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Abstract—A unique cognitive capability of humans consists in their ability to acquire new knowledge and skills from a sequence of

experiences. Meanwhile, artificial intelligence systems are good at learning only the last given task without being able to remember the

databases learnt in the past. We propose a novel lifelong learning methodology by employing a Teacher-Student network framework.

While the Student module is trained with a new given database, the Teacher module would remind the Student about the information

learnt in the past. The Teacher, implemented by a Generative Adversarial Network (GAN), is trained to preserve and replay past

knowledge corresponding to the probabilistic representations of previously learn databases. Meanwhile, the Student module is

implemented by a Variational Autoencoder (VAE) which infers its latent variable representation from both the output of the Teacher

module as well as from the newly available database. Moreover, the Student module is trained to capture both continuous and discrete

underlying data representations across different domains. The proposed lifelong learning framework is applied in supervised,

semi-supervised and unsupervised training. The code is available :

https://github.com/dtuzi123/Lifelong-Teacher-Student-Network-Learning

Index Terms—Lifelong representation Learning, Variational Autoencoders, Generative Adversarial Nets, Teacher -Student framework.

✦

1 INTRODUCTION

HUMANS have an inherent ability to memorize, inter-
pret and transfer knowledge across tasks, [1]. Lifelong

learning represents the capability of people or animals of
being able to continually acquire new skills or novel knowl-
edge from a sequence of tasks while also maintaining their
performance on previously learnt tasks [2]. When presented
with a new task, humans would use their previously learnt
experience in order to understand it. The more related two
tasks are, the easiest is to learn them one after the other.
This ability is essential for adaptation and solving many
real-world problems and would be very useful if it could
be implemented in artificial systems in order to advance
their capabilities. Artificial learning systems, able to learn
new information from multiple sources while expanding
their already assimilated cognitive abilities, would be able
to solve multiple challenges [3]. However, lifelong learning
remains a serious challenge for deep learning applications.
While deep learning approaches perform well in many
specific data classification applications [4], they suffer from
the catastrophic forgetting problem [5], [6], [7], [8] when
attempting to learn new tasks. This happens because a
deep learning model, which had been trained initially on
a specific database, loses that knowledge when is trained
for a new task on a novel data set.

A pre-trained machine learning system can be used on a
specific target domain by either using transfer learning [9]
or domain adaptation [10], [11]. While the former situation
assumes that domains differ in the sample space, in the
latter case the data distributions could change between
the datasets. The challenge in this case is to overcome the
differences between the domains in order to ensure a good
generalization, [12].

Prior research aiming to alleviate catastrophic forgetting
was often focused on regularization and using dynamic
architectures. For instance, regularization based approaches

would normally impose a larger penalty for changing the
model parameters in order to relieve catastrophic forgetting
[13]. However, these approaches do not work well when
learning entirely different data sets. Dynamic architecture
approaches would either freeze the weights for sections of
the network or add new processing nodes when learning
new tasks. The drawback for these approaches is that they
invariably require additional network structures, thus in-
creasing the number of parameters requiring training for
storing additional information.

Can we train a single model able to capture meaningful
representations across multiple domains through sequential
learning? Variational Autoencoders (VAEs), such as β-VAE
[4], or Generative Adversarial Networks (GANs), such as
InfoGAN [14] have been used to learn disentangled repre-
sentations. VAE based approaches normally would modify
the main objective function by imposing a larger penalty
on the Kullback-Leibler (KL) divergence between the prior
and posterior distributions in order to encourage disentan-
glement on the latent variables, [4]. In other approaches,
the total correlation is used as a regularization term in the
objective function for ensuring the disentanglement among
categories of characteristics in the feature space [15], [16],
[17]. InfoGAN [14], learns an interpretable subset of codes
by maximizing the mutual information between the latent
variables and the generation process. Nevertheless, these
approaches only perform well on independent and iden-
tically distributed data drawn from the same probabilistic
representation [18]. Learning disentangled representations
within the lifelong learning setting is challenging given that
the previously learnt experiences will be quickly forgotten
when training on a new domain.

This research study proposes a Lifelong learning
Teacher-Student (LTS) framework, which brings the follow-
ing contributions :



2

1) The Teacher-Student Lifelong learning forms an arti-
ficial symbiosis system of two networks: Teacher and
Student. The Teacher component is implemented by
a powerful data generator network such as a GAN,
while the Student is implemented by a latent repre-
sentation generative model. The proposed model can
overcome forgetting while learning probabilistic data
representations over time.

2) We use conditional priors for encouraging the infor-
mation learnt from different domains to have differ-
ent posteriors, resulting in a better inference across
domains during the lifelong learning.

3) The LTS framework learns meaningful representa-
tions across domains by employing a disentangled
representation methodology.

4) The proposed model is adapted to be used in su-
pervised, semi-supervised and unsupervised lifelong
learning.

Related research into lifelong learning is presented in
Section 2. The LTS system is described in Section 3, while
its training is outlined in Section 4. The application of the
proposed model for lifelong learning in semi-supervised
and unsupervised applications is provided in Section 5. The
error bounds for the lifelong learning of the Student module
are derived in Section 6. Experimental results are provided
in Section 7, while the conclusions are drawn in Section 8.

2 RELATED WORKS

In this section, we review prior research studies on lifelong
learning.

2.1 Lifelong learning

Lifelong learning remains a challenging task for machine
learning [19]. A classifier trained under the lifelong setting,
aiming to learn sequentially probabilistic representations of
several databases, suffers from catastrophic forgetting [13].
This happens due to the fact that previously learnt knowl-
edge is overwritten when learning a new task, through
changing network parameter values. Existing lifelong learn-
ing approaches can be divided into three categories: regu-
larization, dynamic architectures and memory replay.

Regularization. Regularization approaches normally im-
pose constraints on the objective function during training
in order to alleviate catastrophic forgetting. Changes in the
weights of the neural network are penalized by considering
a regularization term in the objective function. For instance,
Li et al. [13] introduced a lifelong learning system, called
Learning without Forgetting (LwF), which encourages the
predictions for each data sample to be similar to the outputs
from the original network by using Knowledge Distillation
[20]. A similar approach is called Less-Forgetting Learn-
ing [21], which aims to preserve the performance of the
network for old tasks by learning a shared representation
across multiple tasks. This approach assumes that the final
decision layer for each task should not change too much.
Kirkpatrick et al. [22] introduced the Elastic Weight Con-
solidation (EWC) algorithm which encourages the weights
of a neural network deemed significant to be close to their
previous values when learning a new task. Zenke et al. [23]

proposed a lifelong learning algorithm to alleviate catas-
trophic forgetting by imposing a penalty on the changes
of important weights when learning each task. Reducing
significant changes in the weights can lead to the preser-
vation of the network performance in the previously learnt
tasks. Ensemble-based methods [6], [7], [24] have also been
used to deal with catastrophic forgetting. These approaches
normally train multiple classifiers and then combine their
predictions.

Dynamic architectures. These approaches use a flexible
network architecture, which can be dynamically changed
when learning new tasks. Resu et al. [25] proposed the Pro-
gressive Neural Network which starts with a basic structure
and increases its complexity when training with new infor-
mation. In order to avoid catastrophic forgetting, this ap-
proach considers sub-networks, for each learnt task, whose
parameters are frozen when learning new tasks. Zhou et al.
[26] introduced an incremental feature learning algorithm.
This approach adds features learnt from new data sets while
ensuring a compact feature representation, through merging
whenever necessary and preventing over-fitting. Cortes et
al. [27] proposed an adaptive learning algorithm called
AdaNet, which jointly adapts the network architecture and
ensures a trade-off between the empirical risk minimization
and model complexity. Xiao et al. [28] proposed a learning
algorithm which increases hierarchically the capacity of a
neural network, while Part et al. [29] combined a pre-trained
convolution neural network (CNN) and a self-organizing
incremental neural network (SOINN). The pre-trained CNN
provides good representations from the previously learnt
data sets, while the topology of SOINN is evolving continu-
ously according to the input data distribution.

