIC,FC (s−1)

Hybrid 2.120× 105 5.276× 106 1.258× 109

Fixed-|n| 2.120× 105 5.276× 106 1.258× 109

Stochastic 2.094× 105 5.080× 106 9.716× 108

Lagrangian 1.825× 105 1.142× 107 6.885× 103

particularly severe in the case of Indole where the sheer number of significant configurations

has resulted in the Lagrangian result being six orders of magnitude too small. Finally, we

see that the fractional energy parameter, α, which controls the scaling as per equation 18, is

close to but less than e. This effectively means that, as expected, the scaling is still strictly

exponential but for this size of systems, the cost is not yet prohibitive. These results are

therefore promising for the application of these new algorithms to much larger systems.

V. CONCLUSIONS

In this work, we have developed three novel methods for the enumeration of bosonic

configurations to calculate a density kernel with generalized Boltzmannian statistics. The
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two deterministic algorithms, described by Algorithm 1, are based, respectively, on heavy

screening of the configurations and division of the simplicial volume into fixed occupation

slices. The third, stochastic approach, given in Algorithm 2, is based on an importance

sampling generated from a pool of guesses, using heuristic solutions to the knapsack problem

as a starting point. Our focus in validation has been on applying these new methods to the

problem of calculating non-radiative rate constants for molecules, but the algorithms have

been designed to be agnostic to the specific choice of physical problem. Our asymptotic

analysis, and subsequent numerical investigations, demonstrate that the seemingly factorial

scaling of these combinatorial problems is unphysical. In particular, for an ensemble of

model systems with the simplest Boltzmann kernel, the number of significant configurations

in fact seems to scale as a high-order polynomial. This has important consequences for

future algorithmic developments, as it suggests that by improving the choice of importance

sampling procedure, the problem can eventually be solved in polynomial time.

The efficient sampling and achievement of ergodicity in the stochastic approach is not

simple, however, and there is still clearly much that could be improved. In particular, the

sheer volume of the space to be sampled is so staggeringly large that the choice of appropriate

seeding guesses is itself a computationally intensive challenge. This is alleviated somewhat

by our observations of where the maximum total occupation can be found, as reflected in the

fixed-|n| algorithm, as this necessarily reduces the space to be searched. It is not sufficient,

however, to limit ourselves only to the distributional maximum, as demonstrated by the

poor performance of the Lagrangian approximation in many cases. One possible approach

would be to solve a simpler problem in the subspace of k modes with the largest weights,

and then perturbatively expand into the full space from there. This would then allow for

more efficient directing of the sampling procedure to the important regions of configuration

space. The difficulty comes from defining where the cutoff for the size of the subspace should

be, and assessing how this affects the final results.

Similarly, the relevant molecules in new materials design are typically much larger than

the three molecular systems we have considered here, with M typically being in the range of

50 to 100, after symmetry and insignificant Huang-Rhys factors have been taken into account.

We did not include such large molecules because of the sheer amount of computational effort

in obtaining the necessary parameters to a sufficient accuracy, although we hope to do this in

a follow-up study. Our model tests do show scalability up to the lower end of this range of M ,
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and we would anticipate from extrapolating the scaling behaviours that it should be feasible

to consider these larger systems. However, it is an open question whether the sampling will be

sufficient for the highest values of M . It would also be worthwhile to compare how changing

the choice of polynomials in the kernel definition, equation 13, affects the scaling parameter,

α, and whether this can be used to improve sampling efficiency. These are mathematically

challenging questions that suggest interesting pathways for future developments.

SUPPLEMENTARY MATERIAL AND DATA AVAILABILITY

Open-source implementations of all the methods described here can be found in the Knap-

sack software in the following GitHub repository: https://www.github.com/robashaw/

knapsack (Last accessed: 19th November 2020) The input parameters for all of the molec-

ular and model systems can be found in the supplementary material CSV file, along with

XYZ coordinates for the ground-state molecular systems. Additional derivations of results

can be found in the supplementary material PDF.
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