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LIFELONG TWIN GENERATIVE ADVERSARIAL NETWORKS

Fei Ye and Adrian G. Bors

Department of Computer Science, University of York, York YO10 5GH, UK

ABSTRACT

In this paper, we propose a new continuously learning gener-

ative model, called the Lifelong Twin Generative Adversarial

Networks (LT-GANs). LT-GANs learns a sequence of tasks

from several databases and its architecture consists of three

components: two identical generators, namely the Teacher

and Assistant, and one Discriminator. In order to allow for

the LT-GANs to learn new concepts without forgetting, we

introduce a new lifelong training approach, namely Lifelong

Adversarial Knowledge Distillation (LAKD), which encour-

ages the Teacher and Assistant to alternately teach each other,

while learning a new database. This training approach favours

transferring knowledge from a more knowledgeable player to

another player which knows less information about a previ-

ously given task.

Index Terms— Lifelong learning, Generative Adversar-

ial Networks (GAN), Teacher-Student learning models.

1. INTRODUCTION

An essential characteristic of human beings intelligence is

that of being able to continually learn and acquire new skills

and concepts from the world throughout their lifespan [1].

Neural networks trained on a sequence of tasks tend to fo-

cus on the latest learnt task and would perform poorly on any

other learnt before. This phenomenon is called catastrophic

forgetting [2], and it is caused by the fact that network’s pa-

rameters are overwritten each time when training on a new

task. A solution proposed to relieve catastrophic forgetting

was to impose constraints while learning the tasks associ-

ated with a new database [3]. This is achieved by includ-

ing a regularization term in the objective function, penalizing

the change in the network weights when learning a new task.

Other solutions focused on dynamically increasing the num-

ber of neurons and network layers in order to be able to store

novel information, [4]. Most of these approaches require task

labels, or the knowledge of the task boundaries, which is not

always feasible. Moreover, these approaches are focused on

the supervised learning setting while in this paper we address

the more challenging problem of unsupervised learning, [5].

Generative Adversarial Nets (GANs) [6] can relieve catas-

trophic forgetting by being trained in a self-supervised fash-

ion. Retraining with generative replay is achieved by building

new training sets comprising of data generated by a GAN,

which are added to a given real dataset from the current

task [7], or by preserving and freezing the model’s param-

eters after each dataset switch. However, applying these

approaches in practical applications, that would favour a

memory-efficient and end-to-end learning manner, is chal-

lenging. Moreover, existing GAN based lifelong learning

models lack inference mechanisms and therefore can not

capture complex structures behind data.

The proposed lifelong learning model, is named Life-

long Learning GANs (LT-GANs). LT-GANs relieves catas-

trophic forgetting by accumulating knowledge through a twin

Teacher-Assistant network in the context of adversarial learn-

ing. This learning process favours transferring knowledge

from a more knowledgeable player to its twin player during

the lifelong learning, while the memory size is rather small

and kept fixed. We further implement a Teacher-Student

framework considering the LT-GANs as a Teacher network in

order to learn data representations over time.

This research study has the following contributions:

• A new lifelong learning model, LT-GANs, which aims

to learn a sequence of tasks from a set of databases.

• We introduce the Lifelong Adversarial Knowledge Dis-

tillation (LAKD), an end-to-end training algorithm for

accumulating knowledge across tasks.

• The LT-GANs model is extended to a Teacher-Student

framework for learning data representations over time.

2. RELATED WORKS

There are two categories of lifelong learning approaches :

memory-based systems [8], and generative modelling [5].

The former category of models uses a small buffer to store

some data samples for each task which are then used to

minimize the negative backward transfer when updating the

network’s parameters when learning a new task [9]. However,

such approaches require a significant computation processing

[8], when the number of tasks to be learnt increases. The

generative modelling approaches would usually use a gen-

erator such as a Generative Adversarial Network (GAN) [6]

or a Variational Autoencoder (VAE) [10] to reproduce previ-

ously learnt data samples before learning the next task. These

generated data samples are then mixed with samples drawn

from the current database, to form a new training data set

for the model. Moreover, existing GAN based lifelong ap-

proaches [11] can not learn inference models, which prevent
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Fig. 1. Diagram showing the learning flow for LT-GANs. The Teacher and Assistant are trained jointly during the first task,

while they exchange their roles, teaching each other in turns, when learning the following tasks.

their usefulness for a wide range of applications. In contrast,

VAE based lifelong approaches [12] are able to capture cross-

domain representations over several tasks but lead to poor

performance when learning databases of high complexity,

given that VAEs used as generative replay networks tend to

produce rather blurred images.

