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Abstract: The Hedgehog (Hh) receptor PTCH1 and the integral membrane protein 2A (ITM2A) inhibit
autophagy by reducing autolysosome formation. In this study, we demonstrate that ITM2A physically
interacts with PTCH1; however, the two proteins inhibit autophagic flux independently, since
silencing of ITM2A did not prevent the accumulation of LC3BII and p62 in PTCH1-overexpressing
cells, suggesting that they provide alternative modes to limit autophagy. Knockdown of ITM2A
potentiated PTCH1-induced autophagic flux blockade and increased PTCH1 expression, while
ITM2A overexpression reduced PTCH1 protein levels, indicating that it is a negative regulator of
PTCH1 non-canonical signalling. Our study also revealed that endogenous ITM2A is necessary for
timely induction of myogenic differentiation markers in C2C12 cells since partial knockdown delays
the timing of differentiation. We also found that basal autophagic flux decreases during myogenic
differentiation at the same time that ITM2A expression increases. Given that canonical Hh signalling
prevents myogenic differentiation, we investigated the effect of ITM2A on canonical Hh signalling
using GLI-luciferase assays. Our findings demonstrate that ITM2A is a strong negative regulator of
GLI transcriptional activity and of GLI1 stability. In summary, ITM2A negatively regulates canonical
and non-canonical Hh signalling.
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1. Introduction

The Hedgehog (Hh) signalling pathway has essential functions in embryonic develop-
ment, tissue homeostasis and cancer [1]. PTCH1 is the most important Hh receptor and
a well-established tumour suppressor [2]. The canonical signalling pathway is initiated
by binding of one of the Hh ligands (Shh, Ihh, or Dhh) to the 12-transmembrane receptor
Patched1 (PTCH1). In the absence of Hh ligands, PTCH1 represses the activation of the
G protein-coupled receptor Smoothened (SMO), resulting in processing of the GLI2 and
GLI3 transcription factors into repressors. Binding of a Hh protein to PTCH1 inhibits its
intrinsic activity, believed to be the transport of cholesterol across the plasma membrane
to generate a localized gradient, leading to derepression of SMO and its accumulation at
the primary cilium. Ciliary SMO induces activation of GLI2 and GLI3 and prevents their
processing, initiating a GLI-dependent transcriptional response that results in upregulation
of the short-lived strong activator GLI1 and of the Hh protein-sequestering membrane
proteins PTCH1, PTCH2 and HHIP, among other cell type-specific targets.

More recent studies have revealed that PTCH1 has additional functions independently
of SMO/GLI, known as “Type I non-canonical Hh signalling” to differentiate it from
SMO-dependent, GLI-independent processes [2,3]. The C-terminal domain (CTD) of
PTCH1 is dispensable for canonical Hh signalling [4,5], although one study suggests
that the CTD is necessary for PTCH1 localization to the primary cilium [6]. The first
identified role of the CTD was a pro-apoptotic function, mediated by interaction with
the DRAL/TUCAN/Caspase9 complex and independent of SMO [7–10]. With the goal
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of identifying additional proteins that interact with the CTD of PTCH1, we previously
performed a yeast-2-hybrid study, in which we identified the autophagy-related protein
ATG101, a subunit of the ULK complex that mediates initiation of autophagy [11]. Our
study established that the cytosolic CTD of PTCH1 inhibits autophagic flux by impairment
of autophagosome-lysosome fusion or acidification and that its interaction with ATG101
was important for that function. Paradoxically, ATG101 regulates autophagy initiation
and expansion of phagophore membranes to form the autophagosome and no role in the
terminal step of autophagy has been discovered. This led us to hypothesize that PTCH1
might block autophagy completion with the aid of additional interacting proteins. In
this study, we focus on the potential regulatory role of integral membrane protein 2A
(ITM2A), which was identified in a large proportion of our positive clones in the yeast-2-
hybrid screen. Remarkably, out of 63 sequenced and validated positive hits, ITM2A was
recovered in 21 of them (33%). A novel function of ITM2A in blocking autophagic flux by
an inhibitory interaction with v-ATPase was reported a few years ago [12], suggesting a
potential functional interaction with PTCH1. However, the role of ITM2A in autophagy
remains controversial since it was proposed to induce autophagy in breast cancer cells [13].

ITM2A is a type II single-pass membrane protein with intracellular N-terminal domain
and an extracellular BRICHOS domain [14]. Two alternatively spliced forms of ITM2A
were described: the long isoform of 263 aa (30 kDa) and a shorter isoform of 219 aa lacking
the transmembrane domain (25 kDa). Although the function of ITM2A is not completely
elucidated, it has been linked to differentiation of skeletal muscle, cartilage tissue and
T cell development [15,16]. Early reports indicate that ITM2A levels increase during
skeletal muscle differentiation and the formation of myotubes in vivo and in C2C12 cells, a
model of in vitro myogenesis [15,17,18]. Overexpression of ITM2A can accelerate myotube
formation; however, it is not essential for muscle development, as indicated by in vitro
knockdown studies and in conditional knockout mice [17,18]. Canonical Hh signalling
prevents myogenic differentiation by keeping C2C12 and primary satellite muscle cells
in the proliferative state [19]. In particular, Gli1 and Gli2 were shown to repress MyoD-
dependent transcription, preventing terminal myotube differentiation [20]. This suggests
that ITM2A function could be inversely correlated to canonical Hh signalling activity.

