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Abstract—A cell-free Massive multiple-input multiple-output
(MIMO) system is considered, where the access points (APs) are
linked to a central processing unit (CPU) via the limited-capacity
fronthaul links. It is assumed that only the quantized version of the
weighted signals are available at the CPU. The achievable rate of a
limited fronthaul cell-free massive MIMO with local minimum mean
square error (MMSE) detection is studied. We study the assumption
of uncorrelated quantization distortion, which is commonly used in
literature. We show that this assumption will not affect the validity
of the insights obtained in our work. To investigate this, we compare
the uplink per-user rate with different system parameters for two
different scenarios; 1) the exact uplink per-user rate and 2) the
uplink per-user rate while ignoring the correlation between the inputs
of the quantizers. Finally, we present the conditions which imply
that the quantization distortions across APs can be assumed to be
uncorrelated.

I. INTRODUCTION

A. Limited-fronthaul Cell-Free Massive MIMO

Cell-free massive multiple-input multiple-output (MIMO) is a

promising technique, where large number of distributed access

points (APs) serve a much smaller number of users [1]. Similar to the

methodology in [2], we model the phase of the line-of-sight (LoS)

path as a uniformly distributed random variable, which enables us to

take the phase shifts due to mobility and phase noise into account.

In [3], the authors investigate the effect of phase shifts in cell-free

massive MIMO. An investigation of device-to-device-based cell-free

massive MIMO with limited fronthaul links is presented in [4]. The

effect of channel aging in cell-free massive MIMO is investigated

in [5]. The authors in [6] investigate the performance of perfect-

fronthaul cell-free massive MIMO over spatially correlated Rician

fading channels. A limited fronthaul cell-free massive MIMO system

is investigated, where the access points (APs) send the quantized

versions of the received signals and the channel estimates to a

central processing unit (CPU) through limited fronthaul links [7]–

[11]. The limited capacity links from the APs to the CPU constitute

one of the most principal challenges in the cell-free massive MIMO

system. The assumption of infinite fronthaul in [1] is not realistic

in practice. In the uplink transmission, the fronthaul network will

carry quantized signals, which will affect the system performance.

This paper therefore provides an approach for the analysis of the

effect of fronthaul quantization distortion correlation on the uplink

of cell-free massive MIMO.

B. Why Local Minimum Mean Square Error (L-MMSE) Detection?

We study the case when only the quantized version of the

weighted signal is available at the CPU which employs local

minimum mean square error (L-MMSE) detection. The L-MMSE

detection is interesting due to following reasons: 1) The L-MMSE

detector has low complexity and is practically feasible. Note that in-

version of the aggregate the channel matrix is required for designing

zero forcing (ZF) and MMSE. Hence, due to the large number of

users and APs in cell-free massive MIMO, ZF and MMSE detectors
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impose huge complexity burden on the CPU and they are not suitable

for practical implementations. It should be noted that the current

hardware cannot perform matrix inversion for a matrix with the

dimension larger than 25×25 in practical systems [12], [13]. 2) The

L-MMSE detector provides good performance in cell-free massive

MIMO with the use of only the local channel matrix [14]. 3) The

L-MMSE detector can be implemented in a distributed manner, as

each AP uses the complex conjugate of the channel estimates in a

distributed approach [14]. 4) The L-MMSE detector can facilitate

flexible functional splits in cell-free massive MIMO [15].

C. Motivation and Contribution

In [16], the authors generalize the Bussgang theorem for MIMO

distortions. According to [16], it is common that the quantization

distortion correlation is neglected without any justifications and

motivations in the literature. In [16], the authors extend the Bussgang

results to be applicable hardware impairments [7]. In [16], the

authors investigate the cumulative distribution function (CDF) of

the absolute value of the correlation coefficient between elements

of the MIMO system.