Memory replay. Typical approaches for memory replay
are using generative models such as Generative Adversarial
Networks (GAN) or Variational Autoencoders (VAE). A
GAN consists of a generator network G and a discriminator
network D performing a two-player MiniMax game, where
G aims to produce realistic data which would aim to fool
D into believing they are real data, while the latter aims
to distinguish such fake data from the real. VAEs [30], [31]
represent a probabilistic graphical model which consists
of two components: the encoder network which models a
representative variable latent space for the data while the
decoder is trained to recover the real data from the latent
variable space and implements an inverse mapping of the
encoder. The learning goal of VAEs consists of maximizing
the log-likelihood of data reconstruction while minimizing
the Kullback-Leibler (KL) divergence between the latent
variable variational approximation and the prior.

Shin et al. [32], proposed a dual-model architecture based
on a deep generative model and a classifier. This compu-
tational framework replays past knowledge by generating
pseudo-data using the generative model trained on pre-
vious tasks. The information associated with a new task
is interleaved with generated data, and used together to
train the task solver. However, this approach would con-
sider only classification tasks and is unable to learn any
meaningful latent data representations due to lacking an
inference mechanism. Ramapuram et al. [33] proposed the
Lifelong Generative Modeling (LGM) which employs VAEs
for two networks working in tandem: a Teacher and a
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Student. During the training past knowledge is replayed by
the Teacher network whose decoder maps latent variables,
sampled from the prior distribution, into the data space.
Achille et al. [18] introduced a VAE based lifelong genera-
tive model for disentangled representation learning, called
VASE, which is able to learn meaningful latent variables
across multiple domains. VASE is based on the Minimum
Description Length (MDL) principle, which progressively
increases the network size in order to accommodate learning
new data. MDL represents a trade-off criterion between
the size of the network and its learning performance. The
quality of the data generated from previously learnt knowl-
edge in algorithms such as LGM [33] or VASE [18] depends
on the generative abilities of VAEs, which usually is not
great and would result in blurred images. These models
do not perform well in the case of complex data due to a
rather poor replay of the knowledge from the previously
learnt databases. Seff et al. [34] proposed the Augmented
Generator objective function, based on a GAN, which is
known as a better data generator than VAEs. Nevertheless,
this model is applied on rather simple data.

3 LIFELONG TEACHER-STUDENT NETWORK

The standard generative models usually aim to estimate a
set of network parameters, maximizing the marginal like-
lihood for a data set X , drawn from its probabilistic repre-
sentation p(X ). Nevertheless, in real situations, artificial sys-
tems would have to learn tasks sequentially, at certain time
intervals, from several databases, X = {X1,X2, . . . ,Xk}.
A model training with data from a new database will adapt
and change its parameters through training.

3.1 The Lifelong Learning Framework

In this research study, we focus on the lifelong learning
problem [3] in which a model is trained to learn a se-
quence of tasks, each defined by learning a probabilistic
representation corresponding to a specific database. During
the training, we only acquire the information corresponding
to the current task while past data sets are considered as
not being available, [8]. A lifelong learning model would
require to preserve the information learnt during the pre-
vious learning cycles while also learning new tasks using
the data from a freshly available database. We propose
a novel Teacher-Student framework for lifelong learning,
where the Teacher component is designed to remember
all past knowledge, while the Student module would be
trained using two input sources: the current task, defined
by the data contained in the new database Xk, and the
information provided by the Teacher module, represent-
ing past information. By using the learnt knowledge, the
Student module is able to perform specific tasks such as
classification or discovering disentangled representations,
characteristic to the entire data space X . Existing Teacher-
Student networks focus on how to transfer knowledge from
a more complex network into a smaller, distilled model, by
using compression techniques [20]. While such approaches
provide a good performance [35], [36], they are unable to
preserve well previously acquired information and related
tasks.

Let us consider a model F(X ), which is trained on a
sequence of training data sets {x1 ∼ X1,x2 ∼ X2, . . . ,xk ∼
Xk}. Each data set xi, i = 1, . . . , k is assumed to be
characterized by a distinct distribution p(xi). After training,
the model F(X ) can make predictions on any of the data
sets {xi ∈ X |i = 1, . . . , k}. The lifelong learning in artificial
systems implies that the deep learning system learns about
the latest k-th given data set xk ∼ Xk, while none of the
previously observed data sets {Xi, i < k} are available.
For ensuring addressing the most general situations, in this
study we consider three different characteristic latent vari-
ables, characterizing each database {Xi|i = 1, . . . , k}, which
are inferred by the Teacher-Student network: continuous z,
discrete s, and the domain latent δ, variables, respectively.
While the discrete variables model data attributes, such
as class labels, the continuous latent variables model the
variation within the whole latent space. Each component of
the domain variables δ = {δi|i = 1, . . . , k}, is a one-hot
vector representing identifiers for each database within the
lifelong learning process.

Let us consider that p(xk) represents the currently avail-
able empirical data distribution and p(x1, . . . ,xk−1) are the
probabilistic representations of the previously learnt data
distributions. The proposed lifelong learning is defined as
learning a representation model:

p(X ) =

∫∫∫
p(X|z, s, δ)p(z, s, δ)dz ds dδ, (1)

where we have continuous latent spaces represented by z,
discrete variables s, and the domain δ latent spaces. After
dropping s and δ, for the sake of simplification, we can
show how the latent representation is used to model data
in probabilistic terms through the Bayes’ rule:

p(z|
⌢
xk−1,xk) ∝ p(

⌢
xk−1,xk|z)p(z) ∝ p(z|xk)p(

⌢
xk−1|z)

(2)
where p(z|

⌢
xk−1,xk) represents the probability of the latent

space, estimated by the Student module, defining the entire
latent space of the data X , using data sampled directly from
the latest available data set, defined by p(xk) and the data
generated by the Teacher module, p(x̂k−1), corresponding
to the previously learnt knowledge.

3.2 Teacher module

For the Teacher we consider a data generative model such
as a GAN model [37]. However, classical GAN networks
are well known for their instability, sometimes generating
images which are not realistic. Consequently, we consider
the Wasserstein GAN (WGAN) [38], which uses the Earth-
Mover distance as the optimization function for training.
WGAN provides better training stability while the quality of
generated images is much better when compared to classical
GAN [37].

Let us consider p(x̂k) as the output probability density
function of the generator network of the WGAN, Gψk(z, δ)
estimated through adversarial learning from k-th database,
where z is sampled from the Gaussian distribution N (0, I).
When a new task, corresponding to a database Xk, is
identified for training, the Teacher module is trained with a
mixed data set, corresponding to a joint probability density
function p(x̂k−1,xk). The probability of sampling the data
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for the joint distribution depends on the importance of the
new task xk ∼ Xk when compared to that of the previously
learnt tasks, x̂k−1 ∼ p(x̂k−1).

The following WGAN objective function is considered
for the Teacher module:

min
G

max
D∈A

{
Ex∼p(x̂k−1,xk)[D(x)]− Ex̂∼Gψk (z,δ)

[D(x̂)]
}
,

(3)
where D is the decision of the WGAN discriminator, A
represents a set of 1-Lipschitz functions, with ‖D(x)‖L ≤ 1
in order to avoid the mode collapse, which is typical in
classical GANs, x ∼ p(x̂k−1,xk), where the data used for
training the WGAN network is sampled in equal probability
ratios from p(x̂k−1), representing the data generated after
learning the previous database Xk−1, and data sampled
from p(xk), corresponding to the new database Xk. Mean-
while, x̂ ∼ Gψk(z, δ) represents the data generated by the
generator G, defined by the parameters ψk characterized
by the random continuous variable z and discrete variables
δ. For the domain probability density function p(δ) we
consider a categorical distribution Cat(ς1, . . . , ςk) where ςi
is the probability of observing i-th task associated with the
corresponding database, i = 1, . . . , k. The domain variable
δ would encode information characteristic to a specific task
acquired during the lifelong learning.
Observation 1. The Teacher network represents the prob-
abilistic storage container for the entire previously learnt
knowledge by the Teacher-Student network. The probability
density of generated data by the Teacher module represents
statistical correlations of the data from all taught tasks.
Proof. We can describe the probability of the data generated
by the Teacher module when learning the k-th task, p(x̂k)
as depending on the probability of the data generated by
the Teacher after learning the k− 1-th task, p(x̂k−1) and the
probability describing the new database p(xk), as :

p(x̂k) =

∫∫
p(x̂k|x̂k−1,xk)p(x̂k−1,xk)dx̂k−1dxk

=

∫∫
p(x̂k|x̂k−1,xk)p(x̂k−1)p(xk)dx̂k−1dxk.

