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Abstract—Striking a balance between improved cluster utiliza-
tion and guaranteed application QoS is a long-standing research
problem in cluster resource management. The majority of current
solutions require a large number of sandboxed experimentation
for different workload combinations and leverage them to predict
possible interference for incoming workloads. This results in non-
negligible time complexity that severely restricts its applicability
to complex workload co-locations. The nature of pure offline
profiling may also lead to model aging problem that drasti-
cally degrades the model precision. In this paper, we present
Perph, a runtime agent on a per node basis, which decouples
ML-based performance prediction and resource inference from
centralized scheduler. We exploit the sensitivity of long-running
applications to multi-resources for establishing a relationship
between resource allocation and consequential performance. We
use Online Gradient Boost Regression Tree (OGBRT) to enable
the continuous model evolution. Once performance degradation
is detected, resource inference is conducted to work out a
proper slice of resources that will be reallocated to recover
the target performance. The integration with Node Manager
(NM) of Apache YARN shows that the throughput of Kafka
data-streaming application is 2.0x and 1.82x times that of
isolation execution schemes in native YARN and pure cgroup
cpu subsystem. In TPC-C benchmarking, the throughput can
also be improved by 35% and 23% respectively against YARN
native and cgroup cpu subsystem.

Index Terms—performance isolation, co-location, multi-
dimensional resource

I. INTRODUCTION

Purchasing commodity servers usually accounts for 50%

to 70% of the total cost of Cloud vendors and service

providers [1]. However, data center utilization is only between

10% to 50% [2][3]. Cluster administrators are facing great

pressure to improve cluster utilization through workload co-

location [4][5]. Long running applications (LRA) such as

transactional and analytical workloads share the same resource

with batch-mode data processing jobs by either time multiplex-

ing [6] or fair sharing according to fixed or dynamic quota

on a node basis [7][8]. Guaranteeing performance of LRAs,

however, is far from settled as unpredictable interference

across applications is catastrophic to QoS [9]. In reality, QoS

violation still frequently manifests.

Interference can be mitigated or avoided through perfor-

mance prediction and performance isolation. Current solutions

such as [10][11][12][13] usually employ a large number of

sandboxed and offline profiling for different workload com-

binations and leverage them to predict incoming interference.

†: co-first authors with equal contribution. ∗: corresponding author.

However, the time complexity and strong assumption of known

resource requirement limit the applicability to complex co-

locations. This situation usually results in a strict dependence

on centralized architecture in which the prediction model is

generated in advanced and leveraged in the following decision

making. However, offline-based centralized approaches have to

encounter scalability and model aging problem. Furthermore,

multi-resource dimensions (e.g., LLC contention) that are not

completely included by existing works but have impact on

performance interference need to be considered [14].

Hence, these issues entail a new framework to harness

runtime performance and mitigate the involved time cost with

continuous and adaptive machine intelligence. It is desirable to

explore a quantitative relationship between allocated resource

and consequent workload performance, not relying on analyz-

ing interference derived from different workload combinations.

Workload co-location also necessitates fine-grained isolation

and access control mechanism. Once performance degradation

is detected, dynamic resource adjustment will be enforced and

application will be assigned an access to specific slices of

each resources. Inferring a just enough amount of resource

adjustment ensures the application performance can be secured

whilst improving co-location efficiency and system utilization.

This paper describes Perph, a decentralized framework on

a per node basis that decouples ML-based performance pre-

diction from the central resource scheduler. Assuming strong

resource isolation can be enforced, Perph agent exploit the

sensitivity of long-running applications to multi-resources for

quantitatively establishing a relationship between resource al-

location and consequential performance. It encompasses multi-

dimension resources such as cores, caches, main memory and

memory bandwidth, etc. that can overcome the inaccuracy of

single dimension based approaches. To deal with model aging,

we use Online Gradient Boost Regression Tree (OGBRT) to

warmly start from offline training based on a small sampling

volume but continuously evolve with model parameters up-

dated. Once performance degradation is detected, resource

inference is conducted to work out a proper slice of resources

that will be reallocated to recover the target performance.

We adopt Intel Resource Director Technology (RDT) [15] for

measuring and manipulating memory bandwidth and last level

cache utilization/misses. Our prototype is integrated with Node

Manager of Apache YARN and we mainly use transactional

and analytical application and batch jobs to represent real-

world workloads to validate the proposed mechanisms. Ex-



periments show that the throughput of Kafka data-streaming

application is 2.0x and 1.82x times that of isolation execution

schemes in native YARN and pure cgroup cpu subsystem. In

TPC-C benchmarking, the throughput can also be improved by

35% and 23% respectively against YARN native and cgroup

cpu subsystem. In fact, Perph can be applied into any resource

management systems and facilitate node daemon to harness

application’s performance. Particularly, main contributions are

as follows:

• An agent that decouples ML-based performance predic-

tion and resource inference from centralized scheduler.

• An online performance model that warmly starts with

offline profiling and training to depict multi-dimensional

resources and pertaining performance but is continuously

updated exploiting incoming workloads.

• An adaptive resource reallocation mechanism based on

timely resource inference and multi-resource isolated

execution to ensure application performance.

Organization. Section II states problems and architecture

overview. Section III and IV detail online performance pre-

diction model and the runtime access control. We detail the

system implementation in Section V and experiment evalua-

tion in Section VI. Following the related work in Section VII,

we draw conclusions and outline further work.