Given the involvement of ITM2A in biological processes that are regulated themselves
by different types of Hh signalling and the potential physical interaction with PTCH1, we
decided to investigate their crosstalk.

2. Materials and Methods
2.1. Reagents

The antibodies used in this study (name, catalog number, vendor and dilution used in
Western blotting) is described in Supplementary Table S1. Bafilomycin A1 was from Tocris
(cat. 1334). Acrylamide: bisacrylamide (19:1) solution (cat. 1610154) and TEMED (cat.
1610801) were from BioRad (Watford, UK). All other reagents were research grade and pur-
chased from Fisher Scientific (Loughborough, UK) or Merck Life Science (Gillingham, UK).

2.2. Cell Lines

HEK293 (cat. CRL-1573), HeLa cells (cat. CCL-2), and C2C12 cells (ATCC cat. CRL-
1772) were purchased from the American Type Culture Collection (Manassas, Virginia).
NIH3T3 cells (93061524) were obtained from the European Collection of Authenticated
Cell Cultures (Salisbury, UK). Ptch1−/− mouse embryonic fibroblasts were a gift from
Dr. Matthew Scott (Stanford University).

2.3. Cell Culture

HEK293 and HeLa cells were maintained in DMEM (Merck, cat. D6546) containing
10% fetal bovine serum (Gibco cat. 10270106) and penicillin/streptomycin in a humidified
5% CO2 incubator. In preparation for transfection, cells were seeded in antibiotic-free
media into culture dishes of different areas and transfected with Lipofectamine 2000 when
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they reached 80–90% confluency, following the manufacturer’s instructions. To generate
shRNA stable cells, cells were transduced with lentiviral particles, encoding scrambled or
ITM2A targeting shRNA sequences (Table 1), produced in HEK293T cells as previously
described [21].

Table 1. shRNA sequences used to silence ITM2A in human and mouse cell lines.

Name Sequence (5′–3′)

ITM2A-A (human) GATCCCTGCAGCAATTATTCATGATTCAAGGATCATGAATAATTGCTGCAGTTTTT

ITM2A-B (human) GATCCGGAAATTCGTGATGTTATTTCAAGGAACTAACATCACGAATTTCCTTTTT

ITM2A-C (human) GATCCCAAGATCTGTCAAGAGTAATTCAAGAGATTACTCTTGACAGATCTTGTTTTT

Itm2a-A (mouse) GATCCCTAGGCCTCTCATTCATCTTTCAAGAGAAGATGAATGAGAGGCCTAGTTTTT

Itm2a-B (mouse) GATCCGGATCCTGTCAATTCCATTTTCAAGAGAAATGGAATTGACAGGATCCTTTTT

Itm2a-C (mouse) GATCCCAAGCGTGCCATTGACAAATTCAAGAGATTTGTCAATGGCACGCTTGTTTTT

Scrambled Santa Cruz Biotechnology Scrambled shRNA (sc-108060)

NIH3T3 cells and Ptch1−/− MEFs were maintained in DMEM supplemented with 10% FBS, penicillin-streptomycin and split before they
reached 70% confluency.

C2C12 cells were cultured in DMEM containing 10% fetal bovine serum and peni-
cillin/streptomycin in a humidified 5% CO2 incubator. In order to keep the cells in the
undifferentiated state, they were split when reaching 70% confluency. Differentiation was
induced by changing the medium of 100% confluent cultures by DMEM containing 2%
horse serum (Sigma cat. H1270) and penicillin/streptomycin. The day the differentiation
medium was added was called day 0, and the cells were kept for 7 days with media refresh
every other day. The generation of stable shRNA ITM2A and control C2C12 cells was
performed by transduction of undifferentiated cells with lentiviruses encoding hairpin
RNAs (Table 1), followed by selection with puromycin.

2.4. Quantitative PCR

Total RNA was isolated from each of the three cell lines with RNeasy Mini Kit (QI-
AGEN, Manchester, UK; cat 74104) and quantified by A260nm/A280nm in a Nanodrop.
Synthesis of cDNA was performed using 1 µg RNA with iScript cDNA Synthesis Kit
(BioRad) using hexarandom primers following the manufacturer’s instructions. Real-
time quantitative PCR was performed using 1–5 µL of cDNA and target-specific primers
(Table 2) with the SsoFast EvaGreen Supermix (BioRad) with a CFX Connect Real-Time
PCR Detection System (BioRad) thermocycler. Amplification was quantified and expressed
as fold using the ∆∆Ct method.

