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INFOVAEGAN : LEARNING JOINT INTERPRETABLE REPRESENTATIONS BY

INFORMATION MAXIMIZATION AND MAXIMUM LIKELIHOOD

Fei Ye and Adrian G. Bors

Department of Computer Science, University of York, York YO10 5GH, UK

ABSTRACT

Learning disentangled and interpretable representations is an

important step towards accomplishing comprehensive data

representations on the manifold. In this paper, we propose

a novel representation learning algorithm which combines

the inference abilities of Variational Autoencoders (VAE)

with the generalization capability of Generative Adversarial

Networks (GAN). The proposed model, called InfoVAE-

GAN, consists of three networks : Encoder, Generator and

Discriminator. InfoVAEGAN aims to jointly learn discrete

and continuous interpretable representations in an unsuper-

vised manner by using two different data-free log-likelihood

functions onto the variables sampled from the generator’s

distribution. We propose a two-stage algorithm for opti-

mizing the inference network separately from the generator

training. Moreover, we enforce the learning of interpretable

representations through the maximization of the mutual infor-

mation between the existing latent variables and those created

through generative and inference processes.

Index Terms— Hybrid VAE-GAN generative models,

Disentangled representations, Mutual information.

1. INTRODUCTION

Unsupervised disentangled representation learning is a chal-

lenging task in any machine learning application. Most stud-

ies consider disentangled representation to be a data decom-

position into sets of statistically and syntactically independent

variables. Such data sets are assumed to be semantically dis-

tinct and to represent different categories of data characteris-

tics. Learning disentangled representations that may capture

semantic meaningful information can allow to explicitly edit

images and is useful for a variety of tasks [1, 2, 3]. Enabling

disentangled representations can overcome overfitting during

the training, leading to better generalization in models, [4].

One of the most popular generative models is the Vari-

ational Autencoder [5], which implements a mapping be-

tween the data and an estimated latent space. The VAE’s

loss function maximizes the lower bound on the marginal

log-likelihood of the data, while accurately reconstructing

the data from the mapping of the latent space using the

Kullback-Leibler (KL) divergence. Learning interpretable

and disentangled representations have been considered in

β−VAE [6] by setting a large penalty on the KL divergence

term in order to encourage the independence between latent

variables. On the other hand β-VAE sacrifices the quality of

data reconstruction when inducing disentangled representa-

tions, [7]. β-TCVAE model introduced the usage of the total

correlation (TC) penalty, which is a measure of multivariate

mutual independence. The TC penalty was used in various

VAE frameworks [8] for inducing disentangled representa-

tions. However, TC is biased and is zero only if estimated

on the whole dataset, [9]. Meanwhile, reducing the bias to

zero is impossible for a large-scale dataset. The drawback of

VAE based approaches is that they generally produce blurred

and unclear images when compared to Generative Adversar-

ial Networks (GANs) [10]. Few research efforts have been

devoted to use GANs for disentangled representations [11],

and with mixed results.

This research study has the following contributions :

1) A novel two-stage training algorithm where the infer-

ence model is estimated separately from the generator.

2) A data-free log-likelihood optimization approach able

to learn an accurate inference model from a GAN.

2. BACKGROUND AND RELATED WORKS

Variational autoencoder (VAE). VAEs [5] aim to maximize

a lower bound to the marginal log-likelihood of the data :

L(φ, θ) =Eqθ(z|x)[log pφ(x|z)]−DKL(qθ(z|x)||p(z))

≤ log p(x)
(1)

where x and z are the input data and the corresponding la-

tent variables, and the conditional distributions qθ(z|x) and

pφ(x|z), are implemented by the Encoder and Decoder net-

works, of parameters θ and φ, respectively. These networks

are trained using the Stochastic Gradient Descent (SGD) al-

gorithm.

Generative adversarial networks (GAN). GANs also con-

sist of two network components : Generator and Discrimina-

tor which are trained for playing a Minimax game, defined by

the following loss:

min
G

max
D

V (D,G) = Ex∼ pd(x)[logD(x)]

+ Ez∼ p(z)[log[1−D(G(z))]].
(2)



While the discriminator network is trained to distinguish be-

tween real and fake data, the generator aims to produce more

realistic data that can fool the discriminator. GANs are chal-

lenging to control and may generate unexpected results.

Hybrid models. Hybrid models attempt to address the draw-

backs of GANs and VAEs, by combining their architectures.