Another category of related works is based on the coupled

[13] or dual generative models [14]. CoGANs [13] consists of

a pair of GANs which share their parameters for generator and

discriminator networks. DualGAN [14] has a similar network

architecture with CoGAN, with the difference that DualGAN

aims to learn an image-to-image translation framework while

CoGAN aims to learn a joint distribution without accessing

a tuple of corresponding images. The Twin Auxiliary Classi-

fiers GANs (TAC-GAN) [15] introduces a classifier as a new

player to interact with the GAN’s generator and discriminator

in order to enforce the diversity in the generated data. In this

paper we propose the Lifelong Adversarial Knowledge Dis-

tillation (LAKD) as the training algorithm which enables the

LT-GANs model to learn new tasks without forgetting.

3. LIFELONG TWIN GENERATIVE

ADVERSARIAL NETWORKS (LT-GANS)

Most lifelong learning models are applied in the context of

supervised learning. The proposed Lifelong Twin Generative

Adversarial Network (LT-GANs) consists of three compo-

nents: two identical generators and a discriminator network.

One of the generators is named the Teacher while the other

one is the Assistant. LT-GANs training procedure is shown

in the diagram from Fig. 1. Let z represent a random noise

vector sampled from a Normal distribution N (0, I). The two

generators, Teacher and Assistant, are parameterized by two

identical neural networks GθT (z) and GθA(z), which aim

to generates images x
′
t and x

′
a by taking the random noise

vector z as input. The learning goal of LT-GANs in the first

task is similar to that in GAN [6], by minimizing the dis-

tance between the data distribution and the distribution of the

generated data. In this paper, we consider minimizing the

Wasserstein distance, [16] :

min
GθT

,GθA

max
D∈Θ

E
x
1∼p(x1)[D(x1)]− E

x
′

t
∼p(xT )[D(x′

t)]
︸ ︷︷ ︸

Teacher optimization

+ E
x
1∼p(x1)[D(x1)]− E

x
′

a
∼p(xA)D(x′

a)]
︸ ︷︷ ︸

Assistant optimization

(1)

where Θ represents a set of 1-Lipschitz functions. p(xT ) and

p(xA) represent the generator distributions for the Teacher

and Assistant networks, GθT (z) and GθA(z), respectively,

while D(·) represents the discriminator network. We intro-

duce a gradient penalty term (momentum) [16], defined by λ,

in order to enforce the Lipschitz constraint, resulting in:

min
GθT

,GθA

max
D∈Θ

E
x
1∼p(x1)[D(x1)]− E

x
′

t
∼p(xT )[D(x′

t)]

+ λEx̃t∼Px̃T
[(‖∇x̃t

D(x̃t)‖2 − 1)2]

+ E
x
1∼p(x1)[D(x1)]− E

x
′

a
∼p(xA)D(x′

a)]

+ λEx̃a∼Px̃A
[(‖∇x̃a

D(x̃a)‖2 − 1)2].

(2)

Px̃T
and Px̃A

are defined by sampling uniformly along

straight lines between pairs of data from the given distribution

p(x1), and the distribution generated by the Teacher net, and

those sampled from p(x1) and the Assistant’s distribution.

Traditional knowledge distribution approaches normally

train a classifier on the predictions made by another classi-

fier [17]. Some recent studies have proposed to learn a single

model from an ensemble of networks in order to achieve a

higher performance while requiring a lighter computational

cost. These approaches, however, would require real data

samples as well as supervision signals drawn from a single

domain for knowledge distillation, which is a serious chal-

lenge for lifelong learning. In this paper, we propose the Life-

long Adversarial Knowledge Distillation (LAKD) for train-

ing LT-GANs. The main idea of LAKD is to encourage one

of the generators to be a Teacher and to transfer its knowl-

edge to another generator, which is the Assistant, during the

lifelong learning. Let us assume that the Teacher and Assis-

tant have been trained on the first task. When learning the

second task, the Teacher has its parameters fixed and is seen

as the knowledgeable source, while the Assistant learns data

samples drawn from the Teacher’s distribution as well as the

given real data. During the third task learning, the Teacher

and Assistant exchange their roles and the Assistant becomes

now the Teacher and has its weights fixed, while transferring

knowledge to the former Teacher which becomes now the As-

sistant. The LAKD loss is defined as:

min
G

max
D∈Θ

E
x∼p(xk)p(xk−1

T
)[D(x)]−

E
x
′∼p(xk

A
)[D(x′)] + λEx̃∼Px̃A

[(‖∇x̃D(x̃)‖2 − 1)2]
(3)

where x are uniformly sampled from p(xk) and p(xk−1
T ),

where p(xk−1
T ) denotes the distribution G

θ
k−1

T

(z), generated

by the Teacher, which had been trained on the (k−1)-th task.

The fake data sample x
′ is drawn from p(xk

A) which repre-

sents the distribution Gθk

A

(z) generated by the Assistant fol-

lowing its training on the k-th task. Training LT-GANs using



the proposed LAKD has many advantages when compared to

other lifelong learning approaches [5, 9]. Firstly, LAKD does

not require to load previously learnt data samples [7] while

its memory size does not change as the number of tasks in-

creases. Secondly, it does not require to preserve the model’s

parameters or even a snapshot of these after each task switch,

as we have in other generative replay methods [12].

4. THE LIFELONG TEACHER-STUDENT

We consider a Teacher-Student architecture, where the Teacher

is represented by the LT-GANs, while the Student is imple-

mented by a latent variable generative model p(x, z) =
p(x|z)p(z). The marginal likelihood of p(x, z) is intractable

given that it requires integration over the entire latent variable

space p(x) =
∫
p(x|z)p(z)dz. Instead, we maximize the

evidence lower bound (ELBO) on the sample log-likelihood,

as in the Variational Autoencoder (VAE) inference, [10] :

log p(x) ≥ E
z∼qε(z|x)[log pω(x|z)]−DKL[qε(z|x)||p(z)]

= LVAE(ω, ε)
(4)

where pω(x|z) is the probability implemented by the decoder

and qε(z|x) is that of the inference model, implemented by a

neural network which has Gaussian-specific prior parameters

{µ, σ} for its last layer’s outputs, while DKL is the Kullback-

Leibler (KL) divergence. The latent vector z is sampled using

the reparametrisation trick z = µ+ γ⊗σ, where γ is random

noise drawn from N (0, I).
For learning cross-domain representations under the life-

long learning, we consider transferring the knowledge from

the most knowledgeable generator to the Student network:

log[p(xk)p(xk−1
Q )] ≥

E
z∼qε(z|xk)[log pω(x|z)]−DKL[qε(z|x

k)||p(z)]
︸ ︷︷ ︸

Loss on data from k-th task

+

E
z∼qε(z|x′)[log pω(x|z)]−DKL[qε(z|x

′)||p(z)]
︸ ︷︷ ︸

Knowledge distillation loss

= Lstu(ω, ε)

(5)

where p(xk−1
Q ) can be either p(xk−1

A ) or p(xk−1
T ), depending

on which network is more knowledgeable when learning the

k-th task. x′ is sampled from p(xk−1
Q ). The Student network

training is synchronised with that of LT-GANs.

We enable the Student for learning dissentangled repre-

sentations [18, 19] by penalizing the Kullback-Leibler diver-

gence between the posterior and prior distributions, [20] :

log[p(xk)p(xk−1
Q )] ≥ E

z∼qε(z|xk)[log pω(x|z)]

− βDKL[qε(z|x
k)||p(z)]

+ E
z∼qε(z|x′)[log pω(x|z)]

− βDKL[qε(z|x
′)||p(z)] = LDis(ω, ε)

(6)

where β = 1 corresponds to (5). A large β encourages the

independence between latent variables but sacrifices the re-

construction quality. During the experiments we set β = 4.

5. EXPERIMENTS

We train the proposed lifelong Teacher-Student model, us-

ing the ELBO criterion, (5). The results generated after

the lifelong learning one database under the CelebA [21]

to CACD [22], and CelebA to 3D-Chair database lifelong

learning, shown in Fig. 2A and 2B, respectively. Then we

interpolate between two latent vectors encoding two differ-

ent images, from the same database and also from different

databases, with the results shown in Fig. 2C and 2D, for the

same databases as above. We can observe that an image can

be smoothly transformed into another, even when the two im-

ages come from two different domains, as when interpolating

between a 3D chair and a face image, as shown in the second

example from Fig. 2D. These results indicate that the Student

module can capture shared and domain-specific generative

factors over time.