II. PERPH OVERVIEW

A. Background and Requirements

Cloud data centers are confronted with a dilemma between

application performance and cluster resource utilization. The

contention on shared resources is prone to severe performance

interference, which is detrimental to QoS targets. In this

scenario, how to ascertain a predictable performance model

and safe workload co-location is very critical to service

provisioning, specifically for LRAs. There are two urgent

requirements: [R1] It is desirable to explore a quantitative

relationship between allocated multi-resources and consequent

workload performance, not relying on analyzing interference

derived from different workload combinations. Allocation and

contention of different resources among applications may have

strong impact on application performance. For instance, LLC

contention has been illustrated the main source of performance

degradation of LRAs [9][16][17]. The size of dataset used

in latency-sensitive applications is usually larger than cache

capacity. The application’s demand for MBW will increase

with the increase of system load. Reversely, we can also use

the model to infer different resource plans that can achieve a

particular performance level. Namely, we take current resource

allocation, system loads and target performance as inputs

and yield a new resource plan that can generate a specific

performance rescue. [R2] Workload co-location also neces-

sitates fine-grained isolation and access control mechanism.

Once performance degradation is detected, dynamic resource

adjustment will be enforced and application will be assigned

an access to specific slices of each resources. Inferring a

just enough but safe amount of resource adjustment ensures
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Fig. 1. Architecture overview of Perph

a secured application performance. To leverage the decou-

pling of performance prediction from the centralized resource

scheduling, each node agent needs to implement fine-grained

but strong isolation mechanism. In effect, hardware operations

are enabled by software-defined technologies. For example,

Cache Allocation Technology (CAT) [18] provides software-

programmable control over the amount of cache space that can

be consumed by a given thread or process.

B. Architecture and Methodology

Decentralized Architecture. We present Perph, a runtime

agent on a per node basis, that decouples ML-based per-

formance prediction and resource inference from centralized

scheduling. Fig. 1 outlines the proposed architecture. Perph is

a runtime agent that runs with system agent and gauges all

application performance and adaptive resource allocation at

runtime. Perph is loosely couple with the central resource man-

ager and agents on other nodes. In the following subsection,

we describe objectives and designs of core Perph components.

Metric Monitor. We exploit sensitivity of applications

to multi-resources to establish performance prediction. To

achieve this, Metric Monitor aggregates application fingerprint

and system-level performance metrics including CPU, mem-

ory, Last Level Cache (LLC), memory bandwidth (MBW) and

number of running threads, etc. They are enabled by Intel-RDT

and obtained from resource group manager. The aggregated

metrics will be collected by Data Collector and stored in local

time-series database for modeling and ad-hoc queries.

Performance Predictor. To target [R1], Perph employs online

machine learning mechanism to resolve model aging problem.

For warm bootstrap in the early stage, we use offline and

supervised learning to train the initial Res-Perf Model. Merely

a small volume of profiling trace collected from the cluster

are leveraged for the learning. We take multiple resources

into account and collect not only conventional resource usage

such as CPU and memory, but also other fine-grained counters

including Last Level Cache (LLC) and memory bandwidth

(MBW), etc. Intel-RDT technique is rapidly developed so that

such metrics can be precisely monitored and collected. To

solve model aging problem, model evolution is a must on the

arrival of workloads. Assuming an even distribution of job

arrival and job types among different nodes, Perph agent on



TABLE I
PARAMETER SETTING-UP

Resource Value Range
Type UpperLimit LowerLimit StepSize

CPU (Available time, ms) 500,000 50,000 20,000

Memory (MB) 100 10 10

LLC (Cache way) 11 1 1

MBW (Occupancy%) 100% 10% 5%

each node can individually start and update their model. We

discuss how the online model is evolved in Section III.

Runtime Admission Controller. To achieve [R2], A runtime

admission controller identifies the right time for resource

adjustment, admits application to a specific portion of the

node resources and carries out an isolated execution for a

given application. More specifically, Anomaly Detector can

timely pinpoint a performance degradation via LSTM time-

series analysis and determine when and which application

need to be re-allocated resources. Once abnormal performance

counter or load is detected, Resource Inferer conducts a

gradient ascend based inference to work out a proper slice

of resources, towards dynamically rescuing the degraded per-

formance. Upon receiving an updated re-allocation, Access

Controller re-assigns a specific portion of the node resources

to the affected application. Eventually, Isolation Executor

enforces resource manipulation and ensures performance isola-

tion across applications. Specifically, we use cgroup cpuset and

memory subsystem to control usage of CPU and memory while

leveraging Intel-RDT technology to underpin the manipulation

of LLC and MBW. For fine-granularity management, we create

different groups for LRA and batch jobs when the agent starts.

The details can be found in Section IV.

III. ONLINE PERFORMANCE PREDICTION

Different LRAs may exhibit different sensitivity characteris-

tics to the allocated resources. Database applications are essen-

tially underpinning most back-end and front-end services [19].

As an example, we mainly focus on data-intensive workloads

as our target LRA. Particularly, as MySQL own the high-

est market share (38.90%) in Database Management System

(RDBMS) areas [20], we are motivated to use MySQL as the

demonstration object. In this section, we discuss performance

indicator and introduce an online prediction optimization to

overcome time complexity involved in pure offline modeling.