These models usually have three components: an Encoder for

mapping data into the latent space, a Generator to recover data

from the latent space, and a Discriminator to distinguish real

from fake data. Adversarial learning can be performed in the

data space, latent space [2], or on their joint spaces.

Lately, the likelihood estimation as a regularization term

was shown to stabilize adversarial distribution matching [3].

However, these methods only focus on improving the genera-

tion capability and do not design suitable objective functions

for inducing disentangled representations. Our paper is the

first to propose an appropriate objective function for training

a hybrid VAE-GAN method for learning both continuous and

discrete disentangled representations.

3. THE INFOVAEGAN MODEL

The proposed InfoVAEGAN model is made up of three net-

works: Encoder, Generator and Discriminator.

3.1. Generation from prior distributions

Let x ∈ R
d represent the observed random variables sampled

from the empirical data distribution Px. One of the goals of

our model is to train the Generator to approximate the true

data distribution Px. Let us assume three underlying gen-

erative factors z, c,d, corresponding to random, continuous

and discrete variables, which are sampled from three inde-

pendent prior distributions z ∼ N (Iz,Σz), c ∼ N (Ic,Σc),
d ∼ Cat(k = K, p = 1/K), where Cat denotes the Cat-

egorical distribution and N is he Gaussian distribution. Let

us consider that the data generated x
′ is produced by a gen-

erator Gψ(z,d, c), implemented by a neural network with

trainable parameters ψ, and PG to represent the distribution

of data generated by G. The generation process is defined as:

d ∼ p(d), z ∼ p(z), c ∼ p(c),x ∼ pψ(x|z,d, c).
For the Discriminator network we use the Earth-mover

distance, as in the Wasserstein GAN (WGAN) model [10],

which is defined as the optimal path of transporting infor-

mation mass from the generator distribution PG to the data

distribution Px. By considering the Kantorovich-Rubinstein

duality [12], the optimal transport adversarial learning is de-

fined as:

min
G

max
D∈Θ

Ex∼Px
[D(x)]− Ex′∼PG

D(x′)] (3)

where Θ represents a set of 1-Lipschitz functions. We intro-

duce a gradient penalty term [13], to enforce the Lipschitz

constraint, resulting in:

min
G

max
D

Ex∼Px
[D(x)]− Ex′∼PG

[D(x′)]

+ λEx̃∼Px̃
[(‖∇x̃D(x̃)‖2 − 1)2],

(4)

where Px̃ is defined as sampling uniformly along straight

lines between pairs of data sampled from Px and PG.

3.2. Data-free log-likelihood optimization

In this section, we introduce two data-free log-likelihood op-

timization functions, which are used to learn the disentangled

latent representations z and u = (d, c), respectively. Instead

of maximizing the sample log-likelihood, as commonly used

in the VAE framework [5], we optimize the log-likelihood

function by deriving a lower bound over the data samples

drawn from the generator distribution.

Definition 1 Let x
′ ∼ G(z̃, d̃, c̃) be the generated data

where z̃, d̃, c̃ are latent variables sampled from the prior

distributions p(z̃), p(d̃), p(c̃).

Definition 2 Let qω(d, c|x), qξ(z|x) represent two indepen-

dent conditional distributions implemented by two infer-

ence models. Let us define (d, c) as interpretable repre-

sentations which model discrete and continuous meaning-

ful variations of the data and z̃, x
′ as the observed vari-

ables. Let us define a latent variable model pψ(x
′, z̃,d, c) =

pψ(x
′|z̃,d, c)p(d, c)p(z̃). Then, the log-likelihood of pψ(x

′)
is defined as:

log pψ(x
′) =

∫∫∫

log pψ(x
′|d, c, z̃) p(d, c) p(z̃) dd dc dz̃.

(5)

This expression is intractable and can be rewritten by con-

sidering its Evidence Lower Bound (ELBO), as :

log pψ(x
′) ≥ Eqω,ξ(d,c,z|x′)

[

log
pψ(x

′, d̃, c̃, z)

qξ(z|x′)qω(d, c|x′)

]

.

(6)
The scheme for optimizing both qω(d, c|x

′) and qξ(z|x
′),

without updating the Generator, is very efficient.