Dataset LT-GANs CURL [5] LGM [23]

MNIST 878.92 887.40 900.18

SVHN 219.15 261.08 262.20

Fashion 365.62 639.19 642.20

Omniglot 514.87 695.68 700.84

Average 494.64 620.83 626.35

Table 1. The negative log-likelihood estimation for the life-

long learning of MNIST, SVHN, Fashion and Omniglot.

Tasks LT-GANs CURL [5]

First task 62.85 155.59

Second task 59.27 166.47

Third task 60.35 169.28

Table 2. FID score after the lifelong learning of CIFAR10,

CIFAR100, Sub1- and Sub2-ImageNet databases.

We evaluate the performance of various lifelong learning

models when training LT-GANs using MNIST, SVHN, Fash-

ion and Omniglot databases (MSFO sequence). The negative

log-likelihood (NLOG) results, estimated as the reconstruc-

tion error plus the KL term, are provided in Table 1. LT-GANs

performs better in all tasks, while VAE based lifelong meth-

ods, such as CURL [5] and LGM [23] tend to forget previ-

ously learnt tasks. We train various models under the lifelong

learning of CIFAR10 and other two distinct datasets, called

Sub1 and Sub2, which are subsets of the ImageNet database

[24]. In Table 2 we evaluate the quality of the generated im-

ages by calculating the Fréchet Inception Distance (FID) [25],

after each task switch during the lifelong learning.

We also train the proposed Teacher-Student framework

under the CelebA to 3D-Chairs by using the loss defined by

(6). We then manipulate the latent space by changing a single

latent variable while fixing the others. The generated image

results when using the LT-GANs model are shown in Figs. 3-

a and 3-b, when changing the facial expression of a woman,

and the shape of a chair from CelebA and 3D chair databases.
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Fig. 3. Disentangled representation results after the lifelong

learning of CelebA to 3D-Chairs databases.

(a) NLOG on various datasets. (b) NLOG and MSE on MNIST.

Fig. 4. Analysis results for LT-GANs.

In order to test the robustness of the lifelong generative

models we consider fuzzy task boundaries. In these experi-

ments we exchange certain images, from one of the classes,

between two databases and create new databases, MNIST-c,

SVHN-c and Fashion-c, while preserving the images for the

other nine classes. The NLOG results are provided in Table 3,

where the proposed Teacher-Student framework still achieves

the best results in terms of NLOG image reconstruction.

We also split the database into data sets containing images

of a certain class, corresponding to 10 tasks in total. We train

various models on one database with 10 tasks and evaluate

Dataset LT-GANs CURL [5] LGM [23]

MNIST-c 139.98 437.45 1365.41

SVHN-c 141.57 209.70 206.44

Fashion-c 51.68 54.72 145.78

Average 111.08 233.96 556.13

Table 3. NLOG for the lifelong learning with poorly defined

task boundaries on MNIST-c, SVHN-c and Fashion-c.

NLOG on all testing samples, and the results are provided in

Fig. 4-a. From this bar-plot it can be observed that the pro-

posed framework outperforms CURL [5]. We investigate the

effect of the proposed LAKD loss function by changing β in

(6) for the lifelong learning in terms of the log-likelihood and

reconstruction errors measured as the MSE error. LAKD loss

function plays an important role in overcoming forgetting, ac-

cording to Fig. 4-b, where the baseline is considered when the

Teacher and Assistant are trained jointly in each task.

6. CONCLUSION

We introduce a new lifelong learning LT-GANs model, made

up of a dual-generator network, which is trained in a memory-

efficient and end-to-end learning manner using the proposed

Lifelong Adversarial Knowledge Distillation (LAKD) loss

function. We further extend the LT-GANs model into a

Teacher-Student framework in order to capture data repre-

sentations, where the two generators teach alternatively one

another, as well as to a Student network. The proposed

framework is enabled with the ability to model disentan-

gled representations under the unsupervised lifelong learning

setting. It is also shown to generate smooth interpolations be-

tween images associated with different databases. The results

demonstrate that the proposed framework achieves the state

of the art in lifelong unsupervised representation learning.
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