A. Performance Indicator

Instructions Per Cycle (IPC) and Million Instructions Per

Second (MIPS) are two typical performance indicators in

performance engineering and performance analysis. [21][22]

demonstrate that IPC is closely related to performance of

latency-sensitive applications. MIPS, likewise, is another al-

ternative since it can be approximately calculated through the

production of CPU frequency and IPC.

Nevertheless, we adopt MIPS as the indicator mainly due

to precision consideration. In reality, when computational

workloads change, CPU frequency and the number of clock

cycles consumed tend to vary due to frequency conversion

or over-clocking techniques. Since IPC is highly dependent

on the number of cycles, its accuracy cannot be completely

guaranteed. Additionally, cycle-based metric is difficult to cap-

ture performance interference especially when an application

is interrupted by I/O or network bandwidth. This is because the

clock cycle will not count once it is suspended while waiting

for I/O operations. By contrast, MIPS is relatively stable if

external environment is unchanged, which can significantly

reduce the value fluctuation and data noises.

Therefore, the main objective is to depict relation-

ship between multi-dimensional vector (RCPU , Rmem,

RLLC , RMBW , Capp) and consequent performance Vmips

where Ri represents a specific resource quota and Capp

denotes current workload.

B. Model Selection

Firstly we use offline training to demonstrate the process

of model selection. We need to determine appropriate value

boundary and step for each resource dimension. In fact, re-

source allocation over upper boundary will no longer improve

performance while severe violation is likely to manifest under

the lower bound. Profiling beyond the boundaries are com-

pletely meaningless.To reduce the time cost, we temporarily

limit the the amount of sample data for offline training.

Detailed parameters used in the profiling are shown in Table I.

In our context, independent variables used to predict MIPS are

those resources that can be independently allocated. There are

a variety of regression algorithms to be potentially applied

into system, including Linear Regression, k-Nearest Neighbor

(KNN), Adaboost, ElasticNet and Gradient Boost Regression

Tree (GBRT), etc. We evaluate metrics such as Root Mean

Square Error (RMSE), Mean Absolute Error(MAE), Median

Absolute Error, R2 (coefficient of determination) and other

fitting effect measurement indicators when comparing different

models and selecting the most suitable one. Meanwhile, to

avoid over-fitting, we further perform k-fold cross-validation

by dividing training data into 10 partitions, randomly selecting

9 partitions as training set and keeping the remaining one as

test set in each training.

As shown in Table II, GBRT has the smallest multiple error

indexes and the highest R2, indicating its minimal prediction

error. We also observe a stable prediction effectiveness in

GBRT with merely 1.2 RMSE deviation. Hence, we use GBRT

in the following work.

C. Online GBRT Modeling

Warm Bootstrapping and Online Calibration. Although

GBRT can obtain a precise model to predict performance, it

takes dozens of minutes to do so which is unacceptable in

real task scheduling system. To shorten the bootstrap whilst

getting a good-enough model, we warm-up the online learning

with low-cost offline training by only adopting 10% original

sampling points. We then use an online optimization for

GBRT – online GBRT (OGBRT) starts from the offline model

but continuously updates model parameters when incoming



TABLE II
MODEL SELECTION AND COMPARISON

Modeling Indicators

Algorithm RMSE MAE Med Abs Err R2

Linear Regression 228.203 224.675 183.368 0.9203

KNN 811.536 539.308 429.582 0.3684

Adaboost 254.416 198.598 157.454 0.9379

ElasticNet 550.409 473.549 462.452 0.7095

GBRT 124.098 79.322 51.107 0.9852

OGBRT 114.137 63.187 35.79 0.972

workloads are executed in the system. Collected traces can

boost the timely calibration based on the initial model.

Online Algorithm Design. In GBRT, weak learners mea-

sure the error calculated in each node of the regression tree,

use a function σ : Rn → R with a threshold φ to split the

node and eventually return values λl and λr. We can get the

optional split represented by triple (φ, λl, λr) after minimizing

the error in Eq. 1,

θ(φ) =
∑

i:σ(xi)<φ

w
j
i (y

j
i − λ

l)2 +
∑

i:σ(xi)≥φ

w
j
i (y

j
i − λ

r)2 (1)

where w
j
i and y

j
i respectively represent the weight and re-

sponse of xi in the k-th iteration. In formal, loss function and

w
j
i is given in Eq. 2 [23] where w

j
i can be seen as a measure

of the ”influence” of the k-th estimation.

L =
N
∑

i=1

log[1 + exp(−2yif(xi)))]

w
j
i = exp(−2yifk−1(xi))

(2)

We can use a generic framework to underpin the learning

in OGBRT. Given samples can be provided sequentially by

metric monitor in Perph agent, we update each weak learner in

an online manner, during which samples are used for training

until previous data is no longer available. Suppose there is a

regressor at the current time t, its error at a GBRT node m in

a weak regressor is defined in Eq. 3

θ(φt,m) =

Nm
∑

i=1

wt,i(yi − λt,m)2 (3)

λt,m =

{

λl
t,m, if σ(xi) < φ

λr
t,m, otherwise

(4)

where Nm is the number of examples that fall on node m. The

objective of our OGBRT is to learn new parameters φt+1,m

and λt+1,m given n new samples are generated from monitor

to the regressor through optimization of the following function

(Eq. 5):

θt+1(φt+1,m) =

Nm+n
∑

i=1

wt+1,i(yi − λt+1,m)2

=

Nm+n
∑

i=1

wt+1,i(yi − (λt,m +∆λ))2

(5)

Once φt+1,m is known at t, λt+1,m can be firstly optimized.