In this paper, we study the performance of a cell-free massive

MIMO with the L-MMSE detector. The effect of the quantization

distortion correlation on the cell-free massive MIMO system is

investigated. In general, the inputs of the quantizers at different

APs are correlated, the quantization distortions across APs are

therefore correlated. However, according to [9]–[11], the correlation

between the inputs of the quantizers at different APs renders,

the closed-form achievable rate formulas overly complicated and

many optimization problems (i.e., sum-rate maximization, max-

min rate, energy efficiency maximization) are intractable. For this

reason, in [9]–[11], [17], the quantization distortion correlation is

not taken into account and an approximated achievable rate derived

by ignoring the quantization distortion correlation is exploited to

facilitate the capacity analysis in [9]–[11], [17]. In this paper, we

present approximation and exact closed-forms for the capacity of

the limited-fronthaul cell-free massive MIMO system to analyze the

impact of quantization distortion correlation. However, in this paper,

we present the exact definition of the power of the quantization

distortion. The analytical and numerical results for typical cases

imply that, for cell-free Massive MIMO, under the necessary con-

ditions listed below, the quantization distortions are approximately

uncorrelated: 1) There is a large number of users, or 2) there are

a few antennas at each AP. In this paper, we show that for small

number of antennas per AP, the approximation on the achievable rate

while ignoring the quantization distortion correlation is very close

to the exact achievable rate. However, if there are few active users

and each AP is equipped with a large number of antennas, then the

correlation between the outputs of the quantizers have a substantial

impact on the achievable rate. The approximate rate expression that

neglects the correlation should not be used in that case.

II. SYSTEM MODEL

We consider uplink transmission in a cell-free massive MIMO

system with M APs and K single-antenna users randomly dis-



tributed in a large area. Moreover, we assume each AP has N

antennas.

A. Channel Model

The uplink channel between the mth AP and the kth user is

presented by gmk which is modeled as [2]

gmk =
√
αmke

jφmk +
√

βmkh̃mk, (1)

where
√
αmke

jφmk corresponds to the LoS component and√
βmkh̃mk accounts for the NLoS components. Note that the term

φmk ∼ [−π, π) is the phase-shift of the LoS component. Moreover,

we have αmk = κmk

κmk+1ζmk and βmk = 1
κmk+1ζmk, where ζmk

denotes the large-scale fading coefficient. In addition, the term κmk

is modelled as [2]

κmk =
PLoS(dmk)

1 + PLoS(dmk)
, (2)

where dmk is the distance between the mth AP and the kth user,

PLoS(dmk) is the LoS probability depending on the distance dmk,

where the LoS probability is defined in Section III.

B. Channel Estimation at the APs

All pilot sequences transmitted by the K users in the channel

estimation phase are collected in a matrix Φ ∈ C
τp×K , where τp is

the length of the pilot sequence for each user and the kth column, φφφk,

represents the pilot sequence used by the kth user, where ‖φφφk‖2 = 1.

Let
√
τφφφk ∈ C

τ×1 be the pilot sequence assigned to the kth user.

We assume the case where channel statistics are available at the

APs, however, the phase shifts are completely unknown. Then, we

can use the non-aware linear MMSE (LMMSE) estimator. Based

on the analysis in [2, Section III-B], the LMMSE estimate of the

channel gmk is given by

ĝmk = cmk

(√
τpppgmk +

√
τppp

K∑

k′ 6=k

gmk′φφφH
k′φφφkΩp,mφφφk

)

, (3)

where Ωp,m denotes the noise vector at the mth AP whose ele-

ments are independent and identically distributed (i.i.d.) CN (0, 1),
pp represents the normalized signal-to-noise ratio (SNR) of each

pilot symbol. The p̄p denotes the power of pilot sequence where

pp =
p̄p

pn
and pn is the noise power [18]. Moreover, we have cmk =

√
τppp(βmk+αmk)

τppp

∑
K

k′=1
(βmk′+αmk′ )|φφφH

k′
φφφk|2+1

and γmk =
√
τpppcmk(βmk +

αmk).

