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Abstract 30 

The oral microbiome is unique at inter and intra- individual levels at various sites due to physical and 31 

biological factors. This study aimed to compare the bacterial composition of supragingival biofilms 32 

collected from enamel sites with different caries activity, from active and inactive-caries subjects, 33 

and from caries-free subjects. Twenty-two individuals (aged between 13 and 76 years old; med=23.5 34 

years old) were allocated into three groups: caries-active (CA) (n=10); caries-inactive (CI) (n=6); and, 35 

caries-free (CF) (n=6). From the caries-active group, 3 sites were sampled: caries-active (ANCL), 36 

caries-inactive (INCL), and sound enamel surface (S). From the subjects of the caries-inactive group, 37 

biofilm from caries-inactive lesion was collected (INCL); while for the caries-free subjects (S), a pool 38 

of biofilm from sound enamel surfaces were sampled. The total RNA was extracted, cDNA libraries 39 

were prepared and paired-end sequenced (Illumina HiSeq 3000). The final dental biofilm samples 40 

analysed from CA was 16 (ANCL-CA=6, INCL-CA=4, S-CA=6); from CI, three (INCL-CI=3); and from CF, 41 

six (S-CF=6) (some samples were lost by insufficient genetic material). Read sequences were 42 

processed and analysed using MG-RAST (Metagenomics Analysis Server). High-quality sequences 43 

(3,542,190) were clustered into operational taxonomic units (OTUs) (97% identity; SILVA SSU), 44 

representing 915 genera belonging to 29 phyla (higher abundant: Actinobacteria, Firmicutes, 45 

Bacteroidetes, Fusobacteria). The presence of a core microbiome was observed (123 shared genus). 46 

The alpha diversity analysis showed less bacterial diversity in disease (S-CA) compared to health (S-47 

CF). The dominant genera included Actinomyces, Corynebacterium, Capnocytophaga, Leptotrichia, 48 

Veillonella, Prevotella, Streptococcus, Eubacterium, and Neisseria. Veillonella and Leptotrichia were 49 

related with disease, and Prevotella with health. Corynebacterium, Capnocytophaga, and 50 

Actinomyces clustered together presenting high abundance in health and disease. The Metric 51 

Multidimensional Scaling Ordination analysis shows that sites from active subjects (ANCL-CA, INCL-CA 52 

and S-CA) are closer to each other than either INCL-CI subjects or S-CF subjects. In conclusion, 53 

supragingival bacterial communities presented intra-individual similarities, but inter-individual 54 

diversity and difference in bacterial composition reveal that the subject’s caries activity status 55 

matters more than sites. 56 
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Introduction 57 

The oral cavity harbours diverse niches for microbial colonization, supporting distinct site-specific 58 

microbial consortia combination, which responds and reflects to ecological determinants at each site, 59 

[Marsh, 1994; 2018; Aas et al., 2005]. Investigating the total microbial population, which is 60 

metabolically active in dental health and disease sites is necessary to understand mechanisms leading 61 

to dysbiosis [Benítez-Páez et al., 2014; Henne et al., 2016; Nascimento et al., 2017]. Although the 62 

microbial composition of these biofilms remains stable over time, an increase in dietary fermentable 63 

carbohydrate induces a shift in the microbial ecosystem leading to low pH in the biofilm environment, 64 

and resulting in dental demineralization [Loesche, 1986; Marsh, 1994; Paes Lemes et al., 2006, Bjørndal 65 

et al., 2019]. Microbial homeostasis can be restored if changes occur in the dental plaque ecosystem, 66 

for instance by increasing pH to neutral conditions which could result in dental remineralization 67 

[Marsh, 1994; Paes Lemes et al., 2006]. Both active and inactive conditions, as well as non-affected 68 

sites, can be found in the same subject [Marsh, 1994; 2018; Aas et al., 2005; Filoche et al., 2010; Simón-69 

Soro et al., 2014; Arweiler and Netuschil, 2016].  70 

Culture-based studies of dental caries [Orland et al., 1954; Fitzgerald and Keyes, 1960; Gibbons et al., 71 