However, (wt+1, i, yi)i=1...Nm
is unavailable before regressor

Algorithm 1 Online GBRT Algorithm

Input: regressor in time t: f0 = ft,{xi, yi}i=1:n

Output: ft+1 – updated regressor at time t+1

1: Initialize θm ←∞ , φt+1,d ← φt,d

2: for k = 1...M do

3: wi = exp(−2yifk−1(xi)), i = 1...n
4: Pick examples falling on each node in the gbrt tree.
5: for each node d from root do
6: for each φt+1,d do

7: λl
t+1,d, λ

r
t+1,d, θt+1,d ← Using Eq.10, Eq.11 and Eq.6

8: if θt+1,d < θm do

9: θm = θt+1,d; φ∗
t+1,d = φt+1,d

10: end for

11: Get (λl∗
t+1,d, λ

r∗
t+1,d) using φ∗

t+1,d
12: end for

13: end for

ft+1 is established, which makes it impossible to minimize

the θt+1. Therefore, we further improve the performance

of regressor based on new n samples based on the current

regressor. We get Eq. 6:

θt+1(φt+1,m) =

Nm+n
∑

i=1

{wt+1,i((∆λ)2 − 2(yi − λt,m)∆λ)

+ wt+1,i(yi − λt,m)2}

(6)

According to quadratic formula, we can easily get Eq. 7:

∆λt,m =

{

∆λl(φt+1,m), if σ(xi) < φ
∆λr(φt+1,m), otherwise

(7)

where

∆λ
l(φt+1,m) =

∑Np+n

i:σ(xi)<φt+1,m
wt+1,iyi

∑Np+n

i:σ(xi)<φt+1,m
wt+1,i

− λ
l
t,m (8)

∆λ
r(φt+1,m) =

∑Np+n

i:σ(xi)≥φt+1,m
wt+1,iyi

∑Np+n

i:σ(xi)≥φt+1,m
wt+1,i

− λ
r
t,m (9)

Because (wt+1,i, yi)i=1...Nm
is unknown, we recursively get

λ by Eq. 10 and Eq. 11, where 0 < α < 1 represents the

learning rate detailed in [24].

λ
l(φt+1,m) =

∑Np+n

i:σ(xi)≥φt+1,m
wt+1,iyi

∑Np+n

i:σ(xi)≥φt+1,m
wt+1,i

≈ (1− α)λl
t,m + α

Nm+n
∑

i=Nm+1

wt+1,iyi

(10)

λ
r(φt+1,m) =

∑Np+n

i:σ(xi)≥φt+1,m
wt+1,iyi

∑Np+n

i:σ(xi)≥φt+1,m
wt+1,i

≈ (1− α)λr
t,m + α

Nm+n
∑

i=Nm+1

wt+1,iyi

(11)

Finally, to put things together, Alg. 1 describes the holistic

OGBRT when n new examples are given for the model

update. Initial experiment shows the precision improvement in

OGBRT (see Table II) – the overall effectiveness of OGBRT

can nearly reach the same level of offline learning based on

big sampling volume.



IV. RUNTIME ADMISSION CONTROL

Herein we present how resource inference and runtime

admission controller work in Perph. As aforementioned, once

Perph detects performance anomalies among running applica-

tions via LSTM time series analysis, dynamic resource adjust-

ment will be enforced after resource re-evaluating. Inferring

a just enough amount is essential to safely rescue LRA’s per-

formance whilst keeping the system compacted. Additionally,

each Perph agent needs to implement fine-grained but strong

isolation mechanism. Due to the limited space available, we

omit the detailed discussion of anomaly detection in this paper,

but will include them in the coming preprint.

A. Resource Inference Based on Gradient Ascending

Once performance interference manifests, we essentially

need performance remediation through adjusting resource al-

location. GBRT model is the cornerstone that we can leverage

to find the optimal allocation scheme. However, the option

is not unique – there are probably multiple options that can

achieve the same effectiveness due to the diverse sensitivity of

application performance to different resource dimensions. To

improve node utilization, we necessarily find a scheme with

minimal resource change but maximal performance benefit.

The benefit in this context indicates that performance can be

rescued to the desired level. Specifically, we calculate the

partial derivative at each resource dimension and form the

gradient. Actually, gradient descent algorithm is typically used

to find the quickest path to reach the minimized loss func-

tion. Inspired by this, likewise, we employ a gradient ascent

algorithm to continually boost the performance – At each

decision point, we compute the gradient of f along different

resource dimensions (Eq. 12) and reallocate resource with the

largest gradient, thereby ensuring the quickest performance

remediation.

∇f(r1k, . . . , r
m
k ) =

( ∂f

∂r1k
, . . .

∂f

∂rmk

)

r (12)

r is the base vectors in multi-dimensional Cartesian co-

ordinates consisting of unit vectors i of different direction.

Numerically, gradient can be calculated by aggregating partial

derivatives and res-perf model provisions the estimated value

that can be directly substituted into Eq. 13.