C. Data Detection

The transmitted signal from the kth user is denoted by xk =√
ρ qksk, where sk with CN (0, 1) and qk denotes the transmitted

symbol and the transmit power, respectively. Moreover, ρ refers to

the normalized uplink SNR. The N × 1 received signal at the mth

AP is given by

ym =
√
ρ

K∑

k=1

gmk

√
qksk + nm, (4)

where nm ∼ CN (0, IN ) is the noise vector at the mth AP. We

consider the case when each AP multiplies the received signal by

the L-MMSE receiver, and sends back a quantized version of this

weighted signal to the CPU. Let vmkC
N be the L-MMSE vector

that the mth AP design for the kth user. Then the local estimate of

the transmitted signal sk, i.e., ŝmk, is given by

zmk , ŝmk = vH
mkym, (5)

where

vmk =

(

ã2ρ

K∑

k′=1

qk′ ĝmk′ ĝH
mk′ +Rmk

)−1

ĝmk, (6)

where Rmk = ρ
∑K

k′=1 qk′Wmk′ + IN + Fm and

Wmk′ = Smk′ −Tmk′ , (7a)

Smk′ =

(

σ2
ẽ,B

ã2
+ 1

)

diag [rep (βmk′ + αmk′ , N)] , (7b)

Tmk′ =
(
1− σ2

ẽ,B

)
diag [rep (γmk′ , N)] ,Fm =

σ2
ẽ,B

ã2
IN , (7c)

where ã and σ2
ẽ,B are the constant term in the Bussgang decom-

position and the quantization distortion power, respectively, which

are defined in [9, Table 1]. The mth AP quantizes the terms

zmk = vH
mkym, ∀k, and forwards the quantized signals in each

symbol duration to the CPU, where vmk is the L-MMSE receiver.

Hence zmk is the input of the quantizer at the mth AP. Using the

Bussgang decomposition, the estimate of the signal sk at the CPU

can be written as

ŝk =
∑M

m=1
Q (zmk) =

∑M

m=1
Q
(
vH
mkym

)

=

M∑

m=1

ãvH
mkym +

M∑

m=1

dzmk

︸ ︷︷ ︸

TQDk

, (8)

where TQDk refers to the total quantization distortion (TQD) at the

kth user. Since the input to the quantizer is the sum of many random

variables, from the central limit theorem, it has a nearly Gaussian

distribution [10]. Moreover, using Bussgang decomposition the

elements of the quantization distortion are uncorrelated with the

input of the quantizer [19], i.e.,

E

{(
vH
mkym

)H
dzmk

}

= 0. (9)

The achievable rate of the kth user is given by Rk = log2(1 +
SINRk), where the SINRk is the achievable signal-to-interference-

plus-noise ratio (SINR) of the kth user and is given by

SINRk= (10)

qk1
T f̄kk f̄

H
kk1

K∑

k′=1

qk′E{1T f̄kk′ f̄Hkk′1
T}−qk1

T f̄kk f̄
H
kk1+

1
ρ

M∑

m=1
1TDk1+

1
ρ
E

{

|TQDk|2
},

where f̄kk′ =
[
E{vH

1kĝ1k′} · · ·E{vH
MkĝMk′}

]T
, Dk =

diag
[
E
{
||v1k||2

}
· · ·E

{
||vMk||2

} ]T
where 1 = [1, · · · , 1]T ∈

C
N . The power of the quantization distortion for user k is given by

E

{

|TQDk|2
}

= E

{∣
∣
∣
∣

∑M

m=1
dzmk

∣
∣
∣
∣

2
}

= E

{(
M∑

m=1

dzmk

)(
M∑

m=1

dzmk

)∗}

=
∑M

m=1
E

{

|dzmk|2
}

+
∑M

m=1

∑M

n 6=m
E
{
dzmk (d

z
nk)

∗}

=
∑M

m=1

[
Cdz

k
dz

k

]

mm
+
∑M

m=1

∑M

n 6=m

[
Cdz

k
dz

k

]

nm
, (11)

where Cdz
k
dz

k
= E

{

dz
k (d

z
k)

H
}

is the covariance matrix of the

quantization distortion and dz
k = [dz1k · · · dzMk]

T
is the quantization

distortion vector. Note that
[
Cdz

k
dz

k

]

mn
is the mnth element of

Cdz
k
dz

k
. To calculate Cdz

k
dz

k
, we first re-write the aggregate received

signal at the CPU as follows:

rk = Q(zk) = Azk + dz
k, (12)

where rk = [r1k · · · rMk]
T

and zk = [z1k · · · zMk]
T

. Moreover,

based on the analysis in [20], it can be shown that the matrix A is



diagonal. The matrix A is determined by the LMMSE estimation

of rk from zk as follows [20]:

A = E
{
rkz

H
k

}
E
{
zkz

H
k

}−1
= Crkzk

C−1
dz

k
dz

k
, (13)

and the error has the following covariance matrix [20]

Cdz
k
dz

k
= E

{

(rk −Azk) (rk −Azk)
H
}

E
{
zkz

H
k

}−1

= Crkrk
−Crkzk

AH −ACzkrk
+ACzkzk

AH

= Crkrk
−Crkzk

C−1
zkzk

Czkrk
. (14)

Proposition 1. The covariance matrices Crkrk
, Crkzk

, and Czkrk

are obtained using the Price Theorem.

Proof: To characterize the cross-correlation and auto-correlation

properties of Gaussian input signals, we exploit the Price Theorem

[21]. Based on the Price theorem, the correlation coefficient at the

output of nonlinear functions f1(x1) and f2(x2) with correlated

inputs x1 and x2 having zero-mean and the variances σ1 and σ2,

respectively, and the correlation coefficient ρx1x2
=

E{x1x
∗

2
}

σx1
σx2

, has

the following derivatives [21]

∂k
E {f1(x1)f2(x2)}

∂ρkx1x2

= σk
1σ

k
2

∫ ∞

−∞

∫ ∞

−∞

f
(k)
1 (x1)f

(k)
2 (x2)

2πσ1σ2

√
1− ρ2x1x2

exp

(

− 1

2
(
1− ρ2x1x2

)

[
x2
1

σ2
1

+
x2
2

σ2
2

− 2ρx1x2
x1x2

σ1σ2

])

dx1dx2.(15)

Next, for the special case f1(x1) = x1, then we have [20]
∂E {x1f2(x2)}

∂ρx1x2

=

σ1σ2

∫ ∞

−∞

1

σ2

√
2π

f ′
2(x2) exp

(
x2
2

σ2
2

)

dx2, (16)

resulting in

E {x1f2(x2)} =

σ1σ2ρx1x2

∫ ∞

−∞

1

σ2

√
2π

f ′
2(x2) exp

(
x2
2

σ2
2

)

dx2. (17)

Next, we use the uniform quantizer as follows [20, Chapter 2]

f2(x) = Q(x) =
∑2α

i=1
li
(
u
(
x− llo,i

)
−u
(
x− lup,i

))

= l1+
∑2α

i=2

(
li − li−1

)
u
(
x− llo,i

)
. (18)

Using the lup,i = llo,i+1, we have
∂Q(x)

∂x
= l1+

∑2α

i=2

(
li − li−1

)
δ
(
x− llo,i

)
, (19)

where δ is the Dirac Delta function. Therefore

E {x1Q(x2)} =

σ1ρx1x2

∑2α

i=1

li
(

exp

(

− (llo,i)
2

2σ2

2

)

− exp

(

− (lup,i)
2

2σ2

2

))

√
2π

. (20)

Next, we find the covariance at the output of the quantizer as follows

E {Q(x1)Q(x2)} =

K∑

i=2

K∑

k=2

∆2

∫ ρx1x2

0

exp

(

− 1
2(1−ρ′2)

[

(llo,i)
2

σ2

1

+
(llo,k)

2

σ2

2

− 2ρ′llo,illo,k

σ1σ2

])

2π
√

1− ρ′2
dρ′. (21)

Figure 1. Figure presents the mnth element of the covariance matrix of the

quantization distortion (i.e.,
[

Cdz
k
dz
k

]

mn

in (11)) versus ρmnk for different number

of quantization bits for a given user k.

Note that in cell-free Massive MIMO, we have ρx1x2
= ρmnk,

where ρmnk is defined in (24). Finally, Crkrk
, Crkzk

and Czkrk

are determined using (20) and (21) and the following equalities:

Crkrk
= E {rkrk} = E {Q(zk)Q(zk)} , (22a)

Czkrk
= E {zkrk} = E {zkQ(zk)} , (22b)

Crkzk
= E {rkzk} = E {Q(zk)zk} , (22c)

which completes the proof. �

Based on the above derivations,
[
Cdz

k
dz

k

]

mn
is a function of

the number of quantization bits α, the step-size of the quantizer ∆,

and the correlation coefficient between the inputs of the quantizer

at the mth and nth APs, i.e., ρmnk, which is obtained numerically.