Table 2. qPCR primer sequences.

Name Species Sequence (5′–3′)

ITM2A Human Forward: ACTGCTATCTGATGCCCCTCAAT
Reverse: GGTCTTCTCGAACCACATAAGTTTG

Itm2a Mouse Forward: CGCACTGTCCGAGCTCAAAT
Reverse: CATCTCCCAGATGAGCCATC

Ptc1 Mouse Forward: ATGGTCCTGGCTCTGATGAC
Reverse: TAGCCCTGTGGTTCTTGTCC

GADPH Human Forward: TCCCATCACCATCTTCCA
Reverse: CATCACGCCACAGTTTCC

Gapdh Mouse Forward: AGTATGATGACATCAAGAAGG
Reverse: ATGGTATTCAAGAGAGTAGGG

2.5. Co-Immunoprecipitation

HEK293 were plated in a 10 cm culture dish and transiently transfected using Lipofecta-
mineTM 2000 (Thermo Fisher, Waltham, MA, USA; cat. 11668030) using 20 µL transfection
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reagent and 8 µg total DNA. For co-immunoprecipitation (co-IP) assays, two different
plasmids were used in the same reaction (4 µg of each plasmid). Twenty-four hours after
transfection, cells were washed with 2 mL of ice-cold 1× PBS and scraped in 700 µL of co-IP
lysis buffer (50 mM Tris HCl pH 7.5, 150 mM NaCl, 1% NP-40, 0.05% Sodium deoxycholate,
1 mM EDTA, 2.5 Mm MgCl2) supplemented immediately before use with 1× Proteoloc
protease inhibitor cocktail (Gentaur, London, UK; cat. 44204), 0.2 mM PMSF and 1 mM DTT.
Lysates were incubated at 4 ◦C for 30 min with rotation and then centrifuged at 13,000 RPM
for 15 min at 4 ◦C. The supernatant was separated and 200 µL set apart as whole cell
lysate (WCL) and mixed with 40 µL of 6× Laemmli buffer. The remaining supernatant was
incubated with 4 µg primary antibody (Table 3) at 4 ◦C with rotation for 1.5 h, followed by
the addition of 30 µL Dynabeads Protein G (Thermo Fisher; cat. 10003D) for an additional
1 h incubation at 4 ◦C with rotation. A magnetic rack was used to collect and wash the
beads three times with 1 mL of co-IP lysis buffer. Immunoprecipitates were extracted
from the bead by the addition of 18 µL of 2× Laemmli buffer. Both beads and WCL were
incubated on heat block at 45 ◦C for 25 min and stored at −80 ◦C for Western blotting.

Table 3. Antibodies used for immunoprecipitation.

Antibody Company Catalogue

GFP-tag (mouse monoclonal) Proteintech 66002-1-g
HA-tag (mouse monoclonal) Proteintech 66006-2-Ig
MYC-tag (rabbit polyclonal) Proteintech 16286-1-AP

2.6. Gli-Luciferase Assay

NIH3T3 cells and Ptch1−/− mouse embryonic fibroblasts (MEFs) were used for this
assay. Cells were grown in a 10 cm culture dish to an approximate confluence of 90%,
trypsinised, and seeded in 24-well plates at a 1:5 dilution in growth media. Cells were trans-
fected 24 h after plating using different transfection reagents for each cell line: FuGENE®HD
(Promega, Southampton, UK; cat. E2311) for NIH3T3 and TransIT-X2® (Mirus Bio, Madison,
WI, USA; cat MIR6003) for MEFs.

Assays were always conducted in triplicate. For each well, a fixed amount of p8xGBS-
Luc (135 ng), pRL-SV40 or pRL-TK (15 ng/well) and testing plasmid DNA (375 ng, con-
taining a single plasmid or a combination of plasmids) and 1.5 µL of the transfection
reagent were used, following the manufacturer’s instructions. After 24 h, transfected cells
were incubated with serum starvation media (DMEM, 0.5% FBS, 1% GlutaMAX) for an
additional 48 h. Cells were washed with 0.5 mL of PBS and lysed with 100 µL passive lysis
buffer with vigorous shaking at room temperature for 15 min. Dual-luciferase reporter
assay system (Promega; cat. E1910) was used to measure the activity of Firefly-luciferase
and Renilla-luciferase using a Promega GloMax 20/20 luminometer (cat. E5311). Values
of the individual measurements were generated as relative luciferase units (RLUs) and as
Firefly-luciferase/ Renilla-luciferase ratio.