(4)

After using mathematical induction for describing the recur-
sive learning of several databases during the lifelong learn-
ing, while considering the data generation by the Teacher
network, we have :

p(x̂k) =

∫∫∫∫
p(x̂k−1|x̂k−2,xk−1)p(x̂k−2)p(xk−1)

p(x̂k|x̂k−1,xk)p(xk)dx̂k−2dxk−1dx̂k−1dxk

=

∫
. . .

∫
p(x̂1)

k−2∏

i=0

p(x̂k−i|x̂k−1−i,xk−i)·

·
k−2∏

i=0

p(xk−i)dx̂1 . . . dx̂k−1dx2 . . . dxk

�

(5)

We can observe that the probability of the data p(x̂k),
generated by the Teacher after learning k databases depends
on the data contained in all previously learnt distributions
{Xi|i = 1, . . . , k}, where the past data is reproduced recur-
sively by the Teacher as {x̂i|i = 1, . . . , k − 1} after learning
sequentially each database.

Definition 1. Let us consider the Wasserstein-1 distance as
the Earth-Mover (E-M) distance between a target distribu-
tion p(x̂k−1,xk), and the distribution p(x̂k), generated by
the network Gψk , as:

W(p(x̂k−1,xk), p(x̂k)) =

= sup
||D||L≤1

{
Ex∼p(x̂k−1,xk)[D(x)]− Ex∼Gψk

[D(x)]
}

= sup
||D||L≤1

{
Ex∼p(x̂k−1,xk)[D(x)]− Ez∼p(z),δ∼p(δ)[D(Gψk(z, δ))]

}
.

(6)

Definition 2. We define the following conditional proba-
bility of the data generated by the Teacher module imple-
mented by a WGAN network, as :

p(x̂k|x̂k−1,xk) = 1−min(1, ||W(p(x̂k−1,xk), p(x̂k))). (7)

Observation 2. By maximizing the probability density func-
tion p(x̂k|x̂k−1,xk), defined in equation (7), we maximize
the ability of the Teacher module to learn all previously
given tasks, including the one defined by the last database
Xk.

Proof. We can observe that when fulfilling the objective
function during WGAN training, we have

W(p(x̂k−1,xk), p(x̂k)) = 0, (8)

and then

p(x̂k|x̂k−1,xk) = 1, (9)

which means that

p(x̂k) ≈ p(x̂k−1,xk)

�
(10)

Observation 3. All previously learnt distributions must be
the exact approximations of their target distributions in
order to allow p(x̂k) to approximate the true joint data
distribution X exactly.

Proof. In order to allow p(x̂k) to approximate the joint
distribution, we have:

p(
⌢
xk|

⌢
xk−1,xk) = 1 ⇒

p(
⌢
xk) = p(

⌢
xk−1,xk) = p(

⌢
xk−1)p(xk),

(11)

where we consider that p(
⌢
xk−1) is independent from p(xk).

Similarly to p(
⌢
xk), we have p(

⌢
xk−1|

⌢
xk−2,xk−1) = 1, which

results in p(
⌢
xk−1) = p(

⌢
xk−2)p(xk−1). Recursively, follow-

ing mathematical induction, we have:

∏k−2

i=0
p(
⌢
xk−i|

⌢
xk−i−1,xk−i) = 1 ⇒ p(

⌢
xk) = p(x1, . . . ,xk)

�

(12)

When considering WGAN for the Teacher module, we
fulfil equations (8) and (12). Then, p(x̂k) approximates the

true joint distribution
∏k
i=1 p(xi). The scheme of the Teacher

module is illustrated in the upper section of Figure 1. The
assumptions of Observations 1, 2 and 3 is that we have an
ideal generator as Teacher. However, in reality we are using
real learning machines bound by physical limitations, and
these limitations are discussed in Section 6.
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Fig. 1. The scheme of the Teacher-Student network for lifelong learning.

3.3 Student module

The Student module is implemented by a Variational Au-
toencoder (VAE), which is fed with the data x̂k generated
by the WGAN Teacher module, whose framework was
described in the previous section, and with the data sampled
from the latest given database for training, xk+1 ∼ Xk+1.

In probabilistic terms, a VAE aims to represent both in-
put data {x̂k,xk+1} and its characteristic latent space zk+1,
when considering learning the probabilistic representation
of a new domain Xk+1, after having previously learnt those
for {Xj |j = 1, . . . , k}, as:

p(x̂k,xk+1, zk+1) = p(x̂k,xk+1|zk+1)p(zk+1)

= p(zk+1|x̂k,xk+1)p(x̂k,xk+1).
(13)

Observation 4. The latent space variables estimated by the
Student VAE network, model a probabilistic representation
of the information across all databases learnt during the
lifelong learning process.

Proof. Let us consider only the derivation of the latent
variables from (13) and replace the probability of the data
provided by the Teacher module, p(x̂k) with the expression
from equation (5):

p(zk+1) =

∫∫
p(zk+1|x̂k,xk+1)p(x̂k,xk+1)dx̂kdxk+1

=

∫∫
p(zk+1|x̂k,xk+1)p(x̂k)p(xk+1)dx̂kdxk+1

=

∫
. . .

∫
p(zk+1|x̂k,xk+1)p(x̂1)p(xk+1)·

·
k−2∏

i=0

p(x̂k−i|x̂k−1−i,xk−i)·

·
k−2∏

i=0

p(xk−i)dx̂1 . . . dx̂k−1dx2 . . . dxkdxk+1.

(14)
where we have considered mathematical induction through
the recursive learning of several tasks.

The expression from (14) describes the statistical relation-
ships between the generative replay mechanisms and the
representation learning processes involved. In the following,
we show that if p(x̂k) approximates the true joint distribu-
tion exactly, then the latent representation is actually learnt
from multiple data distributions. Let us consider the results
from Observation 1, in the case of the optimal solution when
using a Teacher WGAN network, and after replacing the
expressions from (12) and (13) into (14), we have :

p(zk+1) =

∫
. . .

∫
p(zk+1|x1, . . . ,xk+1)·

·
k+1∏

i=1

p(xi)dx1, . . . ,xk+1

�

(15)

This equation demonstrates that the latent space represen-
tation of the Student module is learnt from all previously
learnt true data distributions, as stated by Observation 4.

For the Student module, we train a variational posterior
pθ(z, s, δ|x), modelling a diversity of latent spaces defining
continuous z, categorical s, and domain δ, variables, respec-
tively. The latent variable model is learnt by maximizing the
evidence lower bound (ELBO) depending on the variational
posterior, which provides an approximation to the marginal
data log-likelihood :

log p(x) =

∫∫∫
log q(x, s, δ, z) ds dδ dz

≥ Ep(z,s,δ|x)

[
log

(
q(x, s, δ, z)

p(z, s, δ|x)

)]
= LStud

(16)

where LStud represents the objective function for the Stu-
dent module. We use appropriate inference models in order
to approximate the true posteriors and derive the evidence
lower bound on the log-likelihood :

LStud =Epθ(z,s,δ|x)

[
log

(
qω(x|z, s, δ)p(s)p(δ)p(z)

pθ(z, s, δ|x)

)]

=Epθ(z,s,δ|x)

{
log qω(x|z, s, δ) + log

[
p(z)

pθ1(z|x)

]

+ log

[
p(δ)

pθ2(δ|x)

]
+

[
p(s)

pθ3(s|x)

]}
=

E
pθ

(z,s,δ|x) log [qω(x|z, s, δ)] + Epθ1 (z|x)
log

[
p(z)

pθ1(z|x)

]

+ Epθ2 (δ|x)

[
p(δ)

pθ2(δ|x)

]
+ Epθ3 (s|x)

[
p(s)

pθ3(s|x)