1964; Krasse, 1966; Krasse et al., 1967; Loesche et al., 1975; Loesche, 1986] have failed to explain the 72 

aetiology of the disease. Organism interactions are essential to understand ecosystem dynamics of 73 

oral microbial communities are more than the sum of the individual species [Mark Welch et al., 2016; 74 

Marsh, 2018] justifying biofilms communities’ studies.  Currently, culture independent molecular 75 

biology methods, and recently, next-generation sequencing technologies (NGS) are improving 76 

knowledge about diversity, composition and functional aspects of the dental biofilms microbial 77 

communities in its natural habitats [Simón-Soro et al., 2013; 2014; Benitez-Páez et al., 2014; Johansson 78 

et al., 2016; Xiao et al., 2016; Eriksson et al., 2017; Espinoza et al., 2018; Richards et al., 2017; He et 79 

al., 2018; Jiang et al., 2019; Schoilew et al., 2019]. Moreover, the RNA sequencing (RNA-Seq) approach 80 

allows the functional characterization of a complex microbial community (microbiome) under a 81 

specific condition, revealing both the composition of the metabolically active microbiota and the gene 82 

expression levels which provide an insight into the ongoing metabolic pathways within the microbial 83 

community [Jiang et al., 2016; Hrdlickova et al., 2017].  84 

Studies have demonstrated substantial differences in biofilm microbiota composition in caries lesions, 85 

showing a community stability disruption, with acidogenic and acid-tolerant species enrichment [Aas 86 

et al., 2008; Gross et al., 2010; Benitez-Páez et al., 2014; Simón-Soro et al., 2014; Johansson et al., 87 

2016; Xiao et al., 2016; Eriksson et al., 2017; Espinoza et al., 2018; Richards et al., 2017; Jiang et al., 88 

2019; Schoilew et al., 2019]. According to Marsh [2018] there is specificity in terms of caries aetiology 89 

biochemical function, despite the lack of bacterial name specificity; but organisms are highly relevant 90 

to understand the structure, function, and dynamics of the members in a microbial consortium [Mark 91 

Welch, 2016]. Considering the dental caries polymicrobial aetiology and complex dental biofilm 92 

ecosystem [Simón-Soro et al., 2014; Mark Welch, 2016; Xiao et al., 2016; He et al., 2017], and that 93 

microbiota composition is not the same on different surfaces [Aas et al., 2008; Simón-Soro et al., 2014; 94 

Richards et al., 2017; Espinoza et al., 2018; Schoilew et al., 2019], we proposed to characterize the 95 

functional active microbiome composition and diversity of supragingival biofilms in caries-free, caries-96 

inactive, and in three different dental conditions from caries-active subjects. 97 
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Subjects, Materials and Methods 98 

Study Population and subjects 99 

Subjects (19.3±29.6 years old) were selected at the Federal University of Rio Grande do Sul (UFRGS, 100 

Porto Alegre, Brazil). This research is a collaboration between the Biochemistry and Microbiology Oral 101 

Laboratories (LABIM/UFRGS) and the Division of Oral Biology, at the University of Leeds, United 102 

Kingdom. The inclusion criteria were the absence of using antimicrobial agents for at least two months 103 

before sample collections, and complete permanent dentition (age12). In the first appointment, 104 

caries diagnostic was performed by visual-tactile method (Nyvad criteria), after dental prophylaxis, 105 

isolation (cotton rolls) and teeth air-drying, by two calibrated examiners (LDE and NDT). The lesion was 106 

diagnosed as follow: Active non-cavitated lesion (ANCL): whitish/yellowish opaque surface, exhibiting 107 

a chalky or white appearance; the surface felt rough by probing; Inactive non-cavitated lesion (INCL): 108 

shiny and felt smooth surface on gentle probing, and colour varying from whitish to brownish or black 109 

[Kidd and Fejerskov, 2004].  After caries diagnosis, subjects were allocated in the following groups, 110 

according to their caries activity (Figure 1): CA (caries-active subjects) (n=10): DMF-T/S  1, presenting 111 

at least one active non-cavitated caries lesions; CI (caries-inactive subjects) (n=6): DMF-T/S  1, but 112 

presenting only inactive non-cavitated caries lesions and any active caries lesion; CF (caries-free 113 

subjects) (n=6): DMF-T/DMF-S=0.  114 

Sample collection and storage 115 

The subjects were not treated with topical antimicrobial agents, and any recommendation to change 116 

diet or dental hygiene method was done at the first appointment. After one week, subjects returned 117 

to collect dental biofilm. They refrained from teeth brushing for 12 hours, and from eating and drinking 118 

for at least one-hour prior sample collection. Samples of supragingival biofilm (SB) were collected with 119 

sterilized Gracey curette. From CA, 3 conditions were sampled: sites presenting ANCL; sites presenting 120 