III. NUMERICAL RESULTS AND DISCUSSION

A cell-free Massive MIMO system with M APs and K single-

antenna users is considered in a D×D numerical area, where both

APs and users are uniformly distributed at random points. The path

loss and noise power are the same as [1]. For the LoS probability,

we use the following model from the 3GPP-UMa [2]

PLoS(dmk) = min

(
18

dmk

, 1

)(

1− e−
dmk
63

)

+ e−
dmk
63 , (23)

where dmk is in meters. In cell-free massive MIMO, the inputs of

quantizer at the mth and nth APs are zmk = vH
mkym and znk =

vH
nkyn, respectively. We aim to calculate the correlation coefficient

between the mth and nth APs, which is given by

ρmnk =
|E {zmkz

∗
nk}|

σzmk
σznk

, (24)

where we have σ2
zmk

= E

{

|zmk|2
}

, and the expectation is taken

over the small-scale fading coefficients.

1) The Actual Value of Correlation Between the Quantization

Distortions Versus the Correlation Between the Inputs of the Quan-

tizers: Fig. 1 plots
[
Cdz

k
dz

k

]

mn
versus ρmnk for different numbers

of quantization bits α, where the diagonal elements of the covariance

matrix are obtained by setting ρmnk = 1. Fig. 1 plots
[
Cdz

k
dz

k

]

mn
versus ρmnk for different numbers of quantization bits α, where the

diagonal elements of the covariance matrix are obtained by setting

ρmnk = 1. From Fig. 1, it can be observed that ρmnk ≤ 0.4 is small

enough so that the off-diagonal elements of the correlation matrix

can be safely ignored. Note that the performance gap between the

exact uplink per-user rate and the uplink per-user rate while ignoring

the correlation between the inputs of quantizers depend on total
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Figure 2. The term “Perf. fh” refers to the perfect fronthaul link. The term “Exact” is the case where we include the correlation between the quantization distortions at
different APs whereas the term “Approx.” refers to the case when we ignore the correlations between the error at different APs.

number of users in the area K and the number of antennas per-AP

N . Hence, in the next section, we investigate the effect of K and N

on the correlation coefficients ρmnk and the achievable rate. Next,

we provide numerical results and discussion to address the effect of

correlation between the inputs of the quantizers at different APs.

2) How Large is the Correlation Between the Input of the

Quantizers at Different APs in Cell-Free Massive MIMO?: The CDF

of ρmnk in cell-free Massive MIMO for the cases of K = 20 and

K = 30 users is plotted in Fig. 2a. The figure shows that in the case

of a few antennas per AP and large number of users in the area, the

correlation between the inputs of the quantizer at different APs is

small. The correlation coefficient ρmnk enables us to investigate the

performance gap between the exact rate and the approximated rate

obtained by omitting the correlation ρmnk. Note that by increasing

the number of APs, the correlation ρmnk decreases, resulting in a

smaller gap between the approximated rate and the exact rate. This

will be investigated in the next subsection.

3) The Performance Gap Between the Exact Uplink Per-User

Rate and the Uplink Per-User Rate While Ignoring the Correlation

Between the Inputs of the Quantizers: In this section, we present the

uplink per-user rate with different system parameters for two differ-

ent scenarios. To remind, the correlation between the quantization

distortions at different APs is given by

E

{

|TQDk|2
}

=

M∑

m=1

[
Cdz

k
dz

k

]

mm
+

M∑

m=1

M∑

n 6=m

[
Cdz

k
dz

k

]

nm
. (25)

The rate obtained by the exact value of E

{

|TQDk|2
}

in (26) is

referred to as “Exact” in Figs. 2b-2c. Next, we exploit the results

in Figs. 2b-2c, the covariance matrix of the quantization distortion

is approximated with a diagonal matrix as follows:

E

{

|TQDk|2
}

=

M∑

m=1

[
Cdz

k
dz

k

]

mm

︸ ︷︷ ︸

sum of diagonal elements of Cdz
k
dz
k

+
M∑

m=1

M∑

n 6=m

[
Cdz

k
dz

k

]

nm

︸ ︷︷ ︸

sum of off-diagonal elements of Cdz
k
dz
k

≈
M∑

m=1

[
Cdz

k
dz

k

]

mm
. (26)

This scenario is given as “Approximation” in Figs. 2b-2c. As Figs.