]
,

(17)
where we consider the independence between the prob-
abilities of the latent variables p(z), p(δ) and p(s) and
ω represents the parameters of the decoder qω(x|z, s, δ),
while θ represents the parameters of the encoder. Therefore
we consider three separate encoders, Ez, Eδ and Es, as
illustrated in the scheme fro Figure 1, used for modeling
the variational distributions pθ1(z|x), pθ2(δ|x) and pθ3(s|x),
defined by the independent parameters θ1, θ2, θ3. Then we
can rewrite the objective function for the Student module
as that corresponding to a VAE, expressed with respect to
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the Kullback-Leibler divergences of the continuous, discrete
and domain latent variables, respectively, as:

LStud = Epθ(z,s,δ|x) log(qω(x|z, s, δ))

− β1DKL(pθ1(z|x)||p(z))

− β2DKL(pθ2(δ|x)||p(δ))− β3DKL(pθ3(s|x)||p(s)),
(18)

where the first term represents the reconstruction error of
the data and the following three components represent the
KL divergence terms for the continuous latent variables z,
discrete latent space δ, and the variables corresponding to
the continuous latent space s, and β1, β2 and β3 represent
their contributions to LStud. The distribution of the continu-
ous variables is modelled as Gaussian, pθ1(z|x) = N (µ, σ).
We use the reparameterization trick [30], [31], in order to
generate differentiable samples from pθ1(z|x), as

z = µ(x) + σ(x)⊙N (0, I). (19)

The probabilities p(s) and p(δ) and are the priors of the
discrete s and categorical δ represent latent variables. Pa-
rameterizing pθ3(s|x) and pθ2(δ|x) is challenging given that
categorical distributions are non-differentiable and cannot
be updated when integrated into a network trained using
Stochastic Gradient Descent (SGD). Consequently, the two
conditional distributions pθ2(δ|x) and pθ3(s|x), from (18) are
approximated using two distinct encoders, each modelled
by a Gumbel-softmax distribution [39], [40], representing a
categorical distribution which is differentiable and can be
used for inferring random categorical variables:

sj =
exp((log aj + gj)/T )

Lm∑
i=1

exp((log ai + gi)/T )

(20)

for j = 1, . . . , Lm, where {a1, a2, . . . , aLm} represent the
discrete variable (for example class labels) probabilities
for Lm classes of m-th database. gj is sampled from the
Gumbel(0, 1) distribution, and T is a temperature parame-
ter which controls the degree of relaxation.

One issue in VAEs is whether to consider a fixed prior
distribution p(z) for the latent space field z or a conditional
distribution on certain factors. Data from different domains
(defining various tasks) may contain both shared and spe-
cific generative factors. Data from the same class will share
specific characteristics. In the following we consider using
a conditional prior distribution for the continuous latent
variable z on the domain variable δ in order to introduce
domain-specific generative factors :

p(z|δ) = N (f(δ), σ2I), (21)

where f(δ) is a transforming function which uses a one-
hot vector to select a single discrete variable. The domain
variables δ are estimated from the past learnt data sets in
which domain labels are known. By using such priors we
can group the data according to their task information.

4 TRAINING THE TEACHER-STUDENT NETWORK

FOR LIFELONG LEARNING

The Lifelong Teacher-Student (LTS) structure is illustrated
in the diagram from Figure 1. The Student module is im-
plemented by three encoders, each assigned for modelling a

specific type of latent variable: Ez for the continuous vari-
ables, Eδ for the domain variables, and Es for the discrete
variables, respectively, and a single decoder network, as
illustrated in Figure 1. The encoders are characterized by the
parameters θ1, θ2 and θ3, while the decoder is characterised
by the ω parameters. The Student module is trained by
maximizing its characteristic ELBO objective function LStud,
from (18). In order to encourage the encoders to learn dis-
crete meaningful representations of data, we introduce two
cross-entropy loss functions for the discrete-specific encoder
and domain-specific encoder, respectively:

Ls = E(x,δ,y)∼(X ,D,Y)η(pθ3(s|x),y) (22)

Lδ = E(x,δ,y)∼(X ,D,Y)η(pθ2(δ|x), δ) (23)

where η(·) is the cross-entropy loss depending on s or δ,
which represents the categorical domain such as class labels,
and the domain labels, depending on the specific task being
learnt whose probabilistic spaces are denoted as Y and D,
respectively, while x are the training data. The training data
for the Student module includes the data sampled from the
latest available data set xk ∼ Xk, as well as the data gen-
erated by the Teacher module x̂k−1, corresponding to the
previously taught probabilistic representations of databases
{Xi|i = 1, . . . , k − 1}.

The data from the current database xk, to be used for
training, and the generated data x̂k−1, are incorporated into
a single data set, which is used for training the Student
module, as explained in Section 3.3, at a ratio depending
on the importance of the old tasks relative to those cor-
responding to a new task. In the experimental results we
consider equal ratios for sampling data from a new task
xk ∼ Xk with the generated data x̂k−1, corresponding to
older tasks. Then, the VAE network is trained to represent
and reconstruct the whole cumulative learning space p(zk),
which represents the information from all previously given
databases, as supported by Observation 4. The two specific
encoders are trained using the cross-entropy loss functions
Ls and Lδ from (22) and (23), respectively.

The Teacher WGAN network is used to replay past data
samples associated with the previous tasks, and its training
data are identical to those used for training the Student
module, starting with the second database, X2. During
the training of the Teacher module we also encourage the
independence between the variables z and s representing
the continuous variation of data and discrete specific infor-
mation, respectively. In order to achieve this, we introduce
a new variable t which has the same dimension with s,
predicted by an auxiliary encoder, defined by ηζ(t|z), from
the continuous latent representation z, as shown in the
lower section of the model’s diagram from Figure 1. The loss
function used for training ηζ(t|z) and pθ1(z|x) is defined as
the cross-entropy loss L, optimized as, [41], [42], [43]:

max
θ1

min
ζ
L(ηζ(t|pθ1(z|x)), s) (24)

where pθ1(z|x), is a component of LStud from (18), defined
by the encoders modelling the continuous latent variables.
Optimizing this loss function enforces the independence be-
tween s and z encouraging the continuous latent representa-
tions to capture specific non-class information from the data.
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The pseudocode of the training algorithm for the lifelong
Teacher-Student network is provided in Algorithm 1.

Algorithm 1: The training algorithm for the Teacher-
Student framework.
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5 SEMI-SUPERVISED AND UNSUPERVISED LIFE-

LONG LEARNING

The proposed approach can also be extended to be applied
under the semi-supervised learning framework. Kingma et
al. [44] introduced a VAE framework for semi-supervised
learning in which the model uses both labeled and un-
labeled data samples during training. In this paper, we
extend the proposed approach to deal with semi-supervised
problems under the lifelong learning setting. We consider
that only a small part of the current training set is labelled,
while the labels for the other data would be inferred by the
model, following training.

In the following, two distinct situations are considered.
In the first case, the class label s is available and we sim-
ply incorporate the class information during the decoding

stage without involving any inference. Then, the variational
bound for the VAE is defined as :

LSV AE = Epθ1,θ2 (z,δ|x),s∼p(s)
(qω(x|z, s, δ))−

− β1DKL(pθ1(z|x)||p(z))− β2DKL(pθ2(δ|x)||p(δ))
(25)

where we only infer continuous and domain latent variables
z and δ, by considering pθ1(·) and pθ2(·), while the variable
s is associated with the class label. The latent variables s are
marginally independent, encouraging the separation of the
class specification from other continuous variations. In the
second case we consider that the class label y is missing,
aiming for this to be inferred by the class-specific encoder.
The variational bound for unobserved data is defined as :

LUV AE = Epθ1 (z,s,δ|x)
(qω(x|z, s, δ))

− β1DKL(pθ1(z|x)||p(z))− β2DKL(pθ2(δ|x)||p(δ))

− β3DKL(pθ3(s|x)||p(s)).
(26)

For the semi-supervised learning we consider the cross-
entropy loss, for a set of labeled data, as in equation (22), as
well as for the domain data, as in (23). Then, the full loss for
semi-supervised learning is defined by combining LSV AE
and LUV AE from (25) and (26):

LSemiSupV AE = LSV AE + aLUV AE (27)

where a controls the importance of the unsupervised versus
the supervised component of the loss.