2.7. Mass Spectrometry

To prepare the samples for proteomic analysis, 3 × 105 HEK293 cells were seeded
in 10 cm culture dishes and transiently transfected 24 h later with HA-ITM2A or empty
pcDNA3.1 plasmid, using 8 µg of DNA and 20 µL of LipofectamineTM 2000. Twenty-four
hours after transfection, cells were washed with 2 mL of ice-cold 1x PBS and processed for
IP as described above. Samples were submitted in solution form to the mass spectrometry
facility of the University of Leeds for the identification of immunoprecipitation-interacting
protein partners and for the detection of protein post-translational modifications. Protein
digestion of samples was carried out with trypsin. Data was processed by the facility using
the software Peaks (Bioinformatics Solutions, Waterloo, ON, Canada).
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2.8. STRING Protein Association Network

An interactome map was constructed using STRING for the ITM2A-specific identified
proteins by mass spectrometry analysis. The interactome was constructed with the STRING
database using default settings; the confidence score was set to medium (0.4) with network
edges showing the confidence of an interaction.

2.9. Statistical Analysis

GraphPad Prism 9 was used for the statistical analysis and for the generation of
graphs. Unless otherwise specified, three biological replicates were performed. Error bars
are shown as standard error of the mean (SEM). Two-tailed paired Student’s t-test was
used to analyse the significant difference between two groups. One-way ANOVA analysis
was selected to analyse at least three different groups when the samples showed normal
distribution and equal variance.

3. Results
3.1. ITM2A Physically Interacts with the Hedgehog Receptor PTCH1

Following the interaction studies in yeast cells, we tested if human PTCH1 interacts
with ITM2A in mammalian cells by co-immunoprecipitation. First, we determined that full-
length PTCH1-HA was capable of interacting with myc-tagged ITM2A when co-expressed
in HEK293 cells. Reciprocal pulldowns using anti-myc or anti-HA antibodies confirmed the
interaction in mammalian cells (Figure 1A). Unexpectedly, the CTD alone (aa 1176–1447)
in soluble form was unable to interact strongly with ITM2A (Figure 1A). Since the yeast-
2-hybrid experiment that initially indicated an interaction of ITM2A with PTCH1 used
only the CTD as bait, we considered the possibility that for interaction of the proteins in
mammalian cells, co-localisation at the plasma membrane was required. Therefore, we
expressed a membrane-associated CTD (through fusion with a myristoylated GFP (CAAX-
eGFP-CTD) [10] and compared the interaction to ITM2A with full-length PTCH1-eGFP or
empty myr-eGFP as a negative control. Immunoprecipiation of myc-ITM2A resulted in
detection of full length PTCH1 and the CTD fragment, indicating that membrane-associated
CTD was sufficient for their interaction (Figure 1B).

To determine which domains of PTCH1 are necessary for PTCH1-ITM2A physical
interaction, we generated PTCH1 mutants with deletions of the two largest intracellular
domains, the middle loop (ML) and the CTD [5]. Removal of the ML alone (PTCH1∆ML)
or both ML and CTD (PTCH1∆ML∆CTD) did not prevent ITM2A interaction, indicating
that, in addition to the CTD, the transmembrane and/or extracellular loops of PTCH1
independently interact with presumably different regions of the transmembrane protein
ITM2A (Figure 1C).

PTCH1 has been recently shown to form stable dimers even in the absence of Hh
ligands [22]. We reasoned that ITM2A binding to the CTD and additional domains could
cluster together two molecules of ITM2A. Thus, we tested if ITM2A is competent to
form self-interactions, as such could be permissive for the formation of higher order
magnitude complexes with PTCH1 dimers. As shown in Figure 1D, ITM2A forms strong
interactions with itself, supporting a stoichiometric model of 2 PTCH1: 2 ITM2A molecules
in the complex.
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Figure 1. ITM2A and PTCH1 interact in mammalian cells. (A) HEK293 cells were transfected with PTCH1-HA or CTD-HA
with or without ITM2A-myc and a fraction of the whole cell lysate (WCL) was immunoprecipitated with an anti-HA
antibody and blotted with an anti-myc antibody (left), or immunoprecipitated with anti-myc and developed with anti-HA
(right). (B) HEK293 cells were transfected with ITM2A-myc and eGFP-tagged PTCH1 or a construct encoding myristoylated-
CTD, followed by immunoprecipitation using anti-myc for detection of GFP-PTCH1 fragments (indicated by arrowheads).
Asterisk (*) signals a crossreactive band. (C) Co-expression of ITM2A-myc with deletion mutants of PTCH1 tagged with
eGFP, followed by immunoprecipitation with anti-myc and blotting with anti-GFP. (D) HEK293 transfected with myc-tagged
ITM2A and HA-tagged ITM2A or empty vector were subjected to immunoprecipitation with anti-HA followed by blotting
with anti-myc. All experiments were repeated 3 times with similar results.