4. THE THEORETICAL FRAMEWORK

In existing hybrid methods, the inference model and the gen-

erator network are trained jointly by using a single objective

function. However, in the proposed InfoVAEGAN model we

have independent optimization procedures for the inference

and generation. This choice has many advantages. For in-

stance, the training of the inference model implemented by

the Encoder, does not interfere with the optimization of the

Generator, which results in a stable training procedure. When

the Generator approximates the true data distribution exactly,

we can derive more accurate inference models. Aligning two

joint distributions by using adversarial learning would also be

harder to achieve than matching two single distributions in-

dividually. Unlike in InfoGAN [11], the proposed model has

a full inference mechanism, which enables the inference of

both meaningful and nuisance latent representations, benefit-

ing many down-stream tasks such as data reconstructions and

interpolations.



Proposition 1 For a given inference model, we can estimate

the testing data log-likelihood :

log pψ(xt) ≥ Eqω,ξ(d,c,z|xt)[log pψ(d, c, z|xt)]

−DKL(qω(d|xt)||p(d))−DKL(qω(c|xt)||p(c))

−DKL(qξ(z|xt)||p(z)) = L(ψ, ξ, ω;xt)

(7)

where xt represent testing data. The model implementing

pψ(xt) combines the two inference models and a Generator.

Proof 1 We combine the two inference models for continuous

and discrete variables, and a Generator into a single model:

log pψ(xt) = pψ(xt|d, c, z)qω(d, c|xt)qξ(z|xt) (8)

Then we define the model log-likelihood as :

log pψ(xt) = logEqω,ξ(d,c,z|xt)

[

pψ(xt,d, c, z)

qω,ξ(d, c, z|xt

]

(9)

According to the Jensen inequality, we have :

log pψ(xt) ≥ Eqω,ξ(d,c,z|xt)

[

log
pψ(xt,d, c, z)

qω,ξ(d, c, z|xt)

]

= Eqω,ξ(d,c,z|xt)

[

log
pψ(d, c, z|xt)p(d)p(c)p(z)

qω(d|xt)qω(c|xt)qξ(z|xt)

]

= Eqω,ξ(d,c,z|xt) [log pψ(d, c, z|xt)]−DKL(qω(d|xt)||p(d))

−DKL(qω(c|xt)||p(c))−DKL(qξ(z|xt)||p(z)).
(10)

(a) Generator. (b) Inference models.

Fig. 1. Unsupervised learning structures in generative mod-

els, where c and d are continuous and discrete variables,

while z represents Gaussian noise.

5. MUTUAL INFORMATION MAXIMIZATION FOR

INTERPRETABLE REPRESENTATIONS

In the proposed InfoVAEGAN model, we transfer the under-

lying characteristic information of continuous and discrete la-

tent variables during the decoder-generation process by using

the Mutual Information (MI) maximization. Let us denote the

joint latent variables by u = (d, c), while we want to max-

imize the MI between the joint latent variable u and the de-

coder output, I(u,G(z,u)). According to the research study

from [14] it is difficult to optimize the mutual information

directly, given that it needs to access the information repre-

sented by the true posterior p(u|x). In order to address this

problem, we define an auxiliary distribution W (u|x) to ap-

proximate the true posterior and then derive a lower bound

on the mutual information, expressed by using the marginal

entropy H(u), and the conditional entropy H(u|G(z,u)) :

I(u, G(z,u)) = H(u)−H(u|G(z,u))

=

∫∫

G(z,u)p(u|x) log
p(u|x)

W (u|x)
dxdu

+

∫∫

G(z,u)p(u|x) logW (u|x)dxdu+H(u)

= Ex∼G(z,u)DKL[p(u|x)||W (u|x)]

+ Ex∼G(z,u)[Eu∼p(u,x)[logW (u|x)]] +H(u)

>Ex∼G(z,u)[Eu∼p(u,x)[logW (u|x)]] +H(u) = LMI

(11)

where the auxiliary distribution W (u|x) is implemented by

the Encoder. In practice, we sample a pair of latent variables

d, c from qω(d, c|x). We estimate the mutual information by

means of the lower bound LMI , from (11), while the last term

H(u) represents the marginal entropy of the latent variables.

The graph structure of the InfoVAEGAN is shown in

Fig. 1, where qω(d|x) and qω(c|x) are implemented by the

same network except for the last layer which is different for

the inference of each latent variable. The inference network,

representing qξ(z|x), is implemented by a neural network

with trainable parameters ξ, as it can be seen in the lower part

of the left side of Fig. 1b. The Generator is shown in Fig. 1a.

Fig. 2. Reconstruction results on each row: real images, re-

constructions by ALI [15], InfoGAN [11] and InfoVAEGAN.