In addition to the semi-supervised and supervised learn-
ing tasks, this paper also extends the proposed approach
for the unsupervised learning setting. In this case, there
are no class labels for any of the given data, and we only
consider two encoders pθ1(z|x) and pθ2(δ|x) in the objective
function LStud from (18). We train the Student module to
approximate the joint data distribution, by maximizing the
ELBO, as :

LV AE2 = Epθ1 (z,δ|x)
(qω(x|z, δ))− β1DKL(pθ1(z|x)||p(z))

− β2DKL(pθ2(δ|x)||p(δ)).
(28)

The β-VAE model [4] was shown to be successful for the
unsupervised visual disentangled representations learning.
This model modifies the VAE objective function by impos-
ing a large penalty β on the KL term [45], thus encouraging
disentanglement in the latent variable space. β-VAE is also
adopted in this study in order to enable data disentangle-
ment under the lifelong Teacher-Student learning. We set
β1 = 1 and β2 = 1 when generating images and increase
the value of β1 for achieving disentangled representations.
We consider the prior p(z) to be conditioned on the domain
variable δ, according to equation (21), which encourages the
posteriors pθ1(z|x) defined by the inference model, given
the data x with the associated domain variable δ, inferred by
pθ2(δ|x), to be projected into several distinct clusters in the
latent space. This property determines the Student module
to capture different underlying factors, in its latent space
representation, for each domain.

6 THE ERROR BOUNDS FOR THE LIFELONG

LEARNING OF THE STUDENT MODULE

An essential aspect of lifelong learning systems is their
ability to learn new tasks, corresponding to diverse sets
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of data, without forgetting. In this Section we provide a
theoretical analysis into how the proposed VAE Student
model can remember or conversely, forget, previously learnt
knowledge during the lifelong learning process and the
limitations of the proposed model. The theoretical analysis
is inspired by the domain adaptation theory [10], [46], where
error bounds are evaluated for the transfer of information
from one data domain to another in learning systems.

Let us consider the association (X ,Y) between the input
data space X and the outputs Y . Let Dk = {xki , y

k
i |i =

1, . . . , Nk} be a data distribution drawn from the k-th
testing set, when learning its corresponding task. Similarly,

D̃k represents a training distribution set from the k-th

task. Let D̂k = {x̂ki , ŷ
k
i |i = 1, . . . , N̂k} represent the joint

distribution D̂k = D̃k ∪ p(x̂k−1), between the data gener-
ated from p(x̂k−1) by the Teacher, after previously learning
the probabilistic representations of all other training sets

including D̂k−1, and the data corresponding to the training

set, sampled from the new task, D̃k. Each data sample
x̂k−1
i ∼ p(x̂k−1) is generated by the Teacher model and

each label ŷk−1
i is predicted by the Student model. Let h(·)

represent a mapping h : X → Y , which corresponds to
pθ3(s|x), one of the components in the Student’s objective
function LStud from equation (18).

In the following we define a loss function, ψ : Y × Y →
[0, 1] that gives a cost of h(x), deviating from the true output
y ∈ Y , [47].
Definition 3 (Empirical risk). For a given loss function ψ :
Y ×Y → [0, 1] and a training set {xi, yi ∼ D|i = 1, . . . ,m},
the empirical risk for a given hypothesis h ∈ H is defined
as:

RD(h) =
1

m

m∑

i=1

ψ(h(xi), yi), (29)

and for a pair of hypotheses (h, h′) ∈ H2, we consider the

notation RD(h, h
′) =

m∑
i=1

ψ(h(xi), h
′(xi))/m.

Definition 4 (Discrepancy distance). Given two domains D
and D̂ over X × Y , let ψ : Y × Y → R+ represent a loss

function. Let DX and D̂X represent marginals on D and

D̂. The discrepancy distance ∆ between two marginals is
defined as:

∆ψ(DX , D̂X ) = sup
h,h′

|Ex∼DX
[ψ(h′(x), h(x))]

−E
x∼D̂X

[ψ(h′(x), h(x))]
∣∣∣

(30)

where h(·) and h′(·) are mappings defined on the domains

D and D̂.
Theorem 1. Let DX and D̂X represent marginals on D and

D̂, while f ∈ H : X → Y represents the true labeling func-
tion. The relationship between these marginals is defined
by:

RDX

(
h, f

)
≤ RD̂X

(
h, fD̂X

)
+∆ψ

(
DX , D̂X

)
+ λ

(
DX , D̂X

)
,

(31)
where λ(DX , D̂X ) is the combined error term defined as :

λ
(
DX , D̂X

)
= RDX

(
h, fDX

)
+RD̂X

(
fDX

, fD̂X

)
, (32)

where fDX
, fD̂X

∈ H are two optimal hypotheses, defined
as

fDX = argmin
h∈H

RD

(
h
)
; fD̂X = argmin

h∈H
RD̂

(
h
)
, (33)

and

RD̂X

(
fDX

, fD̂X

)
= E

x∼D̂X

[
ψ(fDX

(
x
)
, fD̂X

(
x)

)]
. (34)

The detailed proof is provided in [48]. From this theo-
rem, we find that the risk for h(·) on the target distribution
is bounded by the risk for h(·) on the source distribution
generated by the Teacher plus the discrepancy distance
between the empirical distribution and the generator distri-
bution, provided in Definition 4. In order to analyse how
the Teacher forgets previously learnt knowledge during
lifelong learning process, we derive an analytical bound in
the following theorem.
Theorem 2. From Theorem 1, we can estimate the accumu-
lated errors across K tasks, by deriving an upper bound:

K∑

i=1

RD1:i
X

(
h, f

)
≤

K∑

i=1

(
RD̂i

X

(
h, fD̂i

X

)
+∆ψ(D

1:i
X , D̂i

X )

+λ
(
D1:i

X , D̂i
X

))
,

(35)

where D1:i
X represents the joint distribution of all given

databases, D1:i
X = {D1

X ∪D2
X ∪ · · · ∪Di

X } and D̂1 represents
D1 for the sake of simplicity.
Proof : Firstly, we consider the learning of the first task
and we have a bound for RD1

X

(h, f), in (31), according to
Theorem 1. Similarly, we derive the bound when learning
the next task :

RD1:2

X

(
h, f

)
≤ RD̂2

X

(
h, fD̂2

X

)
+∆ψ(D

1:2
X , D̂2

X )

+ λ
(
D1:2

X , D̂2
X

)
.

(36)

By mathematical induction, we have the risk corresponding
to D1:i

X , after learning the i-th task :

RD1:i
X

(
h, f

)
≤ RD̂i

X

(
h, fD̂i

X

)
+∆ψ(D

1:i
X , D̂i

X )

+ λ
(
D1:i

X , D̂i
X

) (37)

where i = 1, . . . ,K . We then sum up all inequalities,
resulting in equation (35), which proves Theorem 2 �

From Theorem 2, we find that the minimization of the
discrepancy distance (30) between the generator distribu-
tion and the target distribution, when learning each task,
from a set of different tasks, plays an important role for
reducing the risks for h(·) on the true target distribution.
This bound can be tight when the Teacher approximates

the joint distribution p(x̂i−1) ∪ D̃i after each i-th task
learning. In this case, the Teacher can generate a true joint

distribution {D̃1, . . . , D̃K} (see Observation 3). The lifelong
learning is then transformed into a multiple source-target
domain adaptation problem where the Student is trained

on {D̃1, . . . , D̃K} and is evaluated on {D1, . . . ,DK}. In
contrast, if the Teacher can not approximate the joint distri-
bution well, the performance of the Student module for the
target distribution depends on the quality of the generative
ability of the Teacher module. Additionally, we use WGAN
for our Teacher module instead of VAEs due to several
reasons. VAE [30] adopts a simple and fixed prior which
can not represent exactly the true posterior p(z|x) [49],
leading to vague generation results [50]. In contrast, WGAN
[38] aims to minimize the Wasserstein distance between
the target and the generator distribution (3), which enjoys
the theoretical guarantee on the convergence. The learning



9

process of WGAN is more stable than that for classical
GANs [38], which is why we use it for our Teacher mod-
ule, requiring to approximate jointly, the previously learnt
distributions as well as the distribution corresponding to
learning a new task.