INCL; and sound enamel surfaces (S) (samples were pooled from enamel surfaces/lesions with the 121 

same characteristics from the same subject); from CI, only INCL were collected; and from CF, a pool of 122 

biofilm from S were sampled. The samples were immediately treated into 1 mL RNA stabilization 123 

solution (RNAlater, Ambion Inc., Cambridgeshire, UK) at room temperature (until 24 hours); 124 

centrifuged (5 minutes; 10.000 rpm); pelleted, and frozen at -80oC until further processing. 125 

RNA Extraction and Quantification  126 

UltraClean® Microbial RNA Isolation kit (Mo-bio, San Diego, USA; DNase digestion Qiagen, Inc) as 127 

described elsewhere [Damé-Teixeira et al., 2019], with a previous treatment with Lysozyme (10 128 

minutes; 370C). RNA measurement was performed (Quant-iTTM RiboGreen® RNA Reagent and Kit; 129 

Invitrogen, Ltd.; spectrofluorometer with excitation ~480 nm, and emission ~520 nm). Samples with 130 

total RNA concentration less than 30 ng/uL were excluded from analysis. 131 

Library preparation and RNA-sequencing 132 

The True Seq® Sample Preparation Guide, Low Sample (LS) Protocol Illumina (Illumina, Inc., San Diego, 133 

CA) was used for genomic library preparations and Agilent Technologies 2200 TapeStation was used 134 

for genomic library quality validation. The double strand DNA was quantified with Quant-iTTM 135 
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PicoGreen® dsDNA Kit (Turner BioSystems, Inc., CA) before sequencing at the Illumina HiSeq3000 136 

(Illumina Inc.) (2x150bp).  137 

Bioinformatic analysis 138 

The sequences were filtered, excluding the ones <150 bp and an expected error >0.5. The resulting 139 

FASTA files were submitted to Metagenomics RAST Server (MG-RAST) [Meyer et al., 2008], that 140 

generates taxonomic and functional categories graphs. The MG-RAST pipeline options included a 141 

sequence data trimming to remove low quality reads (phred score=15) [Cox et al., 2011]. Artificial 142 

replicate sequences produced by sequencing artifacts were removed (dereplication) [Gomez-Alvarez 143 

et al., 2009]. A screening to remove human host sequences using DNA level matching with bowtie was 144 

selected to H. sapiens, NCBI v36 [Langmead et al., 2009]. A phylogenetic reconstruction was computed 145 

from a set of hits against SILVA SSU database, considering 97% of similarity to genus taxonomic level.  146 

Statistical analysis 147 

Kruskall-Wallis test, post-hoc Bonferroni and Nemenyi, compared the average number of reads for all 148 

groups. Friedman test, post-hoc Nemenyi, compared the composition profile and bacterial diversity 149 

among CA sites (paired analysis). Mann-Whitney U test with a Benjamini-Hockenberg correction for 150 

multiple comparisons compared INCL-CA versus INCL-CI; S-CA versus S-CF; and CA versus CF subjects. 151 

The significance level was 95%. Richness estimators (Chao-1; ACE: Abundance-based Coverage 152 

Estimator), and indexes (Shannon-Wiener; Simpson; Pielou-Shannon) were used for alpha diversity 153 

analysis. The K-means clustering beta-diversity analysis compared healthy and diseased conditions, 154 

and metric Multidimensional Distance Scaling (mMDS/PCoA: Principal components analysis) using 155 

average of log2 fold change (avg(logFC)) compared all groups. A Venn diagram was generated using 156 

the gplots package (RStudio). Shared genera present in all subjects (100% core threshold) were defined 157 

as the core microbiome (Xiao et al., 2016). All analyses were conducted in RStudio (version 3.5.0) using 158 

packages for ecological data analysis (Vegan, BiodiversityR, Phyloseq). 159 

Results 160 

The characteristics of the included subjects are shown in Table 1. From 22 subjects, a total of 42 SB 161 

samples were collected to analysis. However, lost of samples occured due to insufficient total RNA 162 

recovered, low quality of the library prep or insufficient reads recovered (Figure 1). 163 