∇f(rik) =
∂f

∂rik
=

f(rik +∆ri)− f(rik)

∆ri
(13)

If the learning rate α remains unchanged during the gradient

ascending, over-allocation may be obtained by skipping the

optimal value that satisfies the condition. To this end, we

gradually decrease α based on simulated annealing, where t0
and t1 are constants to control change rate of α. Then we

adjust the allocation by factor α indicating the adjustment step

(Eq. 14).

r
i
k+1 = r

i
k +

t0

t1 + k
∇f(rik) (14)

Algorithm 2 Resource Inference Algorithm

Input: tasks – current number of threads in the target application;
MIPS – expected performance of the target application;
ε – threshold for iteration termination;
R ∈ R4 – the resource vector needed to be adjusted;
θr – Direction vector for resource adjustment;
β – control the step length in the gradient direction

Output: R – Optimal resource quota for Input MIPS

1: while (|VR −MIPS| > ε) do

2: for i ∈ (CPU,MEM,LLC,MBW )

3: ∂V
∂ri
←

V (ri+∆ri)−V (ri)

∆ri

4: end for

5: θr ← θr + t0
t1+iter

∂V
∂r

; R← R + (θr ∗ β)R
6: iter ← iter + 1
7: end while

8: return R
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Fig. 2. Cgroup-based resource isolation

The iterations will be terminated until estimated perfor-

mance surpasses the desired one. Subsequently, all resource se-

ries [r1, . . . , rk, . . . , rK] are accumulated before being passed

to the access controller. The procedure are described in Alg. 2.

B. Adaptive Isolation and Execution

The primary functionality is to form a complete set of

operational instructions for resource reallocation in terms of

CPU, memory, LLC and MBW. Since allocation of LLC

and MBW have to rely on Class of Service (CLOS), their

allocation should be conducted after CPU and memory. This

ensures resource groups with different CPU affinity have

different portions of LLC and MBW.

CPU and Memory. Perph implements CPU isolation by us-

ing cgroup cpuset subsystem instead of cgroup cpu subsystem

(used by [25][26][27][28]). In reality, time slice control in cpu

subsystem may cause frequent switches between CPU cores.

CPU sharing would cause CPU cache contention in hyper-

threading, giving rise to non-negligible system overheads.

Also, cpu subsystem schedules CPU access to each cgroup

using either Completely Fair Scheduler (CFS) (e.g., by the

default on Linux and Docker) or Real-Time Scheduler (RT).

Batch jobs, however, may preempt CPU resources owned

by LRAs in this scenario, potentially resulting in SLO vi-

olation. In Perph, we set CPU affinity for different process

group, thereby guaranteeing performance at all time. Another

consideration when performing CPU logical core binding is

that we attempt to allocate logical cores of the same CPU

slot to a given long-running application. We also round the

predicted CPU usage value up when setting the value of

CPUset.cpus to directly meet minimum performance require-



ment. Moreover, we can further partition resource by using

CPU subsystems based on the CPU logical core binding. Perph

leverages memory cgroup subsystem to limit the amount of

available memory to the LRA by setting memory.limit. To

completely utilize node resources, we allow batch job group

for having the remaining resources. Fig. 2 outlines how Perph

agent manages CPU and memory with the group hierarchy.

LLC and MBW. Intel RDT supports a mechanism to

monitor and control access to LLC and MBW to avoid

resource starvation and consequent performance degradation.

We mainly rely on Cache Allocation Technology (CAT) [18]

and Memory Bandwidth Allocation (MBA) [29] to control

these admissions. Specifically, different cache areas will be

distinguished by CLOS and members in each CLOS can only

access to a specific portion of cache within its pertaining

area. Furthermore, RDT splits LLC into equal-sized logical

partitions and Cache Bit Mask (CBM) is used to indicate

the access to each partition. We adopt this mechanism to

select particular LLC ways for different CLOSs. Perph will

dynamically generate bit masks according to the result of

runtime resource re-allocation. Likewise, MBA provides how

memory bandwidth is distributed across running applications.

Based on the CPU affinity settings in different resource groups,

Perph binds different resource groups to different CLOS and

set corresponding MBW to them.

V. SYSTEM IMPLEMENTATION

We integrated proposed Perph mechanisms with Node Man-

ager (NM) in Apache YARN. We also modified relevant

modules in Application Master (AM) and message protocols

between AM, NM and the central Resource Manager (RM).

Firstly, we customize different AMs to underpin the lifecy-

cle of LRA and batch jobs. To differentiate the container type,

a tag will be labeled by AM and piggybacked when requesting

resources to RM and sending execution plans to NM. RM

is aware of container type in the procedure of registration

and further resource allocation. Meanwhile, LRA AM is re-

sponsible for DAG management encompassing both topology

configuration and dependencies among different components

in LRA. Because we encapsulate all LRA containers in Docker

container, AM also needs to deal with image storage and

meta information maintenance. Hence, once AM gets specific

resources granted by RM, it will leverage the self-contained

DAG information and repository of each container to launch

relevant containers on corresponding NM.

We also modified RM to best serve Perph mechanisms. We

grant different priorities to LRA and batch jobs. Particularly,

AM of LRA is prioritized and given privilege to directly over-

subscribe idle resources or preempt resources from low priority

batch jobs when current available resources in the node are not

enough. The procedure allows for quick resource adjustment

used in Perph and makes it free from RM temporarily. This

is largely backed by our previous work [30]. To synchronize

resource usage, NM will coordinate the oversubscribed and

preempted resource slices with RM for timely updating.