3.2. ITM2A Does Not Mediate PTCH1 Autophagic Flux Inhibition

Since ITM2A was also reported to reduce autophagic flux via interaction with the
vacuolar vATPase [12] and we confirmed that ITM2A is a bona fide PTCH1 CTD interactor,
we hypothesised that ITM2A could be a mediator of non-canonical PTCH1 signalling in
autophagy. Transient transfection of PTCH1 or ITM2A alone increased the levels of LC3BII,
the lipidated form of LC3B, a marker of autophagosome formation. However, addition
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of Bafilomycin A1 during the last 4 h did not increase LC3BII in cells expressing PTCH1
or ITM2A, unlike in cells transfected with empty vector, suggesting that it is the result of
LC3BII accumulation as a consequence of an autophagic flux blockade at the last step of
the autophagosome-lysosome fusion (Figure 2A,B). Co-expression of PTCH1 and ITM2A
had a very similar effect (Figure 2A,B), although we observed a reproducible reduction of
PTCH1 expression level when co-expressed with ITM2A (Figure 2A,D), which was not
associated with changes in PTCH1 ubiquitylation (Figure S2). Densitometry-based analysis
of the magnitude of the Bafilomycin A1 effect revealed that autophagic flux was reduced
by more than 80% in all groups (Figure 2C).
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Figure 2. Overexpression of ITM2A does not enhance inhibition of autophagic flux by PTCH1. (A) Expression levels of
LC3BI and LC3BII in HEK293 cells transfected with pcDNA3.1, PTCH1-HA, myc-ITM2A or both and cultured 24 h in
complete growth medium with or without the addition of 100 nM Bafilomycin A1 (BafA1) during the last 4 h. Representative
experiment of n = 3. (B) Densitometric quantification of LC3BII/β-actin ratio in the indicated conditions (n = 3). Ratio of
pcDNA-transfected cells in the absence of BafA1 was set to 1. (C) Autophagic flux index (LC3BII with BafA1 over LC3BII
without BafA1) in the indicated conditions and normalized to pcDNA3.1 (n = 3; * p < 0.05). (D) Densitometric quantification
of protein levels of PTCH1 24 h post-transfection, normalised to β-actin, in the absence and presence of ITM2A (n = 3;
* p < 0.01).

Since the lack of an additive effect of PTCH1 and ITM2A could be the result of
maximal inhibition of autophagic flux by overexpression of either of the two proteins, we
decided to study the effect of silencing endogenous ITM2A using shRNA. HEK293 cells
were transfected with shITM2A and selected with puromycin to generate multiclonal cells;
however, ITM2A expression was restored after several passages (data not shown). This
might be because as a heterogeneous population, cells expressing higher levels of ITM2A
had a growth advantage and their proportion increased during passaging. Given this
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problem, we isolated shITM2A single cell-derived clones using the limiting dilution method.
Three different shRNA sequences targeting ITM2A and a control sequence (shScrambled)
were used and clones with the highest knockdown efficiency that was maintained for
several passages were used for the following experiments. Clone shITM2A-C maintained a
minimum of 65% knockdown (Figure 3A).
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Figure 3. ITM2A silencing has little effect on the autophagic function of PTCH1 in HEK293 cells. (A) Relative ITM2A
mRNA level normalised to GAPDH in HEK293 cell clones stably transfected with different shRNAs targeting ITM2A.
Mean +/- SEM of 3 independent qPCR measurements. (B) Expression levels LC3BII in HEK293 shScrambled (shSCR)
and HEK293 shITM2A-A (shITM2A) cells transfected with pcDNA or myc-PTCH1, and cultured 24 h in complete growth
medium with or without the addition of 100 nM Bafilomycin (BafA1) during the last 4 h. Representative experiment
of n = 3. (C) Densitometric quantification of LC3BII Western blot signals in A normalized to GAPDH in pcDNA (n = 3).
(D) Calculated values of Autophagic flux (ratio of LC3BII with BafA1 over LC3BII with vehicle) from C (n = 3; ** p = 0.007;
* p < 0.1; NS, non-significant).

Transient expression of PTCH1 in shITM2A-A HEK293 cells showed a small but
significant increase in LC3BII and p62 (an autophagy scaffolding protein that is degraded
along with the cargo) accumulation by PTCH1 compared to control shScramble cells
(Figure 3B,C) and a larger inhibition of autophagic flux (Figure 3D). The enhancing effect
of ITM2A depletion on PTCH1-dependent autophagy regulation was also observed in
HeLa cells (Supplementary Figure S1A,B). Interestingly, silencing of ITM2A resulted in
a small increase of PTCH1 expression levels (Figure 2A and Supplementary Figure S1A).
Altogether, these findings suggest that ITM2A is not necessary for autophagy regulation by
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PTCH1, and that it might actually reduce non-canonical PTCH1 signalling by modulating
its turnover.