A good coverage >97% was obtained in the sequencing. The rarefaction curve considering the average 164 

of sequences count can be observed is shown in the supplementary Figure 1. After data trimming and 165 

quality filtering of reads by removing artifacts an average of 3,542,190 high-quality sequences with 166 

147.7±3.7 base pairs (bp) were recovered, corresponding to 16.48% of sequences generated. 167 

There were recovered reads from domain Archaea (mean= 2.76 reads), Bacteria (mean= 8602231.96 168 

reads), Eukaryota (mean= 72118.12 reads), Viruses (mean= 758.28 reads) and unclassified sequences 169 

(mean= 65841.56 reads) (supplementary Figure 2). Bacteria were the most abundant domain. 170 

The  1% relative abundance of OTUs to phylum are detailed in Table 2. Of 29 phyla recovered 171 

(supplementary Figure 3 and supplementary Table 1), Bacteroidetes was less abundant in INCL-CI 172 

compared to INCL-CA (p<0.05) (Table 2; supplementary Table 1).  We recovered 915 genera, 18 173 
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representing >1% relative abundance (Table 3); Capnocytophaga was less abundant in INCL-CI 174 

compared to INCL-CA (p<0.05) (Table 3). Also, 123 genera were shared in all sites and subjects, 175 

revealing a common core microbiome (Figure 2; supplementary Table 2). The low abundant 176 

microbiome (0.1% and <1%) corresponded to 74 genera (8.09%).  177 

Paired analysis from sites of the CA (ANCL, INCL and S) revealed Actinomyces genera higher abundant 178 

in CA-ANCL (relative abundance = 20.83%) compared to CA-S (relative abundance = 9.63%) (Friedman 179 

test; Nemenyi post-hoc; p<0.05). Capnocytophaga showed significative higher abundance in CA-INCL 180 

(relative abundance = 14.88%) compared to CA-ANCL (relative abundance = 4.82%) (Friedman test; 181 

Nemenyi post-hoc; p<0.05). No statistical difference was observed for other genera in these group 182 

(CA), considering relative abundance cutoff point of 0.1% (data not showed). 183 

The Chao1, ACE (Abundance-based Coverage Estimator) did not reveal difference in OTU’s richness 184 

between the sample groups (Figure 3). Shannon-Wiener, Simpson, and Pielou-Shannon alpha diversity 185 

indices revealed similar intrapersonal bacteriome among ANCL, INCL and S sites from CA subjects; and, 186 

between INCL-CA and INCL-CI groups (Figure 4). The bacteriome between sound sites from CA (S-CA) 187 

and CF (S-CF) subjects, and CA and CF groups was less diverse in diseased condition and showed less 188 

evenness compared to the healthy ones (Figure 5). 189 

Sites from CA were closer each other compared to CI and CF (Figure 6). The MDS1 explain 37.4% of the 190 

variation observed, and MDS2 explain 28% of the variation. However, the samples did not form well-191 

separated clusters corresponding to the five groups, suggesting that the bacterial structures in healthy 192 

and caries groups were similar. Corynebacterium, Capnocytophaga, and Actinomyces clustered 193 

together presenting high abundance in health and disease conditions; Veillonella was associated with 194 

disease, and Prevotella to health (supplementary Figure 4). 195 

Functional analysis revealed 2,467 unique KO numbers found for all the genes. In the CA, 2,364 unique 196 