6. EXPERIMENTAL RESULTS

In the following we evaluate the performance of InfoVAE-

GAN on the MNIST dataset [16], representing images of

handwritten digits. In order to learn the discrete latent vari-

able which captures different styles of handwritten digits we

use a categorical vector sampled from Cat(K = 10, p = 0.1)
and two continuous variables, sampled from the uniform dis-

tribution U(−1, 1), as latent variables. The reconstruction

results for the images from MNIST, shown in the first row

from Fig. 2, by ALI [15], InfoGAN [11], and InfoVAEGAN,

are provided in the following rows of images, respectively.

For the proposed InfoVAEGAN approach, the discrete latent

variables are sampled from the Gumble-softmax distribution,

while the continuous latent variables are sampled from the

Gaussian distribution, whose mean and diagonal covariance

are parameterized by the Encoder. From these results it can

be observed that InfoVAEGAN provides better digit image

reconstructions than InfoGAN or ALI.



(a) Bangs

(c) Hair color

(b) Glasses

(d) Smile
(e) FID evaluation.

Fig. 3. We change a single latent variable in the latent space from -1 to 1 while fixing all other latent variables for CelebA

dataset in (a)-(d). FID evaluation when using CelebA database for training is provided in (e).

(a) InfoVAEGAN changing c1. (b) InfoGAN changing c1.

(c) InfoVAEGAN changing c2. (d) InfoGAN changing c2.

Fig. 4. Generation results when changing the continuous vari-

ables c1 and c2 from -1 to 1.

We modify the continuous codes c1, c2 within the range

[−1, 1] and fix the other latent variables. The generative re-

sults for MNIST dataset are shown in Figures 4a and 4c for

InfoVAEGAN, while for InfoGAN are provided in Figures 4b

and 4d, when modifying c1 and c2. It can be observed that by

varying the latent codes in InfoVAEGAN, we generate images

showing meaningful characteristics such as rotations or a vari-

ety of handwriting styles. We also consider a 10-dimensional

vector for the discrete and continuous latent variables in order

to model underlying changing factors in the CelebA dataset

[17]. We change a single latent variable in the images gen-

erated by InfoVAEGAN while fixing the others. The results

shown in Figures 3a-d indicate variations in face image repre-

sentations such as bangs, glasses, hair colour and in smiling.

The results when using InfoVAEGAN in unsupervised

classification on the MNIST dataset, when compared with

other methods, are provided in Table 1. Most unsuper-

vised learning methods adopt mixture deep learning models

(K represents the number of components) requiring signifi-

cantly more parameters. We can observe that InfoVAEGAN

achieves higher accuracy than InfoGAN [11], and other mod-

els.

We investigate the disentanglement ability of the proposed

approach by using the metric from [7] and the dataset dSprites

[25]. The results are reported in Table 2, where all other re-

sults are cited from [18]. The proposed approach achieves

a competitive disentanglement score when compared with the

Table 1. Unsupervised classification results for M runs.

MNIST

Method K M Mean Best

InfoVAEGAN 1 4 95.42 96.15

JointVAE [18] 1 4 71.53 87.32

SubGAN [19] 20 1 / 90.81

InfoGAN [11] 1 1 / 93.35

GMVAE [20] 30 1 / 89.27

GMVAE [20] 16 1 / 87.82

AAE [21] 16 1 / 90.45

CatGAN [22] 30 1 / 95.73

DEC [23] 10 1 / 84.30

PixelGAN [24] 30 1 / 94.73

Table 2. Disentanglement evaluation on the dSprites.

Methods M Score

InfoVAEGAN 10 0.79

Beta-VAE [6] 10 0.73

FactorVAE [7] 10 0.82

JointVAE [18] 10 0.69

current state of the art. We also use the Fréchet Inception Dis-

tance (FID) [26] to evaluate the quality of the generated im-

ages when considering the CelebA dataset in Fig. 3e, where

InfoVAEGAN-MI denotes that the proposed approach does

not use the mutual information (MI) loss. These results show

that the proposed approach can balance well the disentangle-

ment ability and image generation quality.

7. CONCLUSION

In this paper, we introduce InfoVAEGAN, a new deep learn-

ing approach for learning jointly discrete and continuous in-

terpretable representations. InfoVAEGAN optimizes sepa-

rately the inference model and the generator providing ad-

vantages over other hybrid methods. The proposed approach

is a good tool to provide inference mechanisms when consid-

ering any generative GAN model without the need of any real

data. In addition, InfoVAEGAN can generate high-quality in-

terpretable data variations which can successfully be used for

disentangled and interpretable representation learning.
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