3.3. Increase in ITM2A Levels Accompanies Reduction of Autophagic Flux during Skeletal
Muscle Differentiation

Given the involvement of Hh signalling and ITM2A in myotube differentiation of the
C2C12 myoblastic cell line, and that ITM2A has been reported to be a marker of skeletal
muscle differentiation, we investigated their potential interplay during in vitro differentia-
tion of C2C12 myoblasts into myotubes (Figure 4A). As C2C12 cells differentiate at high
density, they upregulate myosin expression from day 3 onwards (Figure 4B). As previously
reported [15], ITM2A levels increase significantly during differentiation (Figure 4B). To
investigate the regulation of autophagy by endogenous ITM2A and endogenous PTCH1,
we first investigated if there were any changes in basal autophagic flux during the 7 days of
differentiation of C2C12 cells. The level of p62 and LC3BII increased during differentiation,
becoming gradually more insensitive to Bafilomycin A1 treatment (Figure 4C,D). This
observation suggests that autophagic flux is reduced in differentiated myotubes compared
to proliferating myoblasts.
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Figure 4. Autophagic flux decreases during myotube differentiation of C2C12 cells. (A) Morphological changes of C2C12
from confluent myoblasts (day 0) to multinucleated myotubes (day 7). (B) Expression levels of myosin heavy chain (MHC),
ITM2A, and PTCH1 (qPCR) in C2C12 cells during 7 days of differentiation. (C) Expression levels of p62 and LC3BII in
C2C12 cells during 7 days of differentiation day with or without the addition of 100 nM Bafilomycin (BafA1) during the
last 4 h. Differentiation media was added to cells at day 0 and changed to fresh differentiation media every other day.
Representative experiment of n = 3. (D) Calculated values of autophagic flux using densitometry of LC3BII and p62 levels
normalised to β-actin. Autophagic flux was calculated as the ratio of each marker in the presence of BafA1 over its level
with vehicle (DMSO) for each day of differentiation. Graph shows mean +/− SEM, n = 3.

We next generated stable C2C12 myoblastic lines with reduced ITM2A expression
using three different shRNA sequences. Puromycin-resistant shITM2A cells were analysed
for knockdown of ITM2A. Cells stably expressing the shITM2A-B and -C sequences showed
21 and 55% reduction of ITM2A by qPCR, respectively, while shITM2A-A was ineffective
(Figure 5B). We continued our study with the shITM2A-C cells, which showed the best
knockdown efficiency. C2C12 shITM2A-C cells presented a morphological delay in my-
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otube differentiation (Figure 5A), which was confirmed by delayed myosin upregulation
by Western blot, compared to parental and control shScramble C2C12 cells (Figure 5A).
Analysis of key cell cycle regulators in shITM2A-C C2C12 cells showed an early increase of
p21 at day 3 and a lack of or delayed upregulation of CDK2, CDK4, CDK6, cyclin D1 and
cyclin D3 compared to control shCONTROL cells (Figure 5C).
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Figure 5. ITM2A knockdown delays differentiation of C2C12 cells. (A) Relative expression level of ITM2A in the shRNA
clones in undifferentiated C2C12 cells. Graph shows mean +/- SEM normalised to scrambled control, n = 3. (B) Morpholog-
ical changes of a control C2C12 clone (shControl) compared to 3 independent shITM2A clones from confluent myoblasts
(day 0) to multinucleated myotubes (day 7). (C) Expression levels of cell cycle markers during differentiation of control and
shITM2A-clone C cells. (D) Effect of ITM2A knockdown on undifferentiated C2C12 cells proliferation over 72 h. Graph
shows mean +/− SEM, n = 3.

3.4. ITM2A Is as a Negative Regulator of Canonical Hh Signalling

Given that we observed a regulatory effect of ITM2A on PTCH1 expression level and
non-canonical signalling in autophagy in epithelial cell lines, we next sought to investigate
if ITM2A also affects canonical Hh signalling using a well-established GLI-luciferase activ-
ity assay in the Hh-responsive NIH 3T3 cells. Remarkably, the overexpression of ITM2A
inhibited Gli-luciferase activation by Shh, an oncogenic SMO mutant (SMO-M2), Gli1 and
Gli2 (Figure 6A). The same effect was observed in Ptch1−/− mouse embryonic fibroblasts
(MEFs), which display high constitutive canonical Hh signalling activity due to loss of
endogenous Ptch1, when overexpressing mouse Gli1 or Gli2 (Figure 6B). Furthermore,
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ITM2A strongly reduced myc-GLI1 levels when expressed in NIH3T3 cells (Figure 6C), or
in HEK293 cells (Figure 6D), a non-ciliated cell type in which GLI-dependent transcription
can be stimulated in response to GLI1 overexpression. These findings suggest that ITM2A
acts as a negative regulator of Gli stability and transcriptional activity, independently of its
interaction with PTCH1.
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Figure 6. ITM2A is a negative regulator of canonical Hh signalling. (A) Relative Gli-luciferase activity (normalized to pRL-
TK) in NIH 3T3 cells transfected with the indicated construct combination. Graph shows mean +/- SEM of a representative
experiment performed in triplicate (total n=3 independent experiments). * p < 0.05; ** p < 0.01; *** p < 0.0001. (B) Same as in
A in Ptch1−/− MEFs (n = 3). * p < 0.05. (C) Effect of ITM2A on total proteins levels of myc-Gli1 in NIH3T3 cells. (D) Effect of
ITM2A on total proteins levels of myc-Gli1 in HEK293 cells.