TABLE III
EXPERIMENT ENVIRONMENT

OS
Kernel version Linux v4.9.0-6-amd64
Release version Debian 4.9.82

Hardware

CPU version Intel-Xeon(R)-Silver
4110CPU@2.10GHz

Physical CPU cores 16 (8/sockets * 2sockets)
Logical CPU cores 32 (16/sockets * 2sockets)

LLC 11MB
memory 187GB

The most important integration is to align Perph Agent

with current NM for performance prediction, resource infer-

ence and isolated execution. We implement a resource group

manager (RGM), metric collector (MCo) and Perph controller

(PCo) in native NM. Upon arrival of new tasks, RGM en-

sures smooth establishment of subgroups and the initialization

(e.g., mounting) of cgroup subsystems in the bootstrapping

phase. Meanwhile, RGM is also responsible for hierarchical

management. MCo traces and collects required statuses and

metrics at container, application and node level using perf

counter tools, and then feeds the trace data to PCo. PCo is

the core integration in NM that encompasses data receiving,

local model training, model synchronization and evolution,

and runtime management we discussed in previous sections.

Particularly, PCo is an individual implementation on per node

basis that runs independently of RM. Detection module is

developed along with PCo and runs in background to capture

performance and trigger runtime resource reallocation.

VI. EVALUATION

A. Experiment Setup

Environment. To illustrate the general applicability, we de-

ployed Perph into Apache YARN to demonstrate improve-

ments in performance guarantee when different types of

workloads are co-located. Evaluation was performed in a 32-

node cluster. Each node is Intel-rdt enabled and equipped

with 187GB DRAM, 11MB LLC and 16 CPU physical cores

running at 2.10GHz. More detailed can be found in Table III.

Workloads. To emulate realistic applications in cloud data-

centers, we use a mixture of workloads, encompassing data-

centric applications such as latency-sensitive database and

data-streaming applications, and background batch jobs. In

our experiment, we select MySQL and Kafka as represen-

tatives. Meanwhile, to generate consecutive and CPU-heavy

background noises, we use map-reduce batch jobs which are

insensitive to latency but merely account for end-to-end com-

pletion time. We submit PI jobs and specific parameters such

as the mapper number and sampling time to make them run

over the whole running period of long-running applications.

We generate 50 millions message workloads (each of which

is 1KB) to Kafka within the same environment. Additionally,

database workloads can be generally categorized into Online

Transaction Processing (OLTP) and Online Analytic Process-

ing (OLAP). We considered both of them in this study:
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Fig. 4. Effectiveness validation of resource allocation in TPC-C benchmarking

• OLTP: OLTP workloads are characterized by a large

number of interactive database operations with high con-

currency requirements. We use i) TPC-C that queries

from retail database and involves a mixture of five con-

current transactions with different types and complexity

either executed on-line or queued for deferred execution.

ii) MySQL’s official lightweight testing tool mysqlslap

that emulates a large number of client connections hitting

the database server simultaneously.

• OLAP: OLAP targets those decision support procedure

in enterprises. Due to the large amount of data queries,

it has high requirements for IO performance. TPC-H, a

data-warehousing benchmark, generates business analytic

queries to a database of sales data. We adopted different

queries using a 5GB database in the evaluation.

Baseline and Methodology. We submit long-running MySQL

and Kafka application into YARN and consecutively submit

above workloads. To reduce result deviations, we repeat the

same experiment for 10 times. We compare Perph against the

following execution schemes:

• Native YARN: MySQL and batch jobs are co-located

under isolation mechanism provided by native YARN

Node Manager.

• CPU-SBS: MySQL and batch jobs are co-located under

isolation mechanism provided by cpu subsystem without

LLC and MBW control and isolation.

• Run-Alone: We collect metrics when MySQL is running

alone, where theoretically no interference is generated.

It is used as the baseline to evaluate the degree of

performance interference caused by co-location.

Metrics. We use the following metrics in our experiments:

• MIPS: we measure the Million Instructions per Second

of both database and Kafka streaming;

• Transactions per Second (TPS): It indicates the

throughput of database transactions;

• Query Per Second (QPS) or Query Per Hour (QPH):

it indicates the database query efficiency;
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Fig. 6. Effectiveness validation of resource allocation in mysqlslap

• Throughput and Latency: we calculate the number of

messages per second of and latency of Kafka.

• Makespan of batch jobs: we measure end-to-end exe-

cution time (e2e time) of all submitted batch jobs.

B. Database OLTP and Batch Job Co-location

In this experiment, we employ TPC-C and mysqlslap to

conduct a stress test and monitor the performance deviations.

TPC-C Benchmarking. We generate a database that en-

compasses 10 warehouses, each of which corresponds to 10

districts and each district contains 3k consumers. Afterwards,

we set the concurrency to be 100 and run for 1,800 seconds. To

ensure MapReduce PI job can run during the whole duration,

the job is set to have 500 mappers and each mapper contains 5

millions sampling points. We count the completed transaction

number of 5 different TPC-C businesses in repeated 10 times

experiments.

MIPS and TPS Comparison. Fig. 3 illustrates that Perph

far outperforms YARN and CPU-SBS. Specifically, MIPS of

Perph is 1.70x and 1.58x times that of YARN and CPU-

SBS, while TPS is improved by 35% and 23% compared

with YARN and CPU-SBS. By contrast, CPU-SBS can only

reach no more than 9% improvement of TPS compared against

YARN. The main reason for the discrepancy is due to the

increased overhead of process scheduling among CPUs by

using cpu subsystem. As there is no grouping mechanism for

CPU logical cores, fine-grained resource partitioning for LLC

and mbw of the CPU cannot be performed in CPU-SBS.