KO numbers were expressed (ANCL-CA=1,877; INCL-CA=1,464; S-CA=2,100); in the CI, 1,325 from INCL; 197 

and, in the CF, 1,662 (supplementary Tables 3 and 4). Essential components of the glycolytic pathway, 198 

as glyceraldehyde 3-phosphate dehydrogenase, enolase, formate C-acetyltransferase, fructose-199 

bisphosphate aldolase and phosphoglycerate kinase, were among highly expressed genes in dental 200 

biofilm microbiome from active group (supplementary Table 4). 201 

Discussion/Conclusion 202 

This study revealed, for the first time, the metabolically active bacteriome from whole SB in dental 203 

health and enamel caries. We demonstrate the bacteriome composition and diversity from caries-204 

active, caries-inactive, and caries-free subjects. Our study confirms that high bacterial diversity in the 205 

biofilm samples, identified from RNA-seq analysis (RNA-based) is related to live organisms in SB and 206 

not due to dead/inactive species, highlighting polymicrobial dental caries aetiology, where 207 

multispecies microbial consortia are metabolically active in lesions [Simón-Soro et al.; 2014]. The 208 

functional analysis of unique KO numbers confirms a functionally active state of the microbiome in the 209 

dental biofilms (supplementary data). 210 

An average of 21,855,554 high-quality sequences were obtained from all groups, which was higher 211 

than previously reported [Benitéz-Páez et al., 2014; Simon-Soro et al., 2014]. The good coverage of 212 
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>97% suggested that sequencing depth was sufficient to full SB diversity estimation, indicating that 213 

extremely low rare genera abundance could be detected. We observed few >1% relative abundance 214 

genera in all groups, and a great portion of very low abundant genera. The functional redundancy 215 

feature of microbiota, inherent to related species, may explain the human microbiome inter-individual 216 

variability. The interpersonal microbial composition variability extension, within and across varied 217 

dental plaque niches, is largely uncharacterized, but these factors are likely to directly contribute to 218 

the disparate results obtained from various studies examining dental caries [Benitéz-Páez et al., 2014; 219 

Simon-Soro et al., 2014; Mark Welch et al., 2016, Xiao et al., 2016; Espinoza et al., 2018; Wolff et al., 220 

2019].  221 

The abundance differences observed in microbial communities may result from real differences among 222 

individuals, fluctuations within a single individual over time, or a combination of the two [Mark Welch 223 

et al., 2016]. The dental plaque “hedgehog” structured consortia described by Mark Welch et al. 224 

[2016], indicate that, its structure composition and organisms across many individuals are highly 225 

relevant to understand organization, function, and dynamics of consortium members. In our research, 226 

123 genera formed a “core microbiome”. Its existence was first proposed by Turnbaugh et al. [2007] 227 

and referred to organisms, genes, or functions shared by all or most individuals in a given human 228 

habitat, such as the oral cavity. Considering the polymicrobial aspect of caries we can suggest that a 229 

shared community should be modulated during metabolic alterations in host and in local niche driving 230 

to healthy or diseased conditions, corroborating with the ecological plaque hypothesis proposed by 231 

Marsh [1991] and the extended concept proposed by Takahashi and Nyvad [2011]. 232 

Our study supports that supragingival ecological niche is a highly selective environment once we 233 

observed four phyla higher than 10% abundance, among 29 phyla in these bacteriomes [Keijser et al., 234 

2008; Benitéz-Páez et al., 2014; Xiao et al., 2016; Eriksson et al., 2017; Jiang et al., 2019]. The dominant 235 

phyla were Actinobacteria, Firmicutes, Bacteroidetes and Fusobacteria. Bacteroidetes was higher 236 

abundant in INCL from CA than CI subjects. Bacteroidetes had been retrieved among abundant phyla 237 

from dental plaque microbiome, but show a variable abundance, sometimes first or second most 238 

abundant [Johansson et al., 2015; Xiao et al., 2016; Eriksson et al., 2017; Jiang et al., 2019], sometimes 239 

moderate or low abundant [Gross et al., 2010; He et al, 2017], suggesting a high genera and species 240 

adaptability that make up this phylum. 241 

Actinomyces, Corynebacterium, and Capnocytophaga presented >10% relative abundance from all 915 242 

recovered genera. Capnocytophaga was more abundant in INCL from CA than CI subjects, indicating 243 

that this genus was the most abundant of Bacteroidetes phyla. In DNA-based approaches it has been 244 

highly retrieved from health conditions [Aas et al., 2008; He et al., 2017; Jiang et al., 2019]. Eriksson et 245 

al. [2018] demonstrated that dental plaque members, including Capnocytophaga, can be disease-246 

related in microbiomes with extreme low or no detectable Streptococcus mutans, suggesting microbial 247 

community mutualistic relationship. When a metabolite is used by different microorganisms, a 248 

metabolic communication that drives a positive or negative regulatory effect into the microbiome is 249 

generated [Hojo et al., 2009]. The fact that biofilms are found in healthy and diseased subjects, the 250 

presence of commensal bacteria, playing important role for the microbiome equilibrium, is suggested. 251 