3.5. Identification of ITM2A-Interacting Proteins by Mass Spectrometry

In order to better understand the role of ITM2A in Hh signalling and skeletal muscle
differentiation, we overexpressed a tagged ITM2A protein in HEK293 cells and performed
immunoprecipitation followed by mass spectrometry to identify potential interacting pro-
teins. Cells expressing empty vector were used as a negative control to subtract non-specific
contaminating proteins. ITM2A immunoprecipitates contained a number of proteins listed
in Table 4.

STRING analysis reveals a highly significant clustering (p = 1 × 10−16) of over 90% of
the proteins identified (Figure 7), with the existence of sub-clusters related to ER protein
quality control, mitochondria membrane protein translocation, nuclear import, and stress
granules. ITM2A interaction with NUP93 and CSE1L could be involved in negative regula-
tion of Gli-dependent transcription by the impairment of GLI1 and GLI2 nuclear import.
Some other proteins identified play important roles in the recognition of defective mito-
chondria for clearance by mitophagy (prohibitin and prohibitin-2, ADACT3, HSPA1B). This
snapshot of the ITM2A interactome suggests that it may function at ER-mitochondria con-
tacts to regulate mitophagy, which could contribute to mitochondrial network remodeling
during myogenic differentiation.
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Table 4. ITM2A-interacting proteins identified by mass spectroscopy.

Protein Name Function

ABCF2 ATP-binding cassette transporter
ACTG1 Actin cytoskeleton
ADAR Adenosine deaminase, RNA editing
ALB Albumin

ATAD3A Mitochondrial network organization, steroid hormone
ATP2A2 ER-isolation membrane contacts, autophagosome formation
ATP5C1 Mitochondria -ATP production
ATXN2L Stress granule and P-body formation

BAG2 Co-chaperone for HSP70/HSC70
C1orf57 Nucleotide phosphatase
CANX ER protein folding quality control
CDK1 Cell cycle progression

CDKN2A Negative regulator of proliferation
CISD2 Regulator of autophagy
CSE1L Nuclear export receptor
DARS Aspartate tRNA-ligase

DNAJA1 Co-chaperone of HSC70, mitochondria protein transport
DNAJA2 Co-chaperone of HSC70
EEF1G Elongation factor, protein synthesis
EIF4A1 Eukaryotic initiation factor
ERLIN2 ERAD, cholesterol homeostasis

FAF2 ERAD
FLG Keratin intermediate filament aggregation

FLNA Branching of actin filaments
FLNC Muscle-specific filamin
G3BP2 Stress granule formation

GANAB Neutral alpha-glucosidase
GP96 ER-chaperone, ERAD

HNRNPR Processing of mRNA precursor in the nucleus
HSD17B12 ER-localised fatty acid elongation
HSPA1B HSP70 chaperone
HSPA5 ER chaperone

LMAN1 ER to Golgi transport
MARS Methionine-tRNA ligase
NPM1 Ribosome biogenesis, ribosome nuclear export

NSUN2 RNA-C5 methyl transferase, tRNA stability, mRNA decay
NUFIP2 Stress granules, transcription control
NUP93 Nuclear pore complex
PAI-1 Serine protease inhibitor

PGAM5 Mitochondrial dynamics
PHB Mitochondrial chaperone, mitophagy receptor

PHB-2 Mitochondrial chaperone, mitophagy receptor
PSMD3 Component of the 26S proteasome
RALY Transcriptional cofactor for cholesterogenesis
RCN ER-post-ER calcium regulatory protein
SFPQ Pre-mRNA splicing factor, myoblast marker

SLC25A3 Cytosol-mitochondria phosphate transport
SLC3A2 Amino acid transport in plasma membrane and lysosomes
SNRPA Pre-mRNA splicing factor
STT3B N-glycosylation of misfolded protein for ERAD

TRIM21 E3 ligase, promotes autophagy, autophagy receptor
TRIP13 Meiosis, chromosomal recombination

UQCRC2 Mitochondrial electron transport chain
YWHAZ Autophagy regulator

ERAD; endoplasmic reticulum-associated degradation.
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4. Discussion

In this study, we present evidence that the single-pass membrane protein ITM2A is a
negative regulator of canonical and non-canonical Hh signalling. On the one hand, ITM2A
physically interacts with PTCH1 and reduces its stability and biological function as an
endogenous inhibitor of autophagy. On the other hand, ITM2A reduces GLI1 stability and
inhibits GLI-transcriptional activity at a step downstream of PTCH1, impairing canonical
Hh signalling. Our findings refute our original hypothesis that ITM2A could be a mediator
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of PTCH1-induced autophagic flux reduction, suggesting instead that ITM2A’s effect on
autophagy are independent of PTCH1. The identification of ITM2A-interacting proteins
by mass spectrometry provides the basis for testable hypotheses of the mechanism by
which ITM2A acts as a negative regulator of Hh signalling and how it regulates myogenic
differentiation, which will be explored in the future.