Effectiveness Analysis. Firstly, the completion time of per-

formance isolation using Perph is less than 1 second due to

the pre-established performance prediction model. Isolation

methods based on real-time performance feedback take a

long time to complete isolation. For example, Heracles [10]

requires a delay analysis using more than 15 seconds each

time, and a 5-minute performance observation is reserved

before the performance isolation is enforced. Furthermore, we

demonstrate Perph can produce the optimal resource quota

for performance isolation whilst sparing sufficient resources

for other batch jobs. Herein, we observed Perph made a
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runtime resource allocation R(CPU,memory, LLC,mbw)
by (4Cores, 300MB, 6, 45%) at a certain time. We slightly

adjust the allocated CPU cores from 2 to 7 and LLC from 2

to 10 while keeping other dimensions unchanged. As shown

in Fig. 4, overall TPS does not always increase with the incre-

ment of CPU cores allocated to MySQL. In reality, when the

number of CPU cores is increased to 6, TPS even decreases by

7% due to the overhead growth in process switching between

CPU cores. This demonstrates Perph can effectively find the

option results. Meanwhile, the increase of CPU allocation to

the database will constantly increase completion time of batch

jobs because fewer CPUs cores can be over-subscribed to

those jobs. A similar phenomenon manifests when we varies

the LLC allocation. These indicate that Perph prioritizes the

performance of LRA, manages to pick the optimal allocation

scheme which make the node resource best used.

Mysqlslap Benchmarking. Mysqlslap creates short-lived

test cases with adjustable concurrencies. In this experiments,

we submit 200k SQL queries with 25 concurrencies (i.e.,

mysqlslap -a -c 25 –number-of-queries 200000 -i 5). Mean-

while, the batch job starts with 20,000 mapper, each of which

has 100,000 sampling points to cover the whole duration.

MIPS and JCT Comparison. As shown in Fig. 5, Perph

can substantially improve MIPS and transactional throughput

against native YARN and CPU-SBS. Specifically, average

MIPS of Perph is 2.74x and 1.94x times that of YARN and

CPU-SBS. Correspondingly, the holistic time to complete all

transactions on average can be reduced by 50.6% and 37.9%

respectively against YARN and CPU-SBS. Even compared

against Run-Alone scenario, MIPS is just slightly declined by

14.2% and the completion time merely increases by 16.5%.

This is because Perph exploits online performance prediction

model for provisioning timely adjustment to best target perfor-

mance requirement. Cgroup cpuset subsystem used in Perph

can also provide fine-grained resource isolation but reduce

overheads of switching between CPUs.

Effectiveness Analysis. we record the real-time resource

allocation R(CPU,memory, LLC,mbw) at a certain time

point: (3Cores, 350MB, 4, 30%). In a similar way to TPC-

C benchmarking, we slightly change the possible value of

resource allocation and examine the resultant performance

variations. Particularly, the number of CPU cores varies from

1 to 6 while memory bandwidth varies from 10% to 60%. It is

obvious from Fig. 6 that the allocated scheme given by Perph

is the optional choice taking into account the impact on overall

execution time. Specifically when the number of CPU cores

increases, the execution time is reduced but the improvement
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Fig. 8. MIPS and throughput of Kafka using different isolation schemes

is merely 4% that can be relatively negligible. This indicates

that the resource allocation vector generated by Perph is

accurate and good enough to target the performance goal at

runtime. Similar phenomenon can be found when the memory

bandwidth is changed. In the meantime, we can also find a

growth in the makespan of batch jobs with the increment of

MySQL’s resource allocation. Due to the descending available

resources to batch jobs, the overall makespan is naturally

extended. In effect, the gradient ascending resource inference

will achieve the fastest approaching to the target performance

and once the effect of performance rescue slows down, Perph

prefers to spare available resources to batch jobs rather than

allocating more resources for further performance gain.

C. Database OLAP and Batch Job Co-location

To demonstrate the wide applicability, we use TPC-H,

generate a 5G data warehouse (equivalently scale factor 5)

and run 22 queries respectively to conduct multiple concurrent

performance tests. We make the background batch job 2k

mapper, each of which contains 100k sampling points.

As shown in Fig. 7, Perph can improve QPH by 19.0% and

15% compared with YARN and CPU-SBS respectively. This

is also due to the timely and just-enough resource inference

with fine-grained isolation. QPH in Perph, however, decrease

by roughly 19% against that of database runs alone. Since

less resources can be spared to batch jobs, their makespan

is slightly extended in Perph. In fact, TPC-H benchmark has

heavy requirements of disk I/O, but the limited IO isolation

in Perph currently restricts the capability of dealing with

IO interference and thus improvement of QPH. We plan to

enhance Perph via investigating in IO isolation in our future

work.

D. Data-streaming LRA and Batch Job Co-location

As demonstrated in Fig. 8, a similarity between MIPS and

throughput manifests. The phenomenon is also similar to re-

sults we obtained in OLTP benchmarkings. Although there are

13.6% MIPS and 14% throughput degradation compared with

Run-Alone scenario, performance of Perph is substantially

improved compared with other isolation schemes – average

MIPS is 2.65x times and 1.61x times that of YARN and

CPU-SBS. Likewise, througput on aveage is 2.01x and 1.82x

times that of YARN and CPU-SBS. The results signify our

proposed mechanism have positive impacts on the performance

guarantee of data-streaming applications.