This fact can be an important explanation for high abundance of Capnocytophaga in both diseased and 252 

healthy oral conditions. In the RNA-based study from Benitéz-Páez et al. [2014], Corynebacterium, 253 

Actinomyces and Neisseria were the most abundant genera in a community from a 24-hour dental 254 
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plaque in one dental healthy subject. Our RNA-based study also recovered Corynebacterium with high 255 

abundance in health subjects. March Welch et al. [2016] suggest that Corynebacterium is the 256 

foundation taxon of dental plaque bacterial consortium, structuring the environment, creating habitat 257 

for other organisms and nucleating a plaque-characteristic consortium. Nyvad and Fejerskov [1987] 258 

observed scattered filamentous cells oriented perpendicularly to the primarily coccus-covered surface 259 

at 24-hour biofilm and a mixed community of abundant filamentous organisms by 48 hours, suggesting 260 

that colonization with Corynebacterium may take place around the 24-hour stage in plaque 261 

development. Our samples recovered high abundance of Corynebacterium from all sites, and can 262 

represent a well-established microbial community, once the subjects were oriented to remain, at least, 263 

12 hours without dental hygiene. Actinomyces was highly represented in ANCL than INCL in CA 264 

subjects. Benitéz-Páez et al. [2014] found Actinomyces overrepresented in healthy conditions from 265 

RNA-based community. Eriksson et al. [2018] found Actinomyces related with disease in microbiome 266 

with extreme low or no detectable S. mutans. These results can indicate that these genera have an 267 

important capability for metabolic modulation, adapting itself in different host conditions. 268 

Streptococcus and Actinomyces are among the early colonizers in dental biofilm formation [Keijser et 269 

al., 2008; Dige et al., 2009; Marsh and Zaura, 2017]. Mark Welch et al. [2016] demonstrated that 270 

Actinomyces can be found near the “hedgehog” structure base, and that Corynebacterium attaches in 271 

sites with pre-existent biofilm consisting of Streptococcus and Actinomyces, and not directly on the 272 

tooth surfaces. This observation can explain the Actinomyces high abundance in both, diseased and 273 

healthy conditions.  274 

The richness estimators Chao1 and ACE did not differ among all sites and subjects, suggesting a similar 275 

number of genera recovered from all sites. The richness indexes, Shannon-Wiener, Simpson and 276 

Pielou-Shannon revealed similar alpha diversity among sites from CA subjects, and from INCL from CA 277 

and CI subjects. However, sound sites from CA subjects were less diverse and presented less evenness 278 

than CF-S. Higher diversity has been described in healthy sites by several ecologic studies [Gross et al., 279 

2010; Benitez-Paez et al., 2014; Simón-Soro et al., 2014; Xiao et al., 2016; Schoilew et al., 2019; Wolff 280 

et al., 2019]. The lowering of the pH, from lactate produced by acid-producing species, could lead to 281 

suppression of acid-sensitive species and overgrowth of acid-tolerant species, resulting in decreased 282 

bacterial diversity in supragingival plaques as caries progresses, as well as a decreasing number of 283 

species capable of surviving harsh conditions [Gross et al., 2010]. Bacteriome in diseased condition 284 

presented significantly less diversity, higher dominance of rare genera, and showed less evenness than 285 

healthy ones, suggesting interpersonal variability.  286 

In our study, Veillonella was associated with disease, and Prevotella to health conditions. Prevotella 287 

and Veillonella species could be recovered from both healthy and diseased conditions [Gross et al., 288 

2012; Richards et al., 2017; Wolff et al., 2019]. These findings support that the degree of dominance 289 

of pathogens depends on environmental factors during progression of the disease and not only of the 290 

disease status [Wolff et al., 2019]. Corynebacterium, Capnocytophaga, and Actinomyces clustered 291 

together presenting high abundance in both conditions. Utter et al. [2016] described plaque 292 

microbiome characterized by a community stability showing variability in the relative abundance of 293 

members of the community and between individuals and over time. They found Corynebacterium, 294 