7 EXPERIMENTAL RESULTS

In the following, we apply the proposed Lifelong Teacher-
Student (LTS) learning framework on various tasks. For the
hyperparameter setting, we consider β1 = 1, while β2, β3
are set to very small values in the Student module objective
function LStud from equation (18). According to this objec-
tive function, the experiments do not only focus on learning
classification tasks but they also aim to learn disentangled
data representations, under the lifelong learning setting. We
consider three distinct lifelong classification learning ex-
periments: successive learning of similar data distributions,
learning of completely different data distributions and semi-
supervised lifelong learning. The results for each of these
applications are presented in the Subsections 7.1, 7.2 and
7.3, respectively. We also evaluate the representation ability
of the proposed approach in unsupervised lifelong learning,
where we consider both similar and distinct domains.

Fig. 2. Classification accuracy curves during the lifelong Teacher-
Student learning from MNIST to SVHN databases.

7.1 The lifelong learning of similar domains

In this experiment, we consider the lifelong learning when
the proposed LTS framework is aiming to learn two sim-
ilar domains. We consider MNIST [51] and SVHN [52]
databases, both containing images of digits. MNIST data set
consists of 60,000 training and 10,000 testing samples, while
SVHN consists of 73,257 training and 26,032 testing digital
images. We resize the MNIST images into 32× 32× 3 pixels
resolution. We use a simple CNN consisting of two convolu-
tion layers for both the decoder and encoder of the Student
module and train it for 10 epochs for MNIST and SVHN,
respectively, under the lifelong LTS learning, considering a
learning rate of 0.001. The classification accuracy achieved
during each epoch is shown in Fig. 2. We can observe from
this plot that the performance of the proposed approach

(a) Randomly selected images. (b) WGAN results (first task).

(c) WGAN results from MNIST
and SVHN databases.

(d) VAE reconstructions from
MNIST and SVHN databases.

Fig. 3. Image generation and reconstruction results for the LTS model
when learning MNIST and then SVHN databases.

on MNIST would not decrease much when learning an
additional task such as SVHN. However, when not using
the reply of the first database by the GAN Teacher network
(marked as ”MNIST accuracy without”), the performance
drops significantly. A set of images, selected randomly from
MNIST and SVHN datases are shown in Fig. 3a. Images
generated by the WGAN Teacher network, after learning
the information corresponding to a single database MNIST,
are shown in Fig. 3b, while the reconstructed images by
WGAN Teacher and VAE Student networks, considering
the lifelong learning of MNIST and SVHN distributions, are
provided in Figs. 3c and 3d, respectively. For comparison
we consider the Lifelong Generative Modeling (LGM) [33],
with the same network architecture as for the LTS approach.
We also consider MemoryGAN [53] for comparison and the
numerical results are provided in Table 1, where S-M indi-
cates the lifelong learning when considering the databases
in reversed order, firstly SVHN and then MNIST. The results
from Table 1 indicate that LTS achieves the best results in
most cases.

7.2 The lifelong learning of different domains

We evaluate the performance of the proposed LTS model
on two completely different domains. After MNIST we con-
sider MNIST-Fashion [54] dataset, with the same number
of training and testing images as for the former database.
MNIST-Fashion contains 10 classes of images representing
different clothing items, of shape and characteristics which
are completely different from those of the images from
MNIST. We adopt the same network architecture and hy-
perparameter setting for both the proposed LTS, and the life-
long learning approach LGM, [33]. The classification curves,
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Fig. 4. Classification accuracy curves during the lifelong Teacher-
Student learning from MNIST to MNIST-Fashion databases.

TABLE 1
Classification accuracy when learning MNIST and SVHN under the

lifelong learning setting.

Methods Testing data set Lifelong Accuracy

LTS MNIST M-S 96.66
MemoryGANs [53] MNIST M-S 96.04
LGM [33] MNIST M-S 96.59
LTS SVHN M-S 80.15
MemoryGANs [53] SVHN M-S 80.03
LGM [33] SVHN M-S 80.77
LTS MNIST S-M 98.80
MemoryGANs [53] MNIST S-M 98.29
LGM [33] MNIST S-M 98.56
LTS SVHN S-M 80.39
MemoryGANs [53] SVHN S-M 79.34
LGM [33] SVHN S-M 76.76

for the lifelong learning of MNIST to MNIST-Fashion are
shown in Fig. 4, considering 10 epochs for training the
models successively with each database. We also provide the
performance of the proposed approach without data replay.
From these results we observe that the performance of LTS
on MNIST drops slightly when learning MNIST-Fashion as
a second database. However, when not considering data
replay there is a significant drop on the performance for
the former task. A selection of random images from both
MNIST and Fashion databases are shown in Fig. 5a, the
generated results by WGAN for the first dataset MNIST are
provided in Fig. 5b, while the images generated by WGAN
Teacher and by the Student VAE, after learning the second
database MNIST-Fashion, are shown in Figs. 5c and 5d,
respectively. The quality of the images reconstructed by both
Student VAE and Teacher WGAN is good despite the radical
differences between the images of the two databases.

The classification accuracy of the proposed LTS ap-
proach is provided in Table 2, where M-F denotes MNIST
to MNIST-Fashion database lifelong learning, while F-M
indicates their learning in reversed order. It can be observed
that the proposed approach achieves higher classification
accuracy than LGM [33] and MemoryGANs [53], on MNIST
and MNIST-Fashion under both M-F and F-M settings.

(a) Random images. (b) WGAN results (first task).

(c) WGAN results after training on
MNIST and MNIST-Fashion.

(d) VAE reconstructions from
MNIST and MNIST-Fashion.

Fig. 5. The generation and reconstruction results for LTS considering the
lifelong learning from MNIST to MNIST-Fashion.

TABLE 2
Classification accuracy on the MNIST and MNIST-Fashion under the

lifelong learning setting.

Methods Testing data set Lifelong Accuracy

LTS MNIST M-F 98.51
LGM [33] MNIST M-F 97.29
MemoryGANs [53] MNIST M-F 98.15
LTS MNIST-Fashion M-F 91.49
LGM [33] MNIST-Fashion M-F 91.71
MemoryGANs [53] MNIST-Fashion M-F 91.35
LTS MNIST F-M 98.42
LGM [33] MNIST F-M 98.85
MemoryGANs [53] MNIST F-M 98.52
LTS MNIST-Fashion F-M 89.35
LGM [33] MNIST-Fashion F-M 86.05
MemoryGANs [53] MNIST-Fashion F-M 89.13

7.3 Semi-supervised lifelong learning

We also apply the proposed framework for semi-supervised
lifelong learning, where the training is defined by the cost
function LSemiSupV AE from equations (27), (25), (26), and
(22), where a = 1.0. We divide MNIST dataset into two sub-
sets representing labelled and unlabelled images, consider-
ing fewer images in the labelled set than for the unlabelled
set. For the labelled images we consider an identical number
of images for each class. The proposed LTS model is trained
firstly on MNIST by considering that only a small number of
labelled images is available during the initial learning stage.
After training on MNIST, we consider that all generated data
are assigned with class labels, inferred by the model and
then we train with the second database, MNIST-Fashion.

The semi-supervised classification learning curves for
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Fig. 6. Semi-supervised classification results from MNIST to MNIST-
Fashion. We use 1,000 images from MNIST database and another
10,000 from MNIST-Fashion as a labeled data set.

TABLE 3
Semi-supervised classification results on MNIST data, when

considering MNIST to MNIST-Fashion lifelong learning.