Fig. 9 depicts the latency of Kafka workload. To be precise,

we measure median, 90th, 95th, 99th percentile response time
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Fig. 10. Scalability evaluation

among all requests. It is observable that Perph can achieve

57.4% and 51.2% reduction regarding the median latency

compared with YARN and CPU-SBS. It is worth noting that

the long tailed latency can be significantly mitigated by Perph

– 99th percentile latency can be reduced by 24.7% and 58.4%

against YARN and CPU-SBS. Interestingly, even though CPU-

SBS can slightly drop the median latency, long tail latency

still manifests – a 70.4% growth can be found compared

against YARN. This is largely due to the high overhead derived

from switches between CPU logical cores. Moreover, we

compare the makespan of co-residential batch jobs to evaluate

how different isolation scheme influences on them. Results

demonstrate that CPU-SBS delays the makespan by 20.3%

while Perph will only increase batch execution by 11.3%.

E. Scalability Evaluation

We evaluate how Perph is scalable enough with increased

concurrency level. In this experiment, we run the same TPC-

C and mysqlslap (used in Section VI-B) and vary the number

of transaction concurrencies from 100 to 450 for TPC-C and

from 25 to 200 for mysqlslap. We compare Perph with YARN

which uses static resource allocation without runtime resource

adjustment. As shown in Fig. 10, MIPS of Perph will grow

linearly with the increment of concurrencies. By contrast, the

MIPS of TPC-C in YARN is almost stable, even with slight

decrease. This is because resource inference based dynamic

reallocation will be conducted when increased system loads

are detected. More resources will be properly allocated to the

application, thereby maintaining the desired performance level.

Similarly, Perph can also guarantee the throughput at runtime

compared with the degraded throughput in YARN. Likewise,

MIPS for mysqlslap workloads has the same phenomenon.

Due to sufficient resource re-allocation, the overall mysqlslap

makespan can be even shorten by Perph.

F. System overhead

In this experiment, we analyze the system overhead of

Perph. First, we observe the resource overhead of Perph com-

pares to Apache YARN. For the same workloads, compared

with NM in Apache YARN, the average memory usage of

Perph agent increased from 3083MB to 3165MB , an increase

of 2.65%, while the average CPU usage of Perph increased

by 5% due to online performance prediction and resource

inference. Second, we calculate the time cost of using Perph

for performance isolation, which is primarily due to resource

inference and the execution of resource isolation. The results

of our multiple observations show that the average time cost

is less than 300ms, which is acceptable since Perph performs

resource isolation only when performance degradation is de-

tected.

VII. RELATED WORK

Resource management. Resource management systems in

shared clusters can be divided into two categories: central-

ized and decentralized systems. Centralized approaches assign

resources base on user requests [28][31][4] or framework of-

fers [32]. Multiple resources will be negotiated among diverse

applications through a central resource manager. To make the

procedure fair and avoid resource starvation, DRF [33], ca-

pacity scheduling [34] or fairness scheduling [35] are adopted

in the resource sharing among multiple jobs. Decentralized

approaches [10] [36] [30] are developed for clusters that

expect a high throughput or high cluster utilization. They

mainly optimize task placement to enable that very short, sub-

second tasks can quickly access to idle resources. However,

these systems merely best serve batch workloads and thus lack

an effective mechanism for resource throttling or coordinated

feedback, which leads to unawareness of performance impact

on co-located LRAs. In this work, to timely guarantee LRA’s

performance and reduce the burden of centralized learning, we

design and implement Perph within distributed agents.

ML and performance prediction in resource scheduling.

Many approaches have applied machine learning (ML) to im-

prove datacenter management and resource scheduling. Most

of them focus on workload characterizing and behavior pre-

diction. For instance, [37][38] leverage various ML methods

such as SVR, random forest and extreme gradient boosting

tree to predict workloads or system load changes. [39][40]

employ neural network to estimate job makespan and load

fluctuation. However, the limitation in those methods is their

heavy dependence on offline historical information. This leads

to the fact that they can hardly take runtime information

into consideration and provide sufficient insights into timely

calibration of workload performance. [41][11] use complicated

multi-variable statistical classifiers to predict the expected

interference among applications. They perform beforehand

small-scale interference tests with varied levels of background



applications. However, without online model calibration, the

misprediction may lead to high system overheads. Also, the

pair-based profiling results in huge experimentation cost. [13]

uses performance index to depict contention at the time of re-

source allocation. However, the feedback mechanism lacks an

understanding of the relationship between multiple resources

and the resulting performance – which makes it difficult to

perform fine-grained controls over different resources. [12] is

mainly based on offline profiling and thus time-consuming

during data collection and model training. In comparison,

Perph employs offline supervised learning to quickly warm

up but uses online optimization for model evolution.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present Perph, a ML-based agent on a per

node basis for workload co-location. Perph is mainly com-

posed of online performance prediction and timely resource in-

ference mechanism and thus can overcome the time complex-

ity and imprecision of pure offline profiling based approaches.

By exploiting the sensitivity of long-running applications to

multi-resources, we can approximate the relationship between

resource allocation and consequential performance. We use

online GBRT to enable the continuous model evolution. Once

performance degradation or load spike is detected, Perph will

infer a proper slice of resources, thereby calibrating safe but

enough resources to the suffered application. In the future,

we intend to federate individual agents and coordinate the

model learning. We also plan to integrate Perph mechanism

with our previous work on resource over-subscription [30] to

supervise the workload co-location considering both LRA’s

runtime performance and batch job’s throughput.
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