Capnocytophaga, Fusobacterium, Actinomyces and Streptococcus relatively abundant and constant 295 

among individuals. In the “hedgehog” structure, Mark Welch et al. [2016] observed nine taxa as regular 296 

participants, including these above mentioned. The same nine genera presented higher abundance in 297 
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our supragingival microbiome analysis, proving that our analysis obtained a good picture of 298 

supragingival active microbiome. 299 

We observed a tendency for CA sites cluster together and distant from CI and CF subjects. The mMDS 300 

(betadiversity analysis) could explain 37.4% of distance among groups, by the x-axis, and 28% by the 301 

y-axis, exhibiting very similar communities’ structures. However, it is important to analyse the 302 

composition of genera into different microbiomes. Jiang et al. [2019] found a difference in niches but 303 

did not observe clear differences among dental microbiome from active and caries free subjects. 304 

Richards et al. [2017] observed more similar CA communities in different site-specific conditions than 305 

communities from CF subjects. The authors highlight the concept of plaque communities as a part of 306 

a larger ecosystem and that the changes in the structure of one community may eventually affect 307 

another, reinforcing the importance of site-specific studies. 308 

Conclusion 309 

We concluded that the functional active microbiome in supragingival bacterial community profiles 310 

show intra-individual similarities but were more diverse at inter-individual levels. The differences in 311 

bacterial composition may indicate that the individual’s healthy/diseased status matters more than 312 

sites. We suggest that alterations from supragingival microbial communities should be analysed, from 313 

a longitudinal way, in caries diseased subjects for a better comprehensive understanding of this 314 

ecological process.  315 
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Figure Legends 

Fig. 1. Flow chart showing the number of subjects enrolled and allocated to groups. 

Fig. 2. Venn diagram showing shared and unique OTU abundances at 97% identity, for genus 

taxonomic level, among supragingival biofilm from caries active subjects (ANCL-CA: active non-

cavitated lesion; INCL-CA: inactive non-cavitated lesion; S-CA: sound); caries inactive subjects (INCL-

CI: inactive non-cavitated lesion); and caries-free subjects (S-CF: sound). 

Fig. 3. Richness estimators Chao 1 and ACE (Abundance-based Coverage Estimator) among 

different dental surfaces from caries-active (CA) subjects (ANCL: active non-cavitated lesions; INCL: 

inactive non-cavitated lesions; S: sound surfaces) (A); between inactive sites (INCL) from CA and 

caries-inactive (CI) subjects (B); and between CA and caries-free (CF) subjects (C). Mann-Whitney U 

test, 95% confidence level. 

Fig. 4. Alpha diversity indexes Shannon-Wiener, Simpson, and Pielou-Shannon among different 

dental surfaces from caries-active (CA) subjects (ANCL: active non-cavitated lesions; INCL: inactive 

non-cavitated lesions; S: sound surfaces) (A); and, between inactive sites (INCL) from CA and caries-

inactive (CI) subjects (B). Mann-Whitney U test, 95% confidence level. 

Fig. 5. Alpha diversity indexes Shannon-Wiener, Simpson, and Pielou-Shannon between sound sites 

from caries-active (S-CA) and caries-free (S-CF) subjects (A); and, from caries-active (CA) and caries-

free (CF) groups (B). Mann-Whitney U test, 95% confidence level. 

Fig. 6. Metric Multidimensional Scaling Ordination (mMDS/PCoA) among supragingival biofilms 

communities from all groups. Each sample is represented by a diamond. Black square represents the 

active non-cavitated lesions from caries active subjects (ANCL-CA). Horizontal black lines diamond 

represents the inactive non-cavitated lesions from caries active subjects (INCL-CA). Chess circle 

represents the sound surfaces from caries active subjects (S-CA). Black diamond represents the 

inactive non-cavitated lesions from caries inactive subjects (INCL-CI). Gray circle represents the 

sound surfaces from caries-free subjects (S-CF). mMDS using average of log2 fold change (avg(logFC). 