Methods Lifelong? Error

LTS Yes 3.18
LGAN [34] Yes 4.87
Neural networks (NN) [55] No 10.7
Convolution networks (CNN) [55] No 6.45
TSVM [55] No 5.38
CAE [55] No 4.77
M1+TSVM [55] No 4.24
M2 [55] No 3.60
M1+M2 [55] No 2.40
Semi-VAE [44] No 2.88

the proposed LTS approach, when considering firstly
MNIST and afterwards MNIST-Fashion, are presented in
Fig. 6, considering 1,000 labeled images from the MNIST
database and 10,000 labeled images from MNIST-Fashion.
From these results we observe that although only a small
part of labeled training data is available, the proposed
approach preserves the performance achieved on the pre-
vious database while learning a new task. Traditional semi-
supervised learning approaches cannot deal with the life-
long learning setting due to the catastrophic forgetting
challenge. These results demonstrate the effectiveness of the
data replay on relieving catastrophic forgetting. In addition,
we also compare our approach to the state of the art semi-
supervised approaches on MNIST and the results are pro-
vided in Table 3. The results obtained by LTS are better or
at least similar with those of other algorithms that do not
perform under the lifelong learning framework.

7.4 The lifelong learning of multiple databases

We evaluate the performance of LTS when learning longer
sequences of datasets. We consider the following databases,
which contain classes with completely different images from
each another: MNIST, CIFAR10, Sub-ImageNet and CelebA.
Sub-ImageNet is created by randomly choosing 60,000 from
the ImageNet database [56] for training, and 10,000 images

(a) Data samples (b) VAE results. (c) WGAN results.

Fig. 7. Generation and reconstruction results for LTS when considering
unsupervised training with MNIST, CIFAR10, Sub-ImageNet and CelebA
databases.

Fig. 8. Generation results in digit images after the LTS lifelong learning
of MNIST and MNIST-Fashion database, when changing a single latent
variable from -2 to 2.

for testing. We resize all images to 32 × 32 × 3 pixels.
We only consider two encoders for the unsupervised LTS
training, as defined through the LV AE2 cost function from
equation (28). The results for the average Negative Log-
Likelihood (NLL) and the Inception Score (IS) [57], showing
the quality of reconstructed images, are provided in Tables 4
and 5, respectively. Selected real images from the four
databases are shown in Fig. 7a, while the results produced
after learning all four databases are provided in Fig. 7b for
the VAE Student network and in Fig. 7c for the WGAN
Teacher network, for β1 = 1 in (28) during the training

Fig. 9. Generation results in fashion item images after the LTS lifelong
learning of MNIST and MNIST-Fashion database, when changing a
single latent variable from -1 to 3.
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(a) Real images.

(b) VAE Student Network reconstructions.

(c) Images generated by the WGAN Teacher network.

Fig. 10. Generation and reconstruction results following the unsuper-
vised lifelong learning by the proposed approach on Celeba and CACD
databases.

procedure. From these results we observe that both VAE
Student and WGAN Teacher modules can reconstruct and
generate images of high quality, even after training on a
sequence of four completely different data sets.

In the following we consider the supervised learning
setting, defined by LStud cost function from equation (18),
where β1, β2 and β3 are all set to 1. We train various models
considering MNIST, SVHN and CIFAR10 databases. The
classification accuracy evaluated on all testing samples is
provided in Table 6. From the results provided in the Tables
4, 5 and 6 we can see that the proposed LTS method provides
the best results when averaging the lifelong learning results
on all databases considered.

TABLE 4
Average NLL on all testing samples after the lifelong learning of MNIST,

CIFAR10, Sub-ImageNet, CelebA.

Database LTS CURL [58] LGM [33]

MNIST 402.63 440.58 430.92
CIFAR10 255.23 283.68 620.57
Sub-ImageNet 243.10 282.14 458.60
CelebA 160.78 255.18 363.04
Average 265.43 315.39 468.28

TABLE 5
IS score on 5,000 testing data after the lifelong learning of MNIST,

CIFAR10, Sub-ImageNet, CelebA.

Database LTS CURL [58] LGM [33]

CIFAR10 3.97 3.53 3.46
Sub-ImageNet 4.00 3.60 3.55

TABLE 6
Average classification accuracy on all testing data after the lifelong

learning of MNIST, SVHN and CIFAR10.

Database L-TS CURL [58] LGM [33] MemoryGANs [53]

MNIST 92.83 94.66 94.53 94.58
SVHN 67.93 33.53 31.23 66.72
CIFAR10 57.03 66.58 64.08 58.62
Average 72.60 64.92 63.61 61.34

Fig. 11. Interpolation results after the lifelong learning from CelebA to
CACD. The original images are shown at the ends of each row and
the interpolations are located in between. The first two rows show
interpolations between the images from different domains while the last
two rows show interpolations using images from the same database.
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7.5 Supervised learning of disentangled representa-

tions

In this section, we evaluate the effectiveness of the proposed
approach for supervised lifelong disentangled representa-
tion learning. We consider two distinct data sets, MNIST
and MNIST-Fashion, where we also know the class labels
and adopt the same LTS architecture as in Section 7.2. We
train the LTS model using the Adam algorithm [59] and
the objective function LStud from (18), considering β1 = 4,
β2 = 1 and β3 = 1 while training for a maximum number
of 10 epochs for each learning phase considering a training
rate of 0.001. We manipulate the generated images, by
changing the learnt data attributes, after the LTS learning.
The results, where we change a single continuous latent
variable each time while fixing the others, for data from
MNIST and MNIST-Fashion, are presented in Fig. 8 and
Fig. 9, respectively. From these results we observe that the
proposed approach is able to capture the thickness and the
handwriting style from the images of digits from the MNIST
database, while modelling the size and shape or various
items from MNIST-Fashion. These results demonstrate that
the proposed approach can capture both continuous and
discrete data variations under the lifelong learning setting.

7.6 Unsupervised learning of disentangled representa-

tions

In this section, we test whether the proposed approach
can learn disentangled representations under the lifelong
unsupervised setting. We consider a deep CNN consisting of
five convolution layers as the encoder, and the same number
of layers for the decoder of the Student module. The number
of filters in each layer is increased progressively with the
depth of the network. Firstly, we evaluate the ability of the
proposed approach to model complex data distributions. We
consider two data sets showing human faces: CelebFaces At-
tributes data set (CelebA) [60] and Cross-Age Celebrity data
set (CACD) [61]. CelebA contains more than 200K celebrity
face images and each one has 40 attribute annotations. We
use the random crop and resize for the images from CelebA,
resulting in images of 64× 64 pixels. CACD is also a large-
scale celebrity face data set consisting of 163,446 images
from 2,000 persons. We simply resize the CACD images to
64 × 64 pixels without considering cropping. We consider
β1 = 1 and β2 = 1 in the loss function LV AE2 from
(28). We train this model initially with images from CelebA
and then with images from CACD database using the
proposed Lifelong LTS framework. Real images are shown
in Fig. 10a, while those reconstructed by the VAE Student
and WGAN Teacher networks are shown in Figures 10b
and 10c, respectively. From these results we observe that
the proposed approach gives accurate reconstruction results
although it does not use any real images from CelebA when
being trained on the second database, CACD. In order to
explore the joint latent spaces corresponding to CelebA and
CACD databases, we perform interpolation experiments
on these two different domains (Lifelong Learning Inter-
polation [18]). We randomly select two images, one from
CACD and another from CelebA database, and interpolate
between their corresponding latent spaces and then we map
the resulting latent spaces back into the image domain.

The interpolation results are evaluated on four pairs of
images, chosen from the same and from different domains,
respectively. The interpolation results are shown in Fig. 11,
where the original images are shown at the ends of each
row of images and those resulting from the latent space
interpolations are displayed in between them. It can be
observed that the interpolated images are smoothly trans-
formed between each pair of original images, even when the
source and target face images correspond to different image
categories. These results show that the proposed approach
can learn meaningful latent representations across multiple
domains under the unsupervised lifelong learning setting.