2b-2c show, there is a negligible performance gap between the exact

rate and the approximate rate obtained by ignoring the quantization
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Figure 3. This figure presents the average uplink per-user rate versus number of
antennas per AP with M = 15 and α = 1. Here the term “Exact” refers to the
exact uplink rate whereas the term “Approximation” presents the uplink per-user rate
while ignoring the quantization correlation.

distortion correlation. Here we consider the uncorrelated quantiza-

tion distortions at different APs, and the total quantization distortion

is obtained as follows:

E

{
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∣
∣
∣
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≈
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]

.

Next, we investigate the ratio between “the sum of off-diagonal

elements of the distortion covariance matrix” and “the sum of all

elements of the distortion covariance matrix” in (26). We define the

following ratio:

ratioC =

∑M
m=1

∑M
n 6=m

[
Cdz

k
dz

k

]

nm
∑M

m=1

[
Cdz

k
dz

k

]

mm
+
∑M

m=1

∑M
n 6=m

[
Cdz

k
dz

k

]

nm

. (28)

Fig. 4 demonstrates the cumulative distribution of ratioC with

the same parameters as in Fig. 3. Moreover, Fig. 4 shows that the

power of the off-diagonal elements of the quantization distortion

matrix is very small relative to the power of all elements of the

quantization distortion matrix, except for smaller K and larger

N . This explains the performance gap between the systems using

“Approximation” (obtained by ignoring off-diagonal elements of the

distortion covariance matrix) and “Exact” in Fig. 3.
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Figure 4. The cumulative distribution of ratioC with M = 15.
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Figure 5. The average uplink per-user rate with three different detectors with M =

60, N = 1, and K = 20.

4) The effects of number of users and number of antennas per

AP: Finally, we investigate the effect of the total number of users

and number of antennas per AP on the system performance. In Fig.

3, the average per-user uplink rate is presented versus the number of

antennas per AP (N ) for different cases of total number of users in

the system (namely K = {5, 10, 15, 20}). As the figure shows for the

case of single antenna APs, the average uplink per-user rate while

omitting the quantization correlation is very close to the exact uplink

per-user rate. Moreover, as the figure demonstrates, if there are K ≤
10 active users in the area, the average uplink per-user rate while

omitting the quantization correlation (shown as Approximation in

the figure) is very close to the exact rate. As a results, if there are

K < 10 active users and the AP are equipped with N > 2 antennas,

the correlation between the inputs of the quantizers should not be

ignored.

5) The effect of different linear detectors: This section investi-

gates the average uplink per-user rate of cell-free massive MIMO

with three different receivers, namely the MMSE, L-MMSE and

MRC receivers. In Fig. 5, we assume that M = 40 APs each with

N = 2 antennas are uniformly distributed in the area. Moreover,

we consider K = 20 users and τp = 20 as the length of pilot

sequences. As the figure shows the MMSE receiver provides the

greatest median uplink rate. Note that in the case of MRC and L-

MMSE, the CPU does not have access to the quantized channel

estimates and exploits only the statistics of the channel to decode

the data whereas to design the MMSE receiver the CPU needs to

have the quantized version of channel to design the receiver.

IV. CONCLUSIONS

We have considered cell-free massive MIMO with L-MMSE

detector, when the quantized version of the weighted signals are

available at the CPU. Bussgang decomposition has been used to

model the quantization effects. We have investigated the assumption

of uncorrelated quantization distortion and showed that this assump-

tion will not affect the insights obtained in our works. We presented

a comparison between the exact uplink per-user rate and the uplink

per-user rate while ignoring the correlation between the inputs of the

quantizers. Finally, we have presented the conditions which imply

that the quantization distortions across APs can be considered as

uncorrelated signals.
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