In the first part of our study, we confirm that ITM2A interacts with the CTD of PTCH1,
and at least with another domain, since a PTCH1 mutant with deletions of the CTD and
cytosolic middle loop, was able to co-immunoprecipitate ITM2A. This suggests that ITM2A
likely interacts with PTCH1 through its intracellular 53 aa domain and the extracellular
BRICHOS domain.

ITM2A and PTCH1 exert the same autophagy blocking phenotype characterised by
an accumulation of autophagosomes [11,12]. However, our findings demonstrate that
their interaction is not necessary for the autophagic flux blockade induced by PTCH1 in
HEK293 or HeLa cells. In agreement with the lack of cooperative effect, the expression of
ITM2A causes a direct or indirect degradation of PTCH1, while silencing of endogenous
ITM2A results in a concomitant increase in PTCH1 levels. Even when the change in
the expression of PTCH1 in the ITM2A knockdown cells was not statistically significant,
the slight increase in PTCH1 expression was enough to enhance its inhibitory effect on
autophagy. It is possible that the effects on the knockdown are not as marked as the effects
of the overexpression because the endogenous levels of ITM2A in HEK293 and HeLa are
low, and also because the efficiency of the knockdown was not 100%. This is supported
by the observation that, when comparing the effects in the two cells lines, the results are
statistically significant in HeLa cells, which presented a higher knockdown efficiency. In
summary, our study suggests that ITM2A is not a necessary mediator of the autophagic
flux blockade regulated by PTCH1, but instead reduces its activity, while still maintaining
its capacity to block autophagy independently of their interaction.

While the effect of ITM2A over PTCH1 protein levels suggested that it could stimulate
canonical Hh signalling, GLI-luciferase experiments show a clear inhibitory effect when the
pathway is activated by upregulation of ligand (Shh), by an oncogenic SMO mutant, or by
the overexpression of the main GLI family transcriptional activators, GLI1 and GLI2. This
indicates that ITM2A exerts an inhibitory effect at the level of the GLI transcription factors.
While the inhibitory mechanism is unknown, we speculate that interaction of ITM2A with
NUP93 (a nucleoporin) and CSE1L (exportin) might regulate GLI2 ciliary trafficking and/or
nuclear accumulation. NUP93 has been shown to localise at the ciliary base and regulate
the permeability barrier [23]. CSE1L mediates the re-export of importin-α from the nucleus
after importin substrates, which include GLI2, are released in the nucleoplasm [24,25].

The negative regulation of ITM2A on Hh signalling could play an important role
during myogenic differentiation. It is well known that canonical Shh signalling maintains
myoblasts and satellite cells in the proliferative state, when ITM2A levels are lower. Induc-
tion of myogenic terminal differentiation is accompanied by upregulation of ITM2A and
a simultaneous decrease in autophagic flux. While our interactome analysis in HEK293
cannot be directly extrapolated to other cell types, it showed a subset of proteins that
participate in the recognition of defective mitochondria for clearance by mitophagy (pro-
hibitin and prohibitin-2, ADACT3, HSPA1B). This selective type of autophagy has been
shown to play an important role during mitochondrial network remodelling in myogenic
differentiation and could explain the regulatory role of ITM2A in C2C12 cells.

The process of myogenic differentiation requires the induction of muscle-specific
genes, such as myosin, and irreversible cell cycle withdrawal [26,27]. Previous studies
showed that the upregulation of cyclin D3, as opposed to cyclin D1 and cyclin D2, plays a
key role in cell cycle withdrawal during myogenic differentiation [28,29]. Our results show
that knockdown of ITM2A expression in C2C12 cells results in a delay in differentiation
together with reduced levels of cyclin D3 expression. Therefore, it is possible that ITM2A
regulates a process needed for upregulation of cyclin D3 during differentiation of C2C12
cells. Furthermore, ITM2A could regulate cell cycle progression through interaction with
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CDKN2A (also known as p16INK4), as suggested by our mass spectrometry analysis. Given
the positive role of ITM2A in C2C12 differentiation, it is possible that it can stimulate the
function of this CDK4/6 inhibitor to accelerate cell cycle exit. Future studies will investigate
if ITM2A is involved in stabilization of the main complexes involved in the maintenance
of the cell cycle withdrawal required for the differentiation of myoblasts into myotubes.
The potential physical interaction with CDKN2 suggested by the proteomics analysis is an
attractive starting point to further investigate this process.

In conclusion, the results presented here support a negative role of ITM2A on Hh
signalling and confirm its requirement during terminal differentiation of skeletal muscle.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10082003/s1, Figure S1: Effect of ITM2A silencing on PTCH function in autophagy
in HeLa cells, Figure S2: Effect of ITM2A on PTCH1 ubiquitylation, Table S1: Antibodies used in
this study.
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