We also consider the lifelong LTS learning of two
databases with entirely different types of images: CelebA
followed by the 3D-Chairs database, which displays a vari-
ety of 3D representations of chairs. Real images from CelebA
are shown in the top 4 rows from Fig. 12a while the bottom
4 rows shows selected images from the 3D-Chairs database.
After the lifelong learning of the probabilistic representa-
tions of these databases, in Figures 12b and 12c we show
the reconstructions by VAE Student network and by the
WGAN Teacher network, respectively, when considering
β1 = 1, β2 = 1 in the loss function LV AE2 from (28).
From these results it can be observed that the proposed LTS
framework is able to provide good reconstructions in both
databases. Then, in the last example we show interpolation
experiments on pairs of images, where each is drawn from
a different database as well as from the same database.
Each of the results is shown on a row of images from
Fig. 13, where the original images are at the ends of each
row. From these results it can be observed that a chair is
smoothly transformed into a human face in the first four
rows from Fig. 13, when varying the interpolation weights
in the latent space. We can observe that the main body of a
chair is transformed into either the hair or the glasses worn
by human subjects. We also observe that the interpolation
results are smoothly changing when the original images are
from the same database, either CelebA or 3D-chairs, as it can
be seen in the results from the bottom two rows of Fig. 13.

In the following we train the LTS model with β1 = 4,
and β2 = 1 in (28) when considering Lifelong LTS learning
from CelebA to 3D-Chairs databases. After training, we
modify one of the latent variables while fixing the others.
The disentangled results on CelebA human faces and 3D-
Chairs are shown in Figures 14 and 15, respectively. From
these results it can be observed that the LTS model is able
to discover disentangled representations for various data
attributes, including skin color, gender, hair colour and
baldness/hair variation in human face images as well as
the size and colour of chairs in the 3D-Chairs’ images.

7.7 Ablation study

In this section, we firstly consider a baseline, named LTS*,
which does not optimize Lδ from (23), characterizing the
training of the domain-specific encoder. We also consider a
baseline that does not use the conditional prior characteriz-
ing the domain-specific generative factor from equation (21),
and name this model as LTS**. Thus, the Student model in
either LTS* or LTS** drops one of the encoders and uses only
the two other encoders. We train all these models under the
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(a) Real images from CelebA and 3D-chairs. (b) VAE Student network reconstructions. (c) WGAN Teacher network results.

Fig. 12. Image generation and reconstruction following the unsupervised lifelong LTS learning on CelebA to 3D-chairs.

Fig. 13. Interpolation results following the LTS lifelong learning from
CelebA to 3D-Chairs. In the first four rows, we interpolate two images
from two different databases, shown at the ends of each row, while in the
last two rows the chosen images are from the same domain, CelebA and
3D-Chairs. The interpolated generated images are shown in between
the real images.

lifelong learning of MNIST, CIFAR10, Sub-ImageNet (Sub-
I) and CelebA and the results are provided in Table 7. The
results from this table indicate the crucial role played by the
domain-specific encoder in the Student module, trained by
(23), and the conditional prior characterizing the domain-
specific generative factor from (21). This result also shows
that the performance of the LTS model is improved by
embedding information from different domains into several
distinct clusters in the latent space.

TABLE 7
The average Negative log-likelihood (NLL) on all testing data samples
after the lifelong learning of MNIST, CIFAR10, Sub-ImageNet, CelebA.

Methods MNIST CIFAR10 Sub-I CelebA Average

LTS 402.63 255.23 243.10 160.78 265.43
LTS* 504.92 309.93 309.78 279.75 351.09
LTS** 261.16 511.18 466.46 251.49 372.57

We also consider a baseline model that does not optimize
the loss function defining discrete variables through the
specific encoder of the Student module Ls, defined by
equation (22), and we train the resulting model under the
supervised learning setting. The forgetting curve, evaluating

the classification accuracy, is provided in Fig. 16, where we
can observe that the baseline without the supervised loss
can not predict accurate labels for the given data samples.

7.8 Discussion

In the following, we evaluate the error bounds for the
lifelong learning of the Student module, derived according
to the study from Section 6. We consider the proposed
model when jointly training with the MNIST and SVHN,
both databases representing images of digits, and call this
as LTS Joint Distribution Training (LTS-JDT). We also con-
sider the lifelong learning using the LTS model, of these
databases, considering 20 epochs for training with each
task. We evaluate the average risks on all testing data for
the Student module for LTS-JDT, implemented by a VAE,
using Definition 3. This model can be seen as the Teacher

which approximates the joint distribution D̂i when learning
each i-th task while the Student module is trained on the
true joint distribution D̃1:2. From equation (29) we have∑2
i=1 RDi

X

(h, f), where h represents a mapping h : X → Y ,

corresponding to pθ3(s|x), the component in the Student’s
objective function LStud from (18), inferring the class label,
and f : X → Y represents the true labeling function. We
also train the LTS model during the lifelong learning using
successively MNIST and SVHN while evaluating the risk
on the target datasets for the Student module. The results
are provided in Fig. 17. We observe that if the Teacher does
not approximate the joint distribution exactly in each task
learning, the performance of the Student degenerates when
learning more tasks.

In the following, we evaluate the forgetting rate for the
information learnt from the first database by the Student
module while learning a long sequence of tasks. The NLL
results, evaluated on MNIST data, when engaging in the
lifelong learning of MNIST, CIFAR10, Sub-ImageNet and
CelebA databases, are provided in Fig. 18. These databases
contain very different categories of images and while the im-
ages from the first database are simple, the other databases
contain complex images. The results from Fig. 18 indicate
that the Student component of the LTS model tends to have
higher errors as it learns additional tasks.

The Teacher module is required to refine, process and
preserve previously learnt knowledge. However, the quality
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(a) Skin color (b) Gender

(c) Hair color (d) Baldness/hair

Fig. 14. Results of attribute manipulation in the generated images after learning the probabilistic representation for CelebA dataset under the
Lifelong training from CelebA to 3D-Chairs. We change a single latent variables in the latent space from -3.0 to 3.0 while fixing the others.

(a) Size (b) Color

Fig. 15. Results of attribute manipulation in the generated images after learning the probabilistic representation for 3D-Chairs database under the
Lifelong learning from CelebA to 3D-Chairs. We change a single latent variable in the latent space from -1.0 to 5.0 while fixing the others.

Fig. 16. Forgetting analysis of the proposed model during the lifelong
learning of MNIST to Fashion databases.

of the generated knowledge by the Teacher module degener-
ates when learning a large number of tasks. From Theorem
2 in Section 6, we know that the gap on risks (evaluated by
the Student module) between the target distribution and the
approximate distribution, generated by the Teacher module,
depends on the discrepancy distance ∆, from Definition
4. While GANs have very good generalization properties,
they also have physical bounds in their information learn-
ing capacity. Therefore, the Teacher is not able to generate
high-quality knowledge following the training with a long
sequence of tasks. This problem is related to the mode
collapse [62], and catastrophic forgetting [63] in GANs,
where the discriminator constraints the ability to generate
data corresponding to a diversity of modes in the given
data. Consequently, the Student module, learning from the
Teacher, is only able to capture a limited number of modes
of variation across all the given tasks.
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Fig. 17. Classification error curves when learning MNIST and SVHN
databases, evaluating the testing data from both databases during train-
ing. LTS-Lifelong represents the lifelong learning curve when training
from MNIST to SVHN database. LTS-JDT represents the results when
training the LTS model directly with both databases.

8 CONCLUSIONS

We propose a novel lifelong deep learning approach by us-
ing a Teacher-Student framework for learning successively
the probabilistic representations of a sequence of databases.
The proposed framework consists of two components : a
Teacher module implemented by a Wasserstein GAN which
is used to generate the knowledge from all previously
learnt databases, and a Student module, implemented by
a VAE which is trained to capture both discrete and contin-
uous meaningful variations across multiple domains. The
VAE Student network is trained using the joint knowledge
generated by the WGAN Teacher network for the previ-
ously learnt databases, and the current task, defined by
a newly available database. The proposed framework is
extended for three different learning situations: supervised,

Task 1

Task 2

Task 3

Task 4

Fig. 18. Average NLL, calculated on the MNIST testing data samples,
during the lifelong learning by the student VAE network of MNIST,
CIFAR10, Sub-ImageNet and CelebA datasets.

semi-supervised and unsupervised. Furthermore, the exper-
imental results show that the proposed approach is able
to discover disentangled and interpretable representations
of multiple domains in an unsupervised lifelong learning
setting. This study can lead to further research into how
to accelerate the learning of future tasks as well as for
evaluating the forgetfulness in artificial learning